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Abstract

We provide evidence for the utility of the linear sigma model in the calculation of the
properties of nuclear matter and in the description of nucleon-nucleon scattering. In such
studies, the mesons exchanged between nucleons have spacelike momenta. In our model, we
show that the dynamics for spacelike momenta of scalar mesons is different than the dynamics
in the timelike region (where the nonlinear sigma model is the model of choice). We also show
that the interpretation of salient features of relativistic nuclear structure physics is particularly
straightforward, if the linear sigma model is used. In our analysis, the properties of scalar-
isoscalar exchange between quarks is calculated using the Nambu —Jona-Lasinio (NJL) model
for spacelike momenta (g% <0). In this case, the amplitude behaves as if there was a low-mass
sigma meson of mass m, =540 MeV present. For the characterization of the behavior for
timelike values of g2, we make use of a recent analysis of Tornqvist and Roos that yields a
mass for the (physical) sigma meson of 860 MeV with a large width of 880 MeV. It is shown
in our work that such mass and width parameters for the sigma meson are consistent with our
extended NJL model, which includes a model of confinement. (It is important to note that the
pole of the 7 matrix in the timelike region does not control the behavior in the spacelike region,

where the effective sigma mass is found to be 540 MeV.)




L. Introduction

This work is motivated in part by recent work of Furnstahl, Serot, and Tang [1] and of
Tomgqvist and Roos [2]. The authors of the first of these works have introduced a chiral
Lagrangian for use in the calculation of the properties of finite nuclei and of nuclear matter,
(Indeed, there has been a good deal of interest in recent years in applying chiral symmetry
constraints in the study of nucleon-nucleon scattering [3], as well as many other processes [4].)
The authors of Ref. [1] base their work on the nonlinear sigma model and also add rho and
omega fields to their Lagrangian. They fit a good deal of data in a model with a number of
parameters. However, of most interest to us is the fact that they have to also include a low-mass

scalar (sigma) meson to provide the intermediate range attraction in the nucleon-nucleon force.

We suggest that the results of Ref. [1] imply that the linear sigma model may be relevant to the
study of finite nuclei and nuclear matter. Whether the linear or nonlinear sigma model is
appropriate depends upon the underlying dynamics. We will use the Nambu —Jona-Lasinio
model, as developed for quark degrees of freedom, to discuss this question. (It has been shown
that the NJL model provides a useful low-energy Lagrangian that is consistent with low-energy
QCD and chiral perturbation theory.)

It is important to note that, when studying nuclei, nuclear matter, or nucleon-nucleon
scattering, the exchanged mesons have spacelike momenta. We wish to argue that, while the
nonlinear sigma model is more appropriate for the study of mesons with timelike momenta, there
are significant advantages in using the linear sigma model for the study of mesons with spacelike
momenta. To support this suggestion, we discuss scalar-isoscalar exchange between quarks, for

both spacelike and timelike momenta. We will see that the exchanged "sigma meson" can have
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a quite different "mass" in the spacelike and timelike domains. (In the timelike region one does
have a pole in the T matrix at rather high energy, while in the spacelike region one has an

effective mass of about 540 Mev.)

Some important evidence concerning the nature of the sigma in the timelike region
(q2 >0) is to be found in Ref. [2]. The authors of that work make use of a unitarized quark
model that contains six parameters. They describe scalar mesons such as
Jo(980), f,(1300), Ko* (1430), 4a,(980) and ay(1450) and also fit phase shift data in the case
that such data is available. Most important for us, however, is that they find evidence for a
scalar-isoscalar resonance that they identify as the long-sought sigma meson. The Breit-Wigner
parameters of this resonance are given as mgy, = 860 MeV and T sw =880 MeV. We see that
the resonance is very broad, as one might infer from the study oi the pion-pion phase shift
68 (I=0, T=0). The results of Ref. [2] are in accord with comments we have made in the
past, where we have conjectured that the confining interaction and strong coupling to multipion
channels moves the low-mass sigma, predicted by the Nambu—Jona-Lasinio (NJL) model [5],
from about 540 MeV to higher energy. [Note that in the SU(2)-flavor NJL model, without
confinement, one has mz‘ =(2m q)2 + mf, where m, is the constituent quark mass. We have
used mg = 260 MeV in our studies of the NJL model.] In this work, we will present a model
that has m_ = 540 MeV as the (effective) value of the sigma mass in the spacelike region, while
the physical state has a significantly higher energy and a large width.

