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Abstract

We investigate the relation between the modified leading log approximation of the
perturbative QCD and the sequential binary fragmentation process. We will show
that in the absence of inactivation, this process is equivalent to the QCD gluody-
namics. The inactivation term yields a precise prescription of how to include the

hadronization in the QCD equations.
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The sequential, conservative and off-equilibrium fragmentation process in the fragmen-
tation - inactivation - binary (FIB) model'? is stopped by dissipative effects associated with
the inactivation term. We will show that in the limit of 'no dissipation’, this very general
fragmentation process yields the rate equations of gluodynamics in the modified leading
log approximation (MLLA)3~® . An extension of the FIB model to treat both quarks and
gluons is straightforward and will be discussed elsewhere® . The inactivation term of the
FIB model yields a unique prescription of how to obtain generalized rate equations of the
perturbative QCD (PQCD) in the MLLA including the hadronization and, hence, how to
obtain the asymptotic hadron spectrum without invoking the local parton - hadron duality
picture.

In the FIB model, one deals with clusters (e.g. partons ) characterized by a conservative
scalar quantity, that is called the cluster mass. The ancestor cluster of mass N is relaxing
via an ordered and irreversible sequence of steps. The first step is either a binary frag-
mentation, or an inactivation. Once inactive, the cluster cannot be reactivated anymore.
The fragmentation leads to two clusters, with the mass partition probability ~ F; n_; .
In the following steps, the relaxation process continues independently for each descendant
cluster until either the low mass cutoff for ‘monomers’ is reached or all clusters are inactive.
Since for any event, the fragmentation and inactivation occur with probabilities per unit of
time ~ Fjx_; and ~ Iy respectively, therefore the knowledge of the initial state and the
rate-functions Fjx_; and I , specifies the fragmenting system and its evolution.

The basic equations of the FIB model, such as master and cascade equations have been
given before’? . Below we shall discuss only those features of the FIB model which are
relevant for understanding of its relation to the PQCD rate equations. Let us call Py[m; 1]
the probability to get a cluster multiplicity m at time t, starting from initial cluster of size
N at t = 0. The time evolution equation for the multiplicity is given by the following

non-linear rate equations :




N-1
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Jj=1
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F]"N_J Z [m t PN_][TTL m t] +IN(5( ) . (1)
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In terms of the generating function :

i [m, t](1+ w)™ , (2)

one obtains :

aZN N-1
—(9-2_(1" t) = Z Fji,N—j[Zj(uat) ZN—j(uat) - ZN(u’t)] +
+ IN[l +u-— ZN(u,t)] , (3)

with the initial condition (monomer cannot break up) :
Zi(u,t) =14u
and the normalization condition :
Zn(u=0,t) =

Note that the partial derivative is taken at a fixed size N. The sum on the right hand side of
eq. (3) represents binary fragmentation of the primary cluster N into the daughter clusters
of mass 7 and N — j respectively. The second term on the right hand side is responsible for
the inactivation and it is in the essence the dissipative term.

In the following, we shall consider the symmetric form for the fragmentation kernel :

oo yoN L IV
FJ'N—J‘N(J'(N—J') W ) ’ @

which is a superposition of two regular kernels and the singular kernel :

N/(j(N — 7)) . We can transform the discrete variable j in (3) into a continuous one :

z = j/N, which varies from 0 to 1. With this change of variable, the fragmentation kernel
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(4) defines a new splitting function @,;_, = NFjn_; which is identical to the kernel of
gluodynamics® . The time ¢ appearing in (3), arises within the fragmentation and inactiva-
tion kernels , which themselves are probabilities per unit of . We define then the time as
:t=TInY, where T is a constant, ¥ = In(NO/Qo) , Qo = const and © plays the role
of time, ordering the sequence of events. Assuming now that all physical quantities depend

only on the variable Y and not on N and © separately, we transform (3) into :

8z 1,
a7 ¥iw) = [ 90(V)0.1 L Z(Y +log z,u)Z(Y + log(l  2),u) —

— Z(Y,u)ldz + R(Y,u) : (5)
where :
RY,u) = I(YV)[1 +u—Z(V,u)] . (6)

