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Abstract

We study t-channel correlated two-pion exchange in a quark-quark scattering amplitude,
tqq(qz). (Since we use a generalized Nambu—Jona-Lasinio model that includes a model of
confinement, the scattering amplitude is only defined for off-mass-shell quarks.) We calculate
Imz,(q 2y for scalar-isoscalar t-channel exchange and obtain Re t.q(d ) using a once-subtracted
dispersion relation. For q2 <0, Re tqq(qz) may be approximated by tqq(qz) = g2/ (q2 - mf )

with m, = 600 MeV. However, there is no sigma meson with that mass in the timelike region,

q2 > 0. (The physical sigma has a mass of about 850 MeV and a very large width.) Instead
of using the dispersion relation, we can perform an explicit calculation of tqq(q 2) over the full
range of g2. By comparing our explicit calculation to the results of the dispersion-relation
analysis, we may understand the physical significance of the effective sigma field introduced in
the dispersion-relation study. At the quark level, we see that the T matrix (for q2 <0)
describes the t-channel exchange of the (off-mass-shell) chiral partner of the pion. We also find
that our model is able to reproduce the strength of the nucleon-nucleon force due to sigma

exchange, as given, for example, in the phenomenological one-boson-exchange model.




L. Introduction

It is well known that, if one studies dispersion relations for nucleon-nucleon scattering,
correlated two-pion exchange plays an important role in providing the intermediate-range
attraction of the NN interaction [1-4]. It has been determined that the dynamics of correlated
two-pion exchange may be approximated by the t-channel exchange of an (effective) sigma
meson with m, ~ 600 MeV. In our work we wish to study a similar problem in which we
consider the quark-quark interaction instead of the nucleon-nucleon interaction. Our motivation
is to provide a physical interpretation of the "scalar meson" that approximates the t-channel
dynamics of correlated two-pion exchange between quarks for g2 < 0. This analysis is possible,
since we can solve for the quark-quark scattering amplitude, tqq(qz) , for both timelike and
spacelike values of q2. Therefore, by studying our explicit calculation of tqq(qz) for ¢ <0,
we can see that the (effective) sigma meson, introduced in the dispersion relation study is an off-
mass-shell representation of the chiral partner of the pion. In this manner we obtain a deeper
understanding of the physics underlying the dispersion relation analysis and may relate that work
to models of the NN interaction that are based on models with chiral symmetry.

The organization of our work is as follows. In Section I we review some features of
our generalized Nambu—Jona-Lasinio model [5-7]. In our work, we have defined two
functions, J S(qz) and ks(qz), which may be used to construct a quark-quark scattering
amplitude describing scalar-isoscalar t-channel exchange processes. (We note that J S(qz) is
real, while Ii’s(qz) is complex.) In Section III, we define the amplitude tqq(qz) in terms of
J S(qz) and K S(qz). We then use Im tqq(qz) in Section IV to obtain Re tqq(qz) from a once-

subtracted dispersion relation. It is found that the approximation tqq(qz) = gf o (q%- mf),
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with m_ = 600 MeV , is valid in a limited region of spacelike values of g2 near q2 =0. Finally,
Section V contains a discussion of the significance of our result in understanding the nature of

correlated two-pion exchange.




II. A Generalized Nambu—Jona-Lasinio Model
Our analysis of a generalized Nambu—Jona-Lasinio model [5-7] is reviewed in this

section. The Lagrangian of the model is

- Ger/— - —
£ = 38 -m)ee + E{q@W) + (@@ 9P ]+ Lpye , @D

0

where g(x) the quark field. Here m q

is the current quark mass and & ___¢ represents our model
of confinement. (We will not discuss the details of our model of confinement, which have been
given elsewhere [5,6]. Our confinement model is based upon the use of a linear potential;
however, we carry out our analysis in momentum space using the Fourier transform of the

potential [5-7].) To proceed, we need to define several integrals. For example, the quark-loop

integral of Fig. 1b defines a function

d*k

-iJ5(g® = (-Dnen, [ 5 )4Tr[iS(k+q/2)iS(k—q/2)] 2.2)
T

where S(k) =[£ -m q” ie]™! is the quark propagator. In Fig. 1c we show the sum of a "ladder"
of confining interactions, V€, that serves to define a confinement vertex (the shaded triangular

area). It is useful to introduce

> d*k
-iJ (qz) = Nnen
S ! CJ emn?

