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DEFORMED u(2) ALGEBRA AS THE SYMMETRY
ALGEBRA OF THE PLANAR ANISOTROPIC QUANTUM
HARMONIC OSCILLATOR WITH RATIONAL RATIO OF
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Abstract

The symmetry algebra of the two-dimensional anisotropic quantum harmeonic oacilla-
tor with rational ratio of frequencies is identified as a deformation of the u(2) algebra.
The finite dimensional representation modules of this algebra are studied and the energy
eigenvalues are determined using algebraic methods of general applicability to quantum
superintegrable systems. For labelling the degenerate states an “angular momentum” op-
erator is introduced, the eigenvalues of which are roots of appropriate generalized Hermite
polynomials. The cases with frequency ratios 1:n correspond to generalized parafermionic
oscillators, while in the special case with frequency ratio 2:1 the resulting algebra corre-

sponds to the finite W algebra wg’).
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1 Introduction

Quantum algebras !? (also called quantum groups) are nonlinear deformations of the cor-
responding Lie algebras, to which they reduce when the deformation parameter is set equal
to unity. The interest in their possible applications in physics was triggered by the intro-
duction of the q-deformed harmonic oscillator in 1989 3-° as a tool for providing a boao\n
realization of the quantum algebra su,(2), although similar mathematical structures had
already been known 7. By now several kinds of generalized deformed oscillators (see -2
and references therein) and generalized nonlinear deformed su(2) algebras **~'? have been
introduced, finding applications in a variety of physical problems. .

On the other hand the two-dimensional ?°~2% and three-dimensional 232 anisotropic
harmonic oscillator have been the subject of several investigations, both at the classical and
the quantum mechanical level. These oscillators are examples of superintegrable systems
33, The special cases with frequency ratios 1:2 32 and 1:3 % have also been considered.
While at the classical level it is clear that the su(N) or sp(2N,R) algebras can be used for
the description of the N-dimensional anisotropic oscillator, the situation at the quantum
level, even in the two-dimensional case, is not as simple.

In this paper we are going to prove that a generalized deformed u(2) algebra is the
symmetry algebra of the two-dimensional anisotropic quantum harmonic oscillator, which
is the oscillator describing the single-particle level spectrum of “pancake™ nuclei, i.e. of

triaxially deformed nuclei with w; >> w,, w, .

2 The deformed u(2) algebra
Let us consider the system described by the Hamiltonian:
_1 2 2,2 .y
—s(reme Sa8), )

where m and n are two natural numbers mutually prime ones, i.e. their great common

divisor is gcd(m,n) = 1.




We define the creation and annihilation operators *

at = :‘m—zi!.’ a= slm«;iz.‘
(2
ot = l%—;h, b= 11”7*’;!1
These operators satisfy the commutation relations:
[a,a'] = %, [b, b'] = ;ll-, other commutators = 0. (3)
Using Eqs (2) and (3) we can prove by induction that:
[a,(a!)] = 2 (@)™, [N =200,
(4)
[a% (@) = -2 (a)", [8%(b)) =-2(3)"".
Defining
U=3{aa), W=g{s), (5)
one can easily prove that: »
[0, (a")"] = Z(a")", [W,(e)"]=2(¥),
(6)

U, (@)= -2(a)”, [W,(8)']=~2().
Using the above properties we can define the enveloping algebra generated by the operators:
Se= ()" B, S-=(@" ()",

™M
So=l(U-W), H=U+W.
These genarators satisfy the following relations:
[So, Ss] = £8s, [H,Si]=0, for i=0,%, (8)

and

: s+s_=ﬁ(u-2"2—;l)f[(w+2’—2;—l), 9

k=1 =1

had 2%k -1\ 2€-1
S.S+=H(U+T)H(W— o ) (10)

A=1 im)

The fact that the operators S;, i = 0, are integrals of motion has been already realized

in %,

The above relations mean that the harmonic oscillator of Eq. (1) is described by the
enveloping algebra of the generalization of the u(2) algebra formed by the generators S,
S4, S_ and H, satisfying the commutation relations of Eq. (8) and

[S-,84] = Fan(H, S0 + 1) — Fma(H, 50),
(11)

where  Fun(H, So) = 1 (H/2 + So — 222) T (H/2 - 5o + %22
k=1 =1

).