The plan of our work is as follows. In Section II we review some aspects of the NJL

model and the results of bosonization. In Section III we describe the calculation of a quark-

quark 7 matrix that may be defined for confined quarks. For spacelike g2, we calculate the T
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matrix using the NJL model and, for timelike q2, we make use of the information obtained by
Torngvist and Roos [2]. We also demonstrate that the NJL model, extended to include 2 model
of confinement, predicts that the sigma meson has an energy and width close to that found in
Ref. [2].

In Section IV we consider the interpretation of the large scalar fields found in the
Walecka model [6] and in relativistic Brueckner-Hartree-Fock theory [7]. In Section V we
discuss the relation of the sigma field to studies of QCD sum rules in matter. In Section VI,
we discuss scalar-isoscalar exchange in the nucleon-nucleon interaction and show that our model
can reproduce the momentum-transfer dependence of the potential determined in applications of
the one-boson-exchange model of the NN force. Information gained in Section VI is used in
Section VII to provide a very good, parameter-free fit to the g2 dependence of the scalar form
factor of the nucleon. Finally, in Section VIII, we provide some comments concerning the

nonlinear sigma model and present some conclusions.




II. Review of an Extended NJL Model

We may write the Lagrangian for a SU(2)-flavor (extended) NJL model for quarks as

- Ger/— - -
£ - q(x)(ia—m;’)q(x)+—25[(q<x)q(x>)2+(q(x)ivs qOP]* Loy » @D

where EBconf denotes the contribution to the Lagrangian of the confining interaction, which is
essentially a linear potential in our model. (Since our calculations are made in momentum
space, we use the Fourier transform of the potential VC(r) =krexp[-pur], where
p = 0.050 GeV is used to soften the momentum-space singularities of the Fourier transform

of Vc(r) .) In the past we have used Lorentz-scalar confinement, with
Leonf = ADIE®VEE -)70)0) 2.2)
However, in this work we will mainly quote results for Lorentz-vector confinement, where

Leons = T T4V -3)70)7,90) - 2.3)

If we study the dynamical equations for the self-energy of the quark and other quantities, we see
that we can relate the x values appropriate to either Eq. (2.2) or Eq. (2.3). We find

Kyector = Kscalar! 4 and, since one usually quotes values for « we will write the value for

scalar?

K as « =0.20/4 GeV?2, for example, in this work.

vector vector

In the case of Lorentz-vector confinement, the Lagrangian has chiral symmetry, if the

0
current quark mass, m

g s zero. In the chiral limit, we find the pion as the massless Goldstone

boson. It is often useful to introduce a bosonization procedure [5]. That may be done either

by introducing the fields

o(x) = -(Gs/8)q)qx) 2.4)
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and

T@®) = - (Gs/g)qw)iys 1q(x) (2.5)

as described in Ref. [5], or one may use the elegant momentum-space bosonization procedure
of Bernard, Osipov and Meissner [8]. In the absence of confinement, either bosonization
procedure shows that there is a sigma meson with mf =(2mq)2+m3 , where mg is the
constituent quark mass. In most of our work we have adjusted Gy so that mg = 260 MeV. We
will continue to use that value of m, here. Therefore, we find m, = 540 MeV, which is quite
close to the value used in the one-boson-exchange (OBE) model of the nucleon-nucleon force
[9] or in the Walecka model [6], for example.