Tr[S(k +q/2)Ts(q, k) S(k - g/2)] , (2.3)

where T'4(g, k) is the confining vertex. [See Fig. lc.]

In Fig. 1d we exhibit the function K S(qz) , which is important in the description of the
coupling of the quark states to the two-pion continuum. In Fig. le we show the same function
including the confining vertex. The vertex, Is(q, k), vanishes when both the quark and

antiquark go on their positive mass shells [6]. Therefore, unitarity cuts that would start at
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4m; are eliminated, leaving only the cut in Ks(qz) that starts at 4m: . It is that feature that
allows us to write meaningful dispersion relations.
Note that, in the absence of confinement, the mass of the sigma meson may be obtained

from the equation
Ggl-Jgm?) =0 . (2.4

2
x

The NJL model predicts a sigma meson with mz‘ = 4m§ +m_ [8]. We have used
m, =260 MeV in our work and have, therefore, found m, =540 MeV. In the presence of

confinement, and including some effects due to the coupling to the two-pion states, we use
Gs' -[Jstm?) + ReRg(m})] = 0 2.5

to determine the sigma mass. The last equation yields m, = 823 MeV [9]. However, since
ImK S(qz) is very large, the state at 823 MeV has a very large width of about 1 GeV and will
not figure prominently in any experiment. (This analysis and the work of Térnqvist and Roos
[10] show that the physical sigma has a mass of about 850 MeV and a very large width. The
pole associated with this physical state does not influence the behavior of teqd 2y for spacelike

g%, where the effective mass is smaller [5]. Consideration of confinement and the coupling to

the two-pion states can move the effective value for 42 <0 to 600 MeV.)

Values of Im K s(qz) and Re I%S(qz) are shown in Figs. 2 and 3 [9]. In Fig. 4 we show
values of fs(qz) for q2 >0, as well as fs(qz) +Ref(s(q2) [9]1. We may solve Eq. (2.5) in
a graphical manner by drawing a horizontal line representing Gg ! The intersection of that line
with the curve representing J s(q 2y +Rek s(q 2 provides a value for the physical sigma mass.

[See Fig. 4.1 (In our earlier work, we found m, = 823 MeV, as noted above.)
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III.  The Quark-Quark T Matrix

The functions defined in Section II may be used to construct a quark-quark T matrix,
tqq(qz), describing scalar-isoscalar exchange dynamics in the t-channel. (In this analysis we
suppress reference to Dirac and isospin matrices. For the case considered here, only the unit
matrices are needed in each space.) The expression for tqq(qz), taking into account the
processes shown in Fig. 5, is
Gs

- _ - G.1)
1 -Gyl 75(@® + Rs(q?)

1@

Gs
= - — _ _ . (32
1 - GglJ5(g?) + Re Rg(q?)| - iGsIm R5(g?)

Note that, in the standard counting of color factors, Gg~ l/n, and Jg(g?) ~ n,, while
ks(qz) ~ 1. Thus, tqq(qz) is of order 1/n_, when we consider only the Born term shown in
Fig. 1a and diagrams with various factors of J S(qz). On the other hand, adding a single factor
of K s(qz) in a diagram contributing to tqq(qz) gives a contribution of order llnc2 . (Also, Born
terms involving uncorrelated exchange of two pions would give contributions of order 1/ncz.
These terms do not contribute to correlated two-pion exchange and we do not evaluate them
here.)

It is useful to define
D) = 1-GylJsg? +ReK5(g))] - iGsIm Rs(g®) . (3.3)

Thus,




(.4)

Various diagrams that contribute to Im tqq(qz) are shown in Fig. 6. We may also write

Imeg(g® =Y = I -ﬁTdb(q, K)[iz(-211)5(+)((q/2 + )2 —mf)

@ 2 ent 7T (3.5)

X223 (a2 - 0 -m2)|[122(q, 0]

thereby defining the amplitude T;: (g, x). Note that s=2 is a symmetry factor and we divide
by 2 to relate the discontinuity to the imaginary part of tqq(qz). [See Fig. 6b.] In Eq. (3.9),
a and b are isospin indices. The intermediate bracketed quantity arises when forming the
discontinuity across the cut that starts at g2 = 4m3 . (There is one factor of i from each meson
propagator.)