In the case of m = 1, n = 1 this algebra is the usual u(2) algebra, and the operators S, Sy
satisfy the commutation relations of the ordinary u(2) algebra, since in this case one easily
finds that

[S-,84] = —2S,. (12)

In the rest of the cases, the algebra is a deformed version of u(2), in which the commutator

[S-,S4] is a polynomial of Sy of order m + n — 1. In the case with m = 1, n = 2 one has

H* 3
S =382 — HSy— — + = 1
[S-,84] =385 — HSo — 1+ 3¢ (13)
i.e. a polynomial quadratic in Sy occurs, while in the case of m = 1, n = 3 one finds
3
(5,54 = —a53 + 353 - 5o - 4 B (14)

i.e. a polynomial cubic in Sy is obtained.

3 The representations

The finite dimensional representation modules of this algebra can be found using the concept
of the generalized deformed oscillator ®, in a method similar to the one used in % for the

study of quantum superintegrable systems. The operators:
At=8,, A=5_, N=Sy—u, u= constant, (15)
where u is a constant to be determined, are the generators of a deformed oscillator algebra:

VA=A, NV, Al=-A, AA=S(HN), AA'=8HN+1).  (16)




The structure function @ of this algebra is determined by the function Fp,, in Eq. (11):
S(H,N) = Fpu(H N +u) =
=l (HR2+ N +u-B) [T (H/2-N -+ %32). an
k=1 (23}

The deformed oscillator corresponding to the structure function of Eq. (17) has an energy
dependent Fock space of dimension N + 1 if

O(E,00=0, ®E,N+1)=0, ¥E,k)>0, for k=1,2,...,N.  (18)
The Fock space is defined by:
H|E,k>=E|E,k>, N|E k>=k|E,k>, a|E0>=0, (19)
ANEk>= OE k+ D)|E,k+1>, AEk>= JOE RIE k-1>. (20)
The basis of the Fock space is given by:

VB k >= AN IE, 0>, k=0,1,...N, (21)

1
ek

where the “factorial” [k]! is defined by the recurrence relation:
=1, (K!=&(Ek)k-1] . (22)

Using the Fock basis we can find the matrix representation of the deformed oscillator and
then the matrix representation of the algebra of Eqs (8), (11). The solution of Eqs (18)
implies the following pairs of permitted values for the energy eigenvalue E and the constant

u:
2p-1 2¢-1
= _ - 23
E=N+= o (23)
wherep=1,2,...,m,¢=1,2,...,n, and
1f2p-1 29-1
= _ - 24
=3 ( 2m am N ) ' (24)
the corresponding structure function being given by:
O(E,z) = Qf:")(z) = . o
m Pp—1 2-1)\n2 29-1 2-1
- ,.I;Il (z + 2m 2m ,1;1, N-z+ n + n ) (25)

__1 T(mz+p) T((N-2)n+g+n)
s Tz +p—m) T((N - 2Jn+q) '

5

where I'(z) denotes the usual Gamma-function. In all these equations one has N =
0,1,2,..., while the dimensionality of the representation is given 'by N +1. Eq (23)
means that there are m - n energy eigenvalues corresponding to each N value, each eigen-
value having degeneracy N +1. (Later we shall see that the degenerate states corresponding
to the same eigenvalue can be labelled by an “angular momentum”.)

It is useful to show at this point that a few special cases are in agreement with results
already existing in the literature.

i) In the case m =1, n = 1 Eq. (13) gives
O(E,z)=2z(N+1-1z), (26)

while Eq. (12) gives
E=N+1, (27)
in agreement with Sec. IV.A of 3.

ii) In the case m =1, n = 2 one obtains for ¢ =2

<I>(E,:)=1(N+1—x)(N+g—z), E=N+g. (28)
while for ¢ = 1 one has
Q(E,z):z(N+l—z)(N+%—z), E=N+%. (29)

These are in agreement with the results obtained in Sec. IV.F of 3 for the Holt potential
(for § = 0).

iii) Inthe case m =1,n =3 one has for ¢ = 1
1 2 2
®(E,z)=z(N+1-12) N+§-—z N+§—-z , E=N+§, (30)
while for ¢ = 2 one obtains
O(E,z)=z(N+l—z)(N+§—z)(N+%—:), E=N+1, (31)
and for ¢ = 3 one gets

Q(E,z):x(N+l—z)(N+§—::) (N+§-z), E=N+§. (32)

]




These are in agreement with the results obtained in Sec. IV.D of 3 for the Fokas-Lagerstrom
potential.

In all of the above cases we remark that the structure function has the form
B(z)=z(N+1~-2)A+pz+ve’+pz’ +oz'+..), (33)

which corresponds to a generalized deformed parafermionic algebra % of order N, if A, u,

v, p, 0, ..., are real constants satisfying the conditions
Atpz+ve? +pr’ 4ozt +...>0, z€{1,2,...,N} (34)

These conditions are indeed satisfied in all cases. It is easy to see that the obtained algebra
corresponds to this of the generalized parafermionic oscillator in all cases with frequency
ratios 1 : n.