The sigma mass may also be determined by studying the quark-quark scattering
amplitude. To carry out such a study, we need to define several integrals. For example, the

value of the quark-antiquark loop integral (polarization diagram) may be defined in the scalar-

1soscalar channel to be

d*k

- Tr[iSt+qrisk-q/2)] (2.6)
)

~iJg(g? = (- l)nfnCJ

™

where n,=2 arises from the isospin trace and n,=3 is the number of colors. Further,
Sk =[% - mg + ie]”!. We have also defined a vertex, Is(q, k), that sums a ladder of confining
interactions [10]. [See Fig. 1.] Therefore, when we include the effects of confinement, we

modify Eq. (2.6) to read




d*k
4

-iJs(g® = n.n; J Tr[S(k+q/2)Ts(g, b SKk-q/2)] . 2.7

@27)

The vertex is such that I'¢(g, k) =0 when both the quark and the antiquark go on mass shell
[10]. Thus, while Jg (q2) has unitarity cuts, J s(q 2) is a real function (without cuts).

In Fig. 1, we also show a function, KS(qz) , that describes the coupling of the ggq states
to the two-pion continuum. Again, introducing confinement, we define K S(qz) [see Fig. le].
Note that Ii's(qz) only has cuts when the two pions in the figure go on mass shell.

In Fig. 2 we show some values of J S(qz) and J S(qz) calculated previously. Since
confinement is rather unimportant for spacelike qz, we only show J S(qz) for q2 < 0. The
dashed line shows J S(qz) in the timelike region. (Note that J S(qz) <J S(q?') in the timelike
region.) The sigma mass, in the absence of both confinement and coupling to the two-pion

continuum, is found via the solution of the equation
Gs'-IsmD =0 . (2.8)

If we include confinement, we obtain the solid curve for q2 > 0 that represents J s(q 2. If we

keep Gg ! fixed, we find a higher value for m;, when solving the equation
-1 3 2
GS 'Js(md) = O . (2'9)

The situation is a bit more complicated than indicated in Eq. (2.9), since the value of Gy is
changed somewhat when we introduce confinement [11]. Also, in a more detailed calculation,
we should include coupling to the two-pion continuum, so that the equation to determine

m, becomes




G;' —[fs(mf) +Rel§'s(m3)] =0 . (2.10)
We have recently determined J s (qz) and K S(qz) for Lorentz-vector confinement, which is the
model we now prefer [11]. Our calculation of Reks(qz) and ImK < (qz) for Lorentz-vector
confinement makes use of the methods outlined in Ref. [12]. The values obtained for

ImK S (qz) , which are quite insensitive to the model of confinement used, are given in Fig. 3.




III. The Quark-Quark T Matrix: Scalar-Isoscalar Exchange

The form taken by the quark-quark 7 matrix, when we consider scalar-isoscalar
exchange, has its origin in the various processes shown in Fig. 4. We may sum those diagrams
to write, for q2 <0
Gs

—— 3.1)
1-GslJs(g® +Rs(gH]

teg@ = -

In some calculations we may wish to use J S(qz) = Js(qz) and Ii's(qz) = Ks(qz) in the
spacelike region, since confinement is a relatively small effect for g% < 0.
In Fig. 5 we show 1,,(¢%) of Eq. (3.1) for ¢g*> <0, with Gg=7.91 GeV 2 and

m, =260 MeV. Again, with reference to spacelike values of g%, we find it useful to define

a momentum dependent coupling parameter, g, 249 2), such that, for q2 <0,

Gg _ 80s@) 5.2

- . 2
1-GylJs@®) +Rs@D)]| % -m]

It is then important to note that the behavior of the T matrix in a limited region of spacelike
g% (-0.25 GeV? < q? < 0) is fit quite well, if we use a constant value for gaqq(qz). Thus,

we have

2
2 _ 8ogq
tqq(q ) - “‘2__' (3'3)
q - -m,

where m_ =540 MeV and g, gq =3-05. This value of g, . was obtained in our earlier work

using the relation
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2
Cs - g"‘f , (3.4)
1-GylJs@ +Rs@)] m

4

with Gg=7.91 GeV 2, J¢(0) =0.0826 GeV?2 and K (0) =0.0125 GeV2. (If we neglect
KS(O), we find 8sqq = 2.58.) The values of tqq(q?‘) obtained from Eq. (3.3) are shown as a
dotted line in the figure.