The initial and normalization conditions are :

Z0u)=14uv , ZY,0=1 |,
and :
2Nc7r
2 =
Yo (Y) = a£(y) ’

where &(Y’) is the QCD running coupling constant. T (Y) in (6), is the inactivation function
written in the new variables. Eq. (5) is analogous to the gluodynamics equations in the
MLLA if N is the initial momentum, © is the angular width of the gluon jet considered and
T is chosen such that T = 12Ng /(11Ng — 2Ny). The gluodynamics equations correspond to
neglecting the dissipation term’ R(Y,u) in (5). Notice, that the precise form of this term
follows from the identification of the dissipation mechanism’ and hence of the hadronization
with the ’inactivation mechanism’ of the conservative FIB process.

Coming back to the FIB-equation, one can take the derivative of eq. (3) with respect to

u and taking u = 0, to obtain ezact linear recurrence equations for the multiplicity average



d<m>n Nl

ey = ZFj,N_j(2<m>j——<m>N)+IN(1—<m>N)
=1
<m > =1 s (7)

which are easy to solve exactly for finite values of the size N. The normalized factorial
F, and cumulant K, moments of the Py [m] distribution, which describe respectively full
and genuine g¢-cluster correlations, can be also easily calculated :

. 1 d'Z(u)
F, =
q < m >9 dud iu:D

1 dIn Z(u)

‘[ = < m > duq [u:O (8)

q

For finite N and ¢ — oo, values of Fq can be found from the ezact FIB recurrent equations® :

) N-1 q N-1
Fo(Mlg=DUv+ > Fin-j) — ——A;(IN +23 Finoj <m>;)

= <m> =

N-1 q { q-=l
) <m>l<msy . . ,
=> Fino;) > LF(G)Fp(N = 7)

=1 =0 | ] <m >y
(9)

with Fy = F; = 1, which are obtained by taking successive derivatives of eq.(3) . It
is important for practical applications that one is able to solve easily exact recurrent FIB
equations (9) for the moments of the generating function ( up to N ~ 10 ), to give a natural
framework fér the Monte-Carlo simulations for bigger sizes up to N ~ 107 , and then to find
leading behaviour for asymptotically large NV 8 .

To illustrate this method, we can first notice that different behaviours in the FIB model

can be separated into three classes according to the feature of the inactivation probability
of a k-cluster :
k-1

pi(k) =1/(1+ 3 Fip-i/It) (10)

=1
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If this quantity is an increasing function of the size k then the system belongs to the so-
called oo-cluster phase, where there is in average one ‘macroscopic’ cluster and some small-
size clusters. On the contrary, if p; is decreasing, the system is in the shattering phase,
and almost all the system breaks up into small clusters. These two phases are separated
by the transition line characterized by the independence of the probabilities p; and PE
(=1 —p1) on the cluster size (the scale-invariant branching process) at any stage of the
process’ . At the transition line , the system is critical? and the composed particle first
moment Ng = 1— <m >; /N, where < m >; is the average number of monomers, is an
order parameter.

In the limit of ’no inactivation’, the evolution is cut sharply at the low-mass cutoff
Qo (the monomer) and one assumes usually that the cutoff scale is of the order of the
hadron masses® . This is the usual procedure of solving the PQCD rate equations in the
MLLA. One then relates parton and hadron spectra assuming the validity of the local parton
- hadron duality picture. This ad hoc assumption is surprisingly successful'® although it
is conceptually unsatisfactory because the evolution equations do not yield the asymptotic
(t — oo) spectra. The inclusion of the dissipative effects (Z(Y) # 0) is associated with
one additional free function : Z(Y') , which has to be determined by fitting the data. In the
shattering phase, for example, the equations (7) can be asymptotically (for N — o0) solved,

and the result is that the anomalous multiplicity dimension :