The energy formula can be corroborated by using the corresponding Schrddinger equa-
tion. For the Hamiltonian of Eq. (1) the eigenvalues of the Schrodinger equation are given

by: :
1 1 1 1
E'—'_n‘("z+§)+;("v+§)1 (35)
where n, = 0,1,... and n, = 0,1,.... Comparing Eqs (23) and (35) one concludes that:
N = [ng/m] + [n,/n], (36)

where {z] is the integer part of the number z, and
p=mod(n,,m)+1, ¢q=mod(n,,n)+1. 37
The eigenvectors of the Hamiltonian can be parametrized by the dimensionality of the

representation /N, the numbers p, ¢, and the number £ = 0,1,..., N. k can be identified as
[nz/m}. One then has:

Ht(:q)’k>=(N+2_I;—r%l+2q_l)l(p,q)’ > (3)
A T [
N ) = R | (k) (40)

S’| (pl.vq) ’k> = \/WI (:q) ’k_l>' (41)

7

4 The “angular momentum” quantum number

It is worth noticing that the operators Sp, Si do not correspond to a generalization of the
angular momentum, Sq being the operator corresponding to the Fradkin operator S, — Sy,

041 The corresponding “angular momentum” is defined by:
Le=-i(S; - 5.). (42)
The “angular momentum” operator commutes with the Hamiltonian:
[H, Lo} = 0. (43)

Let |[£ > be the eigenvector of the operator Lo corresponding to the eigenvalue £. The

general form of this eigenvector can be given by:

l Cg
£ >= 2 k). 44
! — /! (p q) > (44)
In order to find the eigenvalues of Ly and the coefficients ¢, we use the Lanczos algorithm

42, as formulated in *. From Eqs (40) and (41) we find

Lot >= e >= 13" Za N k> -
o Vi | (p9)’ (45)
: l,N-l (LN og,,')(bn) N - 1> N {: [LN LU} N ke l>
i (O] (pg)’ = T&lt (r9)’
From this equation we find that: .
N
= (D)2 H(YVIN, N* =3 27" HXt/V2)/n! (46)
n=0

where the function Hy(z) is a generalization of the “Hermite” polynomials (see also *44),

satisfying the recurrence relations:
H_y(z) =0, Ho(z)=1, (47)
Hyya(2) = 22 Hi(z) — 28f, (k) Hia(2), . (48)
and the “angular momentum” eigenvalues £ are the roots of the polynomial equation:
Hya(8/v2) = 0. (49)

8




Therefore for a given value of N there are N + 1 “angular momentum” eigenvalues ¢,
symmetric around zero (i.e. if £ is an “angular momentum” eigenvalue, then —Z£ is also
an “angular momentum” eigenvalue). In the case of the symmetric harmonic oscillator
(m/n = 1/1) these eiéenvalues are uniformly distributed and differ by 2. In the general case
the “angular momentum” eigenvalues are non-uniformly distributed. For small values of N
analytical formulae for the “angular momentum” eigenvalues can be found ‘. Remember
that to each value of N correspond m - n energy levels, each with degeneracy N + 1.

In order to have a formalism corresponding to the one of the isotropic oscillator, let us

introduce for every N and (m,n, p, q) an ordering of the “angular momentum” eigenvalues
L,mmn,p, _ =
L™, where L=N and p=-L,-L+2,...,L-2L, (50)

by assuming that:

(emare < qLmnrs if <y, (51)

the corresponding eigenstate being given by:

L —O)AH, (2™ /7 N >
L, ym,n,p, = ; ’k
|L,p ™, N, p 9 %L yffznn(qr (»9 (52)
N
=¥ d ok
z "*‘| (p.q)

The above vector elements constitute the analogue corresponding to the basis of “spherical
harmonic” functions of the usual oscillator. The calculation of the “angular momentum”
eigenvalues of Eq. (50) and the coefficients dy,d;,...,dL41 in the expansion of Eq. (52) is
a quite difficult task. The existence of general analytic expressions for these quantities is
not obvious. The first few “angular momentum” eigenvalues are given by:

mapa _ 1 T(m+p)l(n+gq)
i *\/ e 1) () 9

and
amnon g,

For L > 2 the analytic expressions of the angular momentum eigenvalues and the coefficients

dy are longer, but their calculation is a straightforward task.

9

5 Multisections of the isotropic oscillator

In *¢ the concept of bisection of an isotropic harmonic oscillator has been introduced. One
can easily see that multisections (trisections, tetrasections, ...) can be introduced in a
similar way. The degeneracies of the various anisotropic oscillators can then be obtained
from these of the isotropic oscillator by using appropriate multisections.