In the study of nuclear matter and nucleon-nucleon scattering only relatively small
spacelike values of q2 are needed. Therefore, the parametrization given in Eq. (3.3) is quite
useful. We also see that, for small spacelike g2, the theory behaves exactly as if there was a
pole at q2 = mf with m, =540 MeV. However, as we will see, there is no such low-energy
pole in the timelike region.

Before we go on to consider the timelike region, we may note that a similar conclusion
concerning an effective mass for scalar-isoscalar exchange for g2 < 0 may be found from our
study of hadronic correlation functions [12]. For example, we may define a scalar-isoscalar

current, jg(x) =g(x)q(x), and a correlation function

iC@@? = Id4xei‘1°"<0|T(j(x)j(O))|O> . 3.5)

We have solved for C(qz) via a dispersion relation [12]

Cg? = Jsgd -7‘; [

2
am_

ImC(q'?)

— 7 (3.6)
qi-q2+ie

where J S(qz) is real. (In practice, the upper limit for the integral is about g2 = 1 Gev2.) In
Fig. 6, we show the correlation function calculated in Ref. [12]. In the figure, the dotted line

represents the approximation
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2
. £om
ReC(g?) +F5(g? = s (3.7
q - -m,

where, in making a fit to the solid line, we have used m, =540 MeV. (Here, f, is a sigma
decay constant.) Note the excellent fit of the dotted line to the curve for r = g% < 0. Also, we

see that there is no pole at ¢ = mf . Therefore, we again see that the effective value of the mass

in the spacelike region (£ <0) is m, = 540 MeV, even though there is no physical particle with
that mass. The results of the calculation presented in Fig. 6 should be improved. A better
calculation of Im IZS(qZ) is needed and vector confinement should be used, rather than the
scalar confinement used in Ref. [12]. However, the improved calculation will exhibit the feature
we stress. That is, the behavior in the spacelike region will be parametrized by Eq. (3.7), with
m, =540 MeV.

We now return to a consideration of the T matrix. Values of tqq(q 2) were given in Fig.

5 for q2 <0, making use of Eq. (3.1). For the timelike region, we write

~2
go- qq(q 2) (3 . 8)

t@® =
99 -
q2 M, + lmUI‘U(qz)

and use the results of Ref. [2] for m, and F,. Thus, we put m, =860 MeV and

T, (%) = 880 MeV. Thus,

2

4m2 172
de(qZ) = [1 _ T] I-\U , (39)
q

with fa =929 MeV [2]. The value of gf P 23.6 makes for a continuous representation of

Re tqq(qz) in Fig. 5, as we pass from the spacelike to the timelike region. Note also that
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809> 8saq> since we use a different mass to parametrize the T matrix for the q2 <0 and the

g2 > 0 regions. With our parametrization, we have

2 2

85qq _ 8oag (3.10)
2 2

" m,

so that, with g, ., =3.05, m, =0.540 GeV and m, =0.860 GeV, we find gqu =23.6. The
change in the parameters when passing from the spacelike to the timelike region could be
avoided by using a "running" mass parameter, md(qz), that would vary continuously from
540 MeV for q2 = 0 to 860 MeV when q2 = (0.860 GeV)z. (Note, however, that with our
parametrization, we may still construct a continuous quark-quark T matrix as seen in Fig. 5.)
The T matrix of Fig. 5 has the behavior calculated with the NJL model for q2 <0 and for
g% > 0 it is accordance with the Breit-Wigner parametrization of Ref. [2]. We may now check
whether the large width of 880 MeV is consistent with the NJL model. The width is related to

Im Ks(qz) given in Fig. 3,

2
g’;qu Im kS(mz) . (311)

4]

T, (7)) =

With g2,,=23.6, 1, =0.860 GeV, g4, = 2.68, and Im Ry(m2) =0.037 GeV?, we find
I', =1015 MeV. That value is not far from the value I'; = 880 MeV, suggested in Ref. [2].
The result indicates that quite large widths are to be expected when using the NJL model. Itis
also useful to note that as we pass from the spacelike to the timelike region of g2, with
q2 > 4m3, the width of any scalar-isoscalar excitation we calculate would quite rapidly become
large.