It is useful to define the form factor F; (qz) shown in Fig. 7. In this case, the pions
have been placed on mass shell. That feature is denoted by placing a cross on each of the pion

lines. The function F, &) may be obtained from the more general amplitude

4
AX (St~ 007552 +BTs(q, BS(-gl2 +k)vs]  (B.6)
@)

Fs(q, 1) = TriJ

by taking (g/2 + :c)2 =m: and (q/2 - :c)2 = mf_, etc. That is,

2 3.7
2 .
Fi(@® = &5 qz,q-K=O,K2=qT-mT ) 3.7

Further details concerning the calculation of F, (qz) may be found in Ref. [9].
If g=0, we have q° =2w(x), with w (%) =[# +m:]1/2. We may then provide an

expression for T;ﬁ(qz) in terms of F; (q2) in the case of on-mass-shell pions:
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2
grquSFl (qZ) (3.8)

b 2y _
T;-r(q ) = 6abncnf D(qz)

Here n,=2 and n =3 are the number of flavors and colors, respectively. Note that in

Im tqq(qz) , the total isospin factor is 3nf2 =12 and the color factor is nc2 =9.




IV.  Dispersion Relations for the Quark-Quark Scattering Amplitude

A once-subtracted dispersion relation for Re tqq(q 2) is

P Ime (g%
Ret,4(q°) = g - = ¢ [ %_2_ i
T 2 ¢°(@°-q)

4mw

4.1)

In analogy to what is done in the study of the NN scattering amplitude [1-4], we insert our
model for Im tqq(q’z) in Eq. (4.1). [See Eq. (3.4).] We show Im tqq(qz) in Fig. 8 along with
the values of Re tqq(qz) obtained from Eq. (4.1). In order to carry out that calculation we have
used

Gs

£,,0) = - s
“ 1 - GglJs(0) + R5(0)]

4.2)

in Eq. (4.1). (We find that £, (0) = -27.9 GeV™2.)

It may be seen that the values of Re tqq(qz) obtained from Eq. (4.1) agree well with
those found in an explicit calculation using Eq. (3.2). We have proceeded in this fashion to
make our treatment of correlated two-pion exchange similar to that used in the study of nucleon-
nucleon scattering [1-4]. We come to the same conclusion. If we consider spacelike values of
q?, the contribution of correlated two-pion exchange may be replaced by the exchange of an
effective sigma meson of mass m, ~ 600 MeV.

However, our analysis allows us to go further in understanding the dynamics for
spacelike g2. Since I%S(qz) is not very important for g2 <0, we may write

Gs

S 4.3)
1-Gglg(gh

tg@?) = -
Also, since confinement is also not very important in the spacelike domain we can further
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approximate (g 2) by

2. __ Gs
td@?) = - ——— - 4.4)
As we may see in Fig. 8,
gz
2y ~ 749
tqq(q ) - ——_2 3 ] (4.5)
q--m,

with g, . a constant, for -¢2 not too large. (For example, -0.20 GeV2 < ¢%<0.)

It should be clear that Eq. (4.5) describes the exchange of the chiral partner of the pion
between the quarks, with a coupling constant of the meson to the quark of g, qq- Recall that,
if we neglect confinement and use Eq. (4.4) in the timelike region, we obtain 540 MeV for the
mass of the chiral partner of the pion. That agrees with the bosonization analysis, which yields
mf = 4m§ + mi [8]. Inclusion of confinement and coupling to the two-pion states leads to an
effective mass m_ = 600 MeV in the spacelike region, and m, =823 MeV for the mass of the
physical sigma meson. [See Fig. 8.]

For a more accurate analysis we may use
Gs

teg@ = - - -
“ 1 - Ggl75(q?) + Re R5(g?)]