Using the Cartesian notation (n.,n,) for the states of the isotropic harmonic oscillator
we have the following list:

N=0: (00)

N=I: (10) (01)

N=2: (20) (02) (11)

N=3: (30) (03) (21) (12)

N=4: (40) (04) (31) (13) (22)

N=5: (50) (05) (41) (14) (32) (23),

where N = n, + n,. The corresponding degeneracies are 1, 2, 3, 4, 5, 6, ..., i.e. these
of u(2).

A bisection can be made by choosing only the states with n,=even. Then the following
list is obtained: )

N=0: (00)

N=1: (10)

N=2: (20) (02)

N=3: (30) (12)

N=4: (40) (04) (22)

N=5: (50) (14) (32).

The degeneraciesare 1,1, 2,2, 3, 3, ..., i.e. these of the anisotropic oscillator with ratio
of frequencies 1:2. The same degeneracies are obtained by choosing the s‘tat.ea with n,=odd.
Therefore a bisection of the isotropic oscillator, distinguishing states with mod(n,,2) =0

and states with mod(n,,2) = 1, results in two interleaving sets of levels of the 1:2 oscillator.

10




By analogy, a trisection can be made by distinguishing states with mod(r,,3) = 0, or
mod(n,,3) = 1, or mod(n,,3) = 2. One can easily see that in this case three interleaving
sets of states of the 1:3 oscillator, having degeneracies 1,1, 1,2,2,2,3,3,3, ..., occur.

Similarly a tetrasection can be made by distinguishing states with mod(n,,4) = 0, or
mod(n,,4) = 1, or mod(n,,4) = 2, or mod(n,,4) = 3. The result is four interleaving sets
of states of the 1:4 o;cillamr, having degeneracies 1,1,1,1,2,2,2,2,3,3,3,3,....

By bisecting n. and trisecting n, one is left with six interleaving sets of states with
degeneracies 1,1, 1,1, 1,2, 1,2, 2,2,2,3,2,3,3, ..., i.e. degeneracies of the 2:3
oscillator.

By bisecting (or trisecting, tetresecting, etc) both n, and n, one is obtaining the original
u(2) degeneracies of the isotropic oscillator.

It is therefore clear that the degeneracies of all m : n oscillators can be obtained from
these of the isotropic oscillator by appropriate multisections. In particular:

i) The degenencié of the 1 : n oscillator can be obtained from these of the 1:1 (isotropic)
oscillator by n-secting n, or n,.

ii) The degeneracies of the m : n oscillator can be obtained from these of the 1:1 oscillator

by m-secting n, and n-secting n,.

6 Connection to W:(,z)

For the special case m = 1, n = 2 it should be noticed that the deformed algebra received
here coincides with the finite W algebra W 47-%, The commutation relations of the W{?

algebra are
[Hw,Ew|=2Ew, [Hw,Fw]=-2Fw, [Ew,Fw])=Hj +Cw,

(Cw, Ew] = [Cw, Fw] = [Cw, Hw] = 0, (55)
while in the m = 1, n = 2 case one has the relations

2
W, A=A, N, Al=—A, [AAY =352 HT — HSo+ %

[H'A']=[HVA]=!H’SU]=0v (56)

11

with Sg = A + u (where u a constant). It is easy to see that the two sets of commutation

relations are equivalent by making the identifications
Fyw = oAt Ew = pA, Hw = =25 + kH, Cw = f(H), (57)

with

1 4 1
, k= 3 f(H) = —§H’ + (58)

W]

po =

7 Discussion

In conclusion, the two-dimensional anisotropic quantum harmonic oscillator with rational
ratio of frequencies equal to m/n, is described dynamically by a deformed version of the
u(2) Lie algebra, the order of this algebra being m + n — 1. The repres;ntation modules of
this algebra can be generated by using the deformed oecillator algebra. The energy eigenval-
ues are calculated by the requirement of the existence of finite dimensional representation
modules. An “angular momentum” operator useful for labelling degenerate states has also
been constructed. The algebras obtained in the special cases with 1 : n ratios are shown
to correspond to generalized parafermionic oscillators. In the special case of m:n =1:2
the resulting algebra has been identified as the finite W algebra W'?. Finally, it is demon-
strated how the degeneracies of the various m : n oscillators can be obtained from these of
the isotropic oscillator by appropriate multisections.

The extension of the present method to the three-dimensional ani;otropic quantum
harmeonic oscillator is already receiving attention, since it is of clear interest in the study
of the symmetries underlying the structure of superdeformed and hyperdeformed nuclei ®'.
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