We now consider the mass of the physical sigma meson. For simplicity, we neglect
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Re I?S(qz) and study

Gg'-Jgm2) =0 . (3.12)

We make use of Lorentz-vector confinement for this study. We proceed by calculating the quark
self-energy, (k) =4 (k2) +KkB(k 2) , where we now include the confining interaction, in addition
to the NJL interaction [11]. That leads to a relatively small k2 dependence of A(kz) and
B(kz). We then adjust Gg so that A(0) = mg, with mg = 260 MeV, as used previously. Thus,
for k =0.20/4 GeV 2, we find Gs=8.516 GeV 2 [11]. Using vector confinement, we find the
values of J S(qz) shown in Fig. 7. A horizontal line representing Gg ! provides a graphical
solution of Eq. (3.12). In this fashion, we find 7, = 800 MeV which is reasonably close to the

value of 7, =860 MeV determined in Ref. [2].
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IV. Lorentz-Scalar Potentials of Relativistic Nuclear Physics

Some years ago we discussed the idea that the large scalar fields in nuclei were related
to a partial restoration of chiral symmetry at finite baryon density [13]. To carry out that
discussion we made use of the linear sigma model with the sigmas and pions coupled to the
nucleon. Developments since that time allow for a more informed discussion. For example,
there is a useful model-independent relation due to Drukarev and Levin [14], that relates the

reduction in the value of the quark condensate in matter to the pion nucleon sigma term, oy,

] . (4.1)

Here, p is the baryon density and f, is the pion decay constant. With p = (0.109 GeV)? and

- — O'Np
(v1gq1v) = {0lgql0) | 1- 1=
m‘l'f‘l'

oy =45 MeV, Eq. (4.1) implies a 35 percent reduction of the condensate in nuclear matter.
In the bosonization scheme discussed earlier, it is easy to see that the sigma field has the

value f, in vacuum and that it is proportional to the value of the quark condensate. Thus from

Eq. (4.1), we have

oNp
o=fill-—=| - (4.2)
m‘l'f‘l'
It is useful to define ¢ =f, +¢'. Then,
o
o = - @.3)
m'l'f‘l'

is the value of the fluctuation field, with ¢’ = -35 MeV in nuclear matter. It is then of interest
to note that -35 MeV is close to the value of the Lorentz scalar field in nuclear matter in the

Walecka model [6] or in relativistic Brueckner-Hartree-Fock theory [7]. In the simplest
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formulation, the scalar field in nuclear matter is given by

2

- - G ane

a 2
mo’

(4.4)

The sigma-nucleon coupling constant, G,yy, has a value of about 9.5 [9] so that

V, = -400 MeV. The value chosen for G, is somewhat model dependent, however, simple

estimates give G py ~ 9. For example, the sigma nucleon coupling constant can be calculated

val

as G,y = 85440 Fs  (0), where F;al(qz) is the scalar form factor of the valence quarks in the

nucleon [15]. Such a valence form factor has been calculated as part of a lattice simulation of

QCD, where the scalar form factor of the nucleon is calculated [16]. It was found in Ref. [16]
that Fg(0) =3.02, so that with g,,,(0)=3.05, as used earlier in this work, we have

G,

g

NIV=9’21'
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V. Scalar Fields and QCD Sum Rules in Matter

Ih the simplest analysis of QCD sum rules in matter, one derives a relation between the
nucleon mass in matter, m 1\; , and the condensate in matter (ﬂu +dd >p, where u and d stand
for the fields of the up and down quarks [17]. The expression for the self-energy is given in
terms of the Borel mass, M,

a2 (uu+da), G.1)

T =

where the subscript p indicates the presence of nuclear matter. In vacuum, I =m,, with

= 87r2 (ﬁu +dd>0 (5.2)
N 2 )
where the zero subscript denotes the vacuum value. With M=1.18 GeV and

<uu>y=< dd >, =(-0.254 GeV)>, one finds my, =930 MeV.
In the following discussion we will assume the current quark mass is zero and we will
also neglect K s(q 2), the function that describes the coupling of the quark-antiquark states to the