4.6)

for g2<0. We may also define a momentum-dependent coupling parameter, g, qq(qz) , such

that
2 2
8s441") = - Gs ) 4.7)
2 -~ A
g*-m}  1-Ggisg) +ReRs(q?)]

We may then define g, qq = 8544(0). To obtain a value for g, gq> We use the relation
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2
Gs - Soas 4.8)
1-GJ5 +Rs@)] m?

a
With m, =540 MeV, J5(0) =0.0708 GeV?2, R(0) =0.0108 GeV? and Gy = 8.516 GeV?2, we
find 8sqq = 2.85 [9]. (Note that, if we use m; = 600 MeV, we would find 85qq =3-17.) These
values yield 7,,(0) = -g> /m? = ~27.9 GeV 2.

Once we have a value of g, gq» We can compare the strength of the interaction between
nucleons in our quark model and in the one-boson-exchange (OBE) model of nuclear forces [11].
To make that comparison at g2 = 0, we need the value of the scalar form factor of the nucleon
defined for valence quarks. (That quantity has been calculated in a lattice simulation of QCD

[12].) We define the scalar form factor that has contributions from both the valence and "sea"

quarks, as
Fs(@®u(p+q,s"u(p,5)6,, = (p+q,5',730)q©) | p,s,7) . 4.9)

Here, 5,5, 7, ' are spin and isospin indices. It is found that Fs(qz) is about three times as

large as the valence form factor, which we denote as F;al(qz) [12]. At g%=0, the sigma-

nucleon coupling constant in our quark model is G,y = &, qu;al(O) [13]. From the lattice

simulation [12], we have Fg (0) =3.02, so that with g, =2.85, we have G,y =8.61. To

obtain the corresponding coupling constant for the OBE model, GUO BE

, we recall that there a
vertex cutoffs in that model [11], so that, with gf yn being the OBE coupling constant, we have

(for g2 =0)
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OBE\2 2 2 .2
(GO'MV - 84NN Aa —m, ] (4.10)
m“:' mf Ai

Here, m, =550 MeV is the value of the sigma mass usually used in the OBE model, g,NN 1S
the OBE coupling constant, and A, is the corresponding vertex cutoff parameter. For one

particular OBE model, we have g2, /47 =8.314 and A, =2.0 GeV. (See Table A.2 of

reference [11].) Therefore, we find G%?\If =9.28 from Eq. (4.10) if we put m, = 540 MeV.

4

The ratio of the value calculated above, G, vy =8.61, to the effective value in the OBE

OBE

model, G =9.28, is 0.928. Thus we see that our model can account for at least

eighty-five percent of the nucleon-nucleon force that is described as being due to sigma exchange

in the OBE model [11]. (If we use m, =600 MeV in Eq. (4.10), we have Go2E = 10.3. Also,

1]

when m_ =600 MeV, we have gdqq=3.17 and Gy Fg¢(0) =9.57.  Therefore,

= 8oqq

G‘% / GO,OAI,;I,; =1.08. With that choice of m,, we can account for the entire strength of the

scalar-isoscalar interaction at g% =0.)
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V. Discussion

Our goal in this paper was to relate the description of correlated two-pion exchange in
the nucleon-nucleon interaction [1-4] to a similar description for the quark-quark interaction.
The advantage of studying the problem at the quark level is that one may specify the chiral
character of the fields involved. If one studies the nucleon-nucleon interaction, the nature of the
effective sigma field, introduced to represent correlated two-pion exchange, is unknown.
Working at the quark level, it is clear that, for spacelike q2, the exchanged scalar-isoscalar
meson is the (off-mass-shell) chiral partner of the pion. If we infer that a similar interpretation
may be made for the scalar field that simulates correlated two-pion exchange in the nucleon-
nucleon interaction, we achieve a more comprehensive and unified understanding of that
interaction. We also achieve a greater understanding of the nature of scalar fields in nuclei
[22-24].