= ——*—dln;;a;)]v (11)
behaves like vo ~ 1/ \/H(_]V) if the system is stopped at a fixed time (sharp low-mass cutoff )
and like a constant when the system is allowed to evolve till its final state. The depen-
dence of v on energy (’initial parton size’) has been studied in various approximations
for PQCD gluodynamics and for A¢3 theory (Fjn_; = 6j(N — j )) and many results are

now available3—5:10

. These results are obviously identical to the fixed time limiting results
of the FIB model. For Z(Y) # 0 , various classes of the multiplicity distributions have

been found for multiplicative fragmentation kernels : Fin_j = (J(N = j))* at the tran-
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sition line® . For p; > 1/2 and for any value of the homogeneity index «, the cluster
multiplicity is asymptotically a constant independent of N. This is the 'Cayley domain’
of the multiplicity distribution, where the FIB process is analogous to the invasion per-
colation on the Cayley tree!* . For p; < 1/2 and o > —1, the cluster multiplicity is :
<m>y ~aN™! (1<7<2) and~(N)=r7—1. This is the 'Brand-Schentzle (BS)
domain’, where the multiplicity distribution is a special solution of the nonlinear stochastic

equation with multiplicative fluctuations!?

. The solution of this equation includes many
analytic functions used to describe multiplicity distributions in pp and ete~ collisions?3 .
For pr < 1/2 and a < —1 (the ’evaporative domain’) , the cluster multiplicity is approxi-
mately N - independent. In the transition region between the BS and evaporative domains

(¢ =-1, 0<p; <1/2), one finds® :

1—2p[

<m>y~(lnN) = (12)

and, hence, ¥(N) ~ (In N)~! . In gluodynamics® , the vector nature of massless gluons leads
to the kernel which is a superposition of regular multiplicative kernels with @ = 0,1 in the BS
domain and the singular kernel with & = —1 in the transition region o = —1, 0 < p; < 1/2..
It turns out however, that the multiplicity distribution in this case is dominated by the
singular kernel @ = —1 , and the leading term of the inactivation function is I ~ Ink .
Details of the multiplicity distributions can be found in Ref. 8 . Let us only remind that
the multiplicity probability distribution in the BS domain and that in the transition region
a= -1, 0 < p; <1/2 satisfy the KNO scaling'* ezactly. The KNO scaling is a special
property of the critical fragmentation process and is absent in both co-cluster and shattering
phases® .

Present experimental data for e*e™ reactions shows that (i) the KNO scaling is approx-

imately satisfied and (ii) the mean multiplicity :
<m>n~ag+alnN+aln?N . (13)

The first observation (i) allows to locate the fragmentation domain close to the transitional

region o = —1, 0 < pr < 1/2 between BS and evaporative domains. To fit the experimental
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dependence of the mean multiplicity on energy!® for ete~ reactions at Vs < 100GeV | the

inactivation function should be :

I = c (Ink) exp[—d (-]’%) 2] . (14)

The two parameters : ¢ = 3/2 and d = 10 have been used as free parameters to fit the
experimental KNO-scaling function'® (see Fig. 2). For large clusters, p;(k) (eq. (10))
corresponding to (14) decreases fast with increase of the size & ; 1.e. at the beginning of the
process, the fragmenting system is found in the shattering phase. With decreasing cluster
size, the fragmenting system approaches the region a = —1, 0 < p; < 1/2 of the transition
line and the inactivation probability becomes close to : pr(k) = 1/(1 +2/¢) = 3/7 . The
influence of big clusters and hence of the evolution in the shattering phase on the cluster
multiplicity distribution becomes negligible for very large initial cluster size N . Hence,
small deviations from the KNO scaling seen in the data for Vs < 100GeV 5 should be
interpreted as the transition phenomenon related to the small size of the initial gluon jet.
Also the dependence of < m >y on InN , as seen in the data’® and in the Fig. 1,
1s a pre-asymptotic feature which is going to be replaced by (12), with p; = 3/7, when
N — oo . Experimental finding of this transition to the regime of the critical fragmentation

at which the asymptotic (N — oo) conditions dominate, would allow to fix the Inactivation

probability and therefore one could learn about the details of the hadronization phase.
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Figure captions

Fig. 1

Shapes of the multiplicity distributions in KNO variables adjusted to fit the ete~ datal®.
Fig. 2

Dependence of the mean multiplicity on energy fitting experimental data in ete~ reactions?®.
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