. . . 0
two-pion continuum. Therefore, with m, =0, we have

mq = = Gs<ﬁu +2d>0 (5'3)

in the NJL model. With Gg=7.91 GeV™2 and <uu>,=(-0.254 GeV)’, we get
m, =260 MeV, for example.
We can insert the relation used in a bosonization scheme,

o= -5 (Gu+dd), | 5.4)

8oqq

in Eq. (5.1) to get [18]
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s = 87 8oqq . (5.5)
M? 2G;

We use o =f_+¢', so that

_ 87 8ogq

57226 U7 o0

For the work of this section, we have neglected K s (qz) . Therefore g, 4 has a smaller
value than the value of 3.05 used earlier. We find g, ., =2.65 and with m, =260 MeV, we
then obtain f, =0.098 GeV, upon use of the Goldberg-Treiman relation. The first term on the
right-hand side of Eq. (5.6) yields my =930 MeV, as given above.

Now let us put o' = -35 MeV, as suggested earlier in this work. [See Eq. (4.3).]

Then,
87% 854q
Ig = my+ _Aﬁ 26qu o 5.7
=my+Vs . (5.8)

We find Vg =-332 MeV, which is comparable to the large value of the scalar potential that is

used in the Walecka model (V, ~ -400 MeV), for example.
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VI. Scalar-Isoscalar Exchange in the Nucleon-Nucleon Force

In this section we review some of our work concerning sigma exchange between
nucleons. We will discuss the relation of our model and the one-boson-exchange (OBE) model
[9]. In the OBE model, the potential due to sigma exchange depends upon a vertex cutoff at

each meson-nucleon vertex, a coupling constant and a meson propagator. Thus,

2

OBE , > 2 AZOBE _maz 1 6.1

Va’ (q ) = gg'MV o) > 2 > N ( . )
Aoge -4 q°-m,

where we have left out reference to the nucleon spinors and isospinors, for simplicity. Let us

define the amplitude [‘0 BE (qz) = yOBE

U (qz)/47r. The corresponding interaction in the NJL

model has valence-quark form factors rather than vertex cutoffs. Thus we have

2
2
t@?) R
fUNJL(qz) _ qq4_[F:al(O)] _ o , 6.2)
T A _q2
o
where
, A2
Fval(qz) - Fval(o) o (6.3)
g g 2 2
A, -q

is the valence-quark scalar form factor of the nucleon. Equation (6.3) serves to define the

parameter A;. We also write

@Y = fPEon2® @y 6.4)
and
f;VJL( g2 = faNJL ©) h‘IIVJL @ . 6.5)
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Note that ha OBE

©) = B OBE

(0) = 1. Itis useful to compare h:UL (q"‘) and A (qz). We choose
the parameter A\, so that these two functions are similar over a large range of g2 and find that
A, = 1.10 GeV leads to an excellent fit. [See Fig. 8.] Note that, since the exchanged mesons
are spacelike (g% <0), we have used the effective sigma mass in the spacelike region of

m, =540 MeV, when calculating the amplitude for the NJL model.
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VII. The Scalar Form Factor of the Nucleon

In the last section, we found a value of A, =1.10 GeV in our parametrization of the
valence-quark form factor of the nucleon. In this section, we show how that information may
be used to calculate the scalar form factor of the nucleon F s(qz) . We define Fg (qz) using the

relation
Fs(@Hu(p+q, s u(p, )8, = (N, p+q, s, 7|q(0)qO) |N, p, s, r) , (-1

where the u(p, s) are Dirac spinors, and s and 7 are isospin labels. We may use a sigma-
dominance model to calculate F S(qz). For example, we may sum the diagrams shown in Fig.
9. The first term is the contribution of valence quarks, which we identify with F :al (g of Eq.

(6.3). Summing the various quark-antiquark polarization diagrams shown in Fig. 9, we find

! FqY . (1.2)

Fs(gh) = ———F,
1-GgJs(q?)

We define the amplitude

» _ Fs@® 7.3)
fS(q ) = W ,
- 1 -GgJg(0) >‘¢27 (7.4)

1-Ggls(@® | N2 -¢2

where we have used Eq. (6.3). There are no free parameters at this point. With
A, = 1.10 GeV, we compare, in Fig. 10, fs(qz) with the corresponding quantity calculated in
a lattice simulation of QCD [16]. The fit is quite good, particularly, since there are no

adjustable parameters.
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We note that we can write

2 2 2
m 850,4°) A
fs@? = 5 7 _.27%H . ?