Recent work on the nucleon-nucleon interaction has made use of effective Lagrangians
that exhibit chiral symmetry, with mesons and nucleons as the degrees of freedom [14-21].
(Such models usually require a large number of free parameters. For example, there are 26
parameters in the work of Ref. [16].) While we have not introduced a Lagrangian with chiral
symmetry, with mesons and nucleons as the degrees of freedom, we believe that our analysis,
which is based on a model with chiral symmetry, with quarks as the basic degrees of freedom,

is useful in understanding the role of chiral symmetry in the nucleon-nucleon interaction.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

(@)
(b)
(c)

(d)
(e)

Figure Captions
The zero-range quark interaction of the NJL model is shown.
The quark-loop integral in the scalar-isoscalar channel is shown.
The quark-loop integral including a series of confining interactions (dashed line)
is shown. The filled triangular region denotes the vertex function that serves to
sum the ladder of confining interactions.
The function Ks(qz) describes effects of coupling to the two-pion continuum.
The function K(¢?) includes two confinement vertex functions and has a cut for
q2 > 4m3 .
Values of Im K s(qz) are shown. The calculation is made using the method

outlined in Ref. [7]. Here we use « =0.50 GeV? =2.58 and Lorentz-

» 8xqq
vector confinement. We also have m, =260 MeV and a cutoff on the three-
momenta, | k| <A;, with A;=0.689 GeV. (Note that the result is quite
insensitive to the model of confinement used.) Values for g, gq = 2-68 may be
obtained from the values shown by multiplying by (2.68/2.58)* = 1.16. [See Fig.
3.]

Values of Re I%S(qz) obtained in Ref. [9] are shown. Here g 9= 2.68 was used
in the calculation of Im Ii's(qz) and Re I%S(qz) was obtained using a once-
subtracted dispersion relation.

The dashed line shows Re K s(qz). [See Fig. 3.] The dotted line shows the

values of J s(q 2) , and the solid line represents J s(q 2) +Re K s(q 2) . These results

were given in Ref. [9]. The dash-dot line shows the value of

- 18 -




Fig. §

Fig. 6 (a)

(b)

Fig. 7 (a)

Fig. 8

Gs' =(1/8.516) GeV2 [9]. The intersection of the solid line with the dash-dot
line depicts the solution of the equation Gs 1. ¥ S(q"') +ReK s(mf)] =0. We
find m_ = 823 MeV.

The quark-quark T matrix laq (¢?) is obtained by summing the diagrams shown.
The t-channel exchanges are summed by the expression given as Eq. 3.1. Ina
limited region of qz( -0.25 GeV? < q2 <0), these effects are well represented
by the exchange of an effective sigma meson with m, =600 MeV, as may be
seen in Fig. 8.

Some of the diagrams contributing to Im tqq(qz) are shown. The wavy lines
denote pions and the wavy lines with a cross represent on-mass-shell pions. [See
Eq. (3.4).] To simplify the drawing, the confining vertex is not shown.

A diagrammatic representation of Eq. (3.5) is shown. The wavy lines represent
on-mass-shell pions.

The form factor, F, (qz), is shown. The wavy lines represent pions and the
crosses indicate that the pions are on-mass-shell. [See Eqgs. (3.6) and (3.7.]
The dashed line represents values of Im tqq(qz), that were calculated by the
methods described in the text. The solid line represents Re tqq(qz), obtained
using the once-subtracted dispersion relation of Eq. (4.1). Here
tqq(O) = ~27.9 GeV~2 was obtained from Eq. (4.2). The dotted line represents
the approximation, tqq(qz) = gf qq/(qz - mgz), with m_ =600 MeV and

8ogq =3-17.

-19 -







100 3
A
)
/.\_/u

200 5
4))
<<
/.\7u

€00




Z'bld

¢0°0-

000

c00

00

(A29) (;b)* oy




D1y

-
e e e
T T
-
il N
————.
- -
-
-

lllll
-
- -
~-
lllll
-
-
-
-
-
-
-
-
-

-
e
S~
-
~

0000

G200

0500

G200

00L°0

GclLo

0GL0




VQA + X = e




:(,b)b
-b) PP




ol

ol

ol

-g+Kk

Fl1Gq.7




80

§'D]4

v0

09-

Ov-

0c

(-N2D) (b)) wy pue (,b)*} ey