2 2
my-q* ;.0 X -q?

(1.5)

where g2 <0. It is interesting to see that the fit shown in Fig. 10 can be considered as
resulting from the use of a sigma dominance model. However, one should not neglect the
second factor on the right-hand side of Eq. (7.5). Neglect of the q2 dependence ofgdqq(qz)
would result in a less satisfactory fit, even for small g2. For example, in Fig. 11 we show the
q2 dependence of guqq(qz). (The figure shows g, qq(s), with § = qz.) To calculategdqq(qz)
for q2< 0, we have made use of the definition given in Eq. (3.2), and have used the

approximation J S(qz) =] S(qz) and K S(qz) = Ks(q ?.
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VIII. Discussion

We were motivated to write this paper because of the results of Ref. [1]. That work
represents a comprehensive effort to use modern ideas concerning effective chiral Lagrangians
[4] in nuclear structure studies. It was found necessary, however, to include a low-mass scalar
field in the Lagrangian of the nonlinear sigma model. (The physical interpretation of that field
is unclear.) We recall that the nonlinear sigma model may be related to the linear version by
requiring that the sigma and pion fields be constrained to the chiral circle. More precisely, one
may write [4]

o) +iT() - 7 = f,exp[i? ) * ?/f,] . (8.1)

The Lagrangian is then written in terms of the matrix

U = exp[i?’ (x) - ?/f,] . (8.2)

In this manner, the sigma meson is removed as an independent degree of freedom.

In this work, we have suggested that the constraint implied by Eq. (8.1) is not
appropriate for the study of many problems in nuclear physics. We have attempted to
demonstrate, using results of the NJL model and some information from Ref. [2], that the
"sigma meson" is quite a different object when one looks at spacelike or timelike values of qz.
At spacelike values of g2, the linear sigma model, which may be obtained by bosonization of
the NJL model, describes the dynamical situation quite well. The use of that model allows one
to make contact with the treatment of QCD sum rules in matter and with relativistic many-body
theories such as quantum hadrodynamics (QHD) [6] and Dirac-Brueckner-Hartree-Fock theory

[7]. We have also seen that we may understand the intermediate-range attraction in the nucleon-
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nucleon force, as well as the scalar form factor of the nucleon using our formalism.

We have found it useful to study the quark-quark interaction in momentum-space using
the NJL model. We have usually not performed a bosonization of the standard form. Rather,
we have parametrized the quark-quark T matrices in terms of the pole position and width of the
resonance. That is a particularly useful procedure in the case of the scalar-isoscalar channel
where the characteristics of the T matrix are such as to require a different parametrization for
spacelike g* and for timelike g%. This complexity is probably due to the very strong coupling
of the quark-antiquark states to the two-pion continuum, since for other channels governed by
pion, rho, or omega exchange, the 7" matrix may be represented by a single parametrization over

the full range of q2.
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Fig. 1

Fig. 2

Fig. 3

@
(®)
©)

@
()

Figure Captions

The zero-range quark interaction of the NJL model is shown.

The quark-loop integral in the scalar-isoscalar channel is shown.

The quark-loop integral including a series of confining interactions (dashed line)
is shown. The filled triangular region denotes the vertex function that serves to
sum the ladder of confining interactions.

The function Ks(qz) describes effects of coupling to the two-pion continuum.
The function K s (qz) includes two confinement vertex functions and has a cut for
q2 > 4m3.

The function Jg(#) is represented by a solid line for ¢ = g% < 0 and by a dashed
line for ¢ = q2 > 0. The calculation of J¢(#) is made by passing to a Euclidean
momentum space with ké < Alz,: (Ag =1.0 GeV). If we include confinement we
obtain J s(®), shown as a solid line for +=0. The dotted line serves to
interpolate between Jg(f) and J () to yield a continuous curve. These
calculations we made with m ¢ =260 MeV and with a Lorentz-scalar confinement
model. For J s(®, and for > 0, the calculation is made in Minkowski space.
We find Jg(0) = 0.0880 GeV? and J¢(0) = 0.0826 GeV2. [See Fig. 7.]
Values of Im I?S(qz) are shown. The calculation is made using the method

outlined in Ref. [12]. Here we use « =2.0/4 GeV?2 =2.58 and Lorentz-

» 8xqq
vector confinement. We also have m, = 260 MeV and a cutoff on the three-
momenta, | k| < A3, with A; =0.689 GeV. (Note that the result is quite

insensitive to the model of confinement used.)
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Fig. 4

Fig. 5

Fig. 6

Fig. 7

The quark-quark T matrix tqq(qz) is obtained by summing the diagrams shown.
The r-channel exchanges are summed by the expression given as Eq. 3.1. Ina

limited region of q2( -0.25 GeV? < q2 < 0), these effects are well represented

by the exchange of an effective sigma meson with m =540 MeV, as may be
seen in Fig. 5.
Values of Re tqq(t) and Im tqq(t) are shown. For q2 =t <0, the solid line

represent the values obtained using Eq. (3.1), with the approximations

Ii’s(qz) = Ks(qz) and J S(qz) =] S(qz). The dotted line represents
gqu/(t - mf) with m, = 540 MeV and g, . =3.05. For ¢ = g >0, weuse the

parameters of Térnqvist and Roos, m, =860 MeV and I'; = 880 MeV [2]. (See
Eq. 3.8.) For £> 0, the solid line is Re 7,,(s) and the dashed line is Imz,, (7).
The figure shows the scalar-isoscalar hadronic correlation function calculated in
Ref. [12]. The solid line represents Re C(¢) +J s(f) and the dashed line shows
ImC(@). The dotted line represents the function ff mf /@t - mf) with
m, =540 MeV. (Here, f, is the sigma decay constant.) Note that for
q2 =< 0, the correlator is well approximated by a sigma-dominance model.
However, there is no corresponding pole in the timelike region. [See caption to
Fig. 5.]

The figure shows J S(qz) and J S(qz) calculated for g% =0. (We use a cutoff on
the three-momenta in the loop integral of | k| < A;, with A; =0.689 GeV.)
The dotted curve is the result in the absence of confinement and the solid line

shows J S(qz) for Lorentz-vector confinement with x =0.20/4 GeV?2. For the
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Fig. 8

Fig. 9

(®)-(c)

Fig. 10

(@)

(d)

dotted curve (x=0) we have Gg=7.91 GeV "2 and for the solid curve
(x =0.05 GeVZ) we have Gg=8.516 GeV 2. Without confinement we find
m, =540 MeV, while, with confinement included, we find m, =800 MeV. The
horizontal dashed lines denote Gg ! for the two cases. The intersection of the
appropriate dashed line with the dotted or solid lines determines the mass of the
sigma. (The dotted curve is the same as the dashed curve of Fig. 2.) Here
J5(0) =0.088 GeV? and J4(0) = 0.070 GeV?2.

The values of #,°" (g% [dotted line] and k(g [solid line] are shown.
Here, A, =1.10 GeV. For the OBE amplitude we use m, =550 MeV and
A, =1.5 GeV [9].

Calculation of the scalar form factor of the nucleon. The operator g(0)g(0) is
denoted by the large filled circle. The single lines represent quarks or antiquarks.
The valence contribution is shown.

A series of quark-antiquark loop diagrams is shown.

A sigma-dominance model representing the diagrams shown in a, b, c, etc.
There, the small open circle represents 8s4q-

The values calculated for fs(qz) =F S(qz)/FS (0) are shown. Here
Ay =1.10 GeV. The circles with the error bars are the results of the QCD lattice

simulation of Ref. [16].
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Fig. 11 This figure shows g,,.(s) for s <0, where s = g%. The g? dependence of the
coupling constant is needed to provide an accurate representation of the T matrix,

tqq(qz) . For q2 <0, we have used
2
go’qq(qz)

2 2
q - -m,

L@ =

to define g, qq(qz).
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