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Abstract

We study a very simple model of correlations and intermittency of
identical final state pions in hadronic collisions.Final state pions are
either products of resonance decays or they are "directly” produced.
The “direct” production is simulated by an immediate decay of a
resonance. For "direct pions” forming about a half of final state pions
and for formation times of resonances less than 0.5fm /c we get density
of sources which via Hanbury- Brown and Twiss interference leads to
correlations of two identical pions consistent with recent data and
shows intermittency patterns for the second factorial moment. The
essential ingredient of the scheme is the combination of pions from
resonance decays and direct pions. Due to life- times of resonances
taken from experiment,pions from resonance decays are responsible
for short- range correlations in the longitudinal momentum, whereas
directly produced pions, due to their fast production, dominate in the
region of longitudinal momentum difference of the order of 100 MeV /c.
The combination of both can give an approximate scaling leading to
intermittency.




1 Introduction

Analysis of multiparticle production in hadronic collisions in terms of inter-
mittency has been suggested by Bialas and Peschanski [1] about a decade
ago. In order to study strong correlations between final state hadrons lead-
ing to "spikiness”, Bialas and Peschanski proposed to study the dependence
of scaled factorial moments on the size of the rapidity bin. To introduce the
notation consider rapidity interval —Y/2 < y < Y/2 of length Y and divide
it into M bins, each bin of length § = Y/M. Denote by p,(y1) and p(y1, 42)
single and double rapidity distributions

1 do o 1 d%
= —_— Y2) = (1
P, Tinel dyl pQ(yll y2) Tinel dyldyZ )
normalized as follows ,
/Pl(yl) =< n >, /Pz(ylsyz) =<n(n-1)> (2)

The scaled factorial moment F,(§) corresponding to a given division of the
rapidity interval is defined as

<n(n-1)..n—-qg-1)>
<n>?

(3)

Fy(é) =

where 6 = Y/M, ¢ > 2 and < ... > denotes avefagmg over bins and events.
Multiparticle dlstnbutlon is called intermittent if scaled fa,ctona,l mo-
ments obey the power law behaviour for § — 0, A fixed
RY
Ro=(3) A@ @)
where f, > 0 is called the intermittency exponent. Condltlon (4) corre-
sponds to a pure scaling behaviour. The analysis of 3- dimensional data by

Fialkowski [2] indicates that scaling is not exact and that the second factorial
moment behaves rather as

Fy6) =1+ CL+Cs (-?)f S (5)




with 'z being smaller than 1. Cs of the order of 1072 and depending on
reaction studied. and f;, within the range 0.3 - 0.6: all results being within
one standard deviation from the average value of f; = 0.44.

Intermittency of multiparticle production has been studied both from
experimental and phenomenological points of view. details can be found in
review articles [3], the present state of data being summarized by Buschbeck
[4] in an eXcéllent review. In early attempts at explaining intermittency
cascades with self- similar features have been studied. Later on data [3,6]
(see also [3,4]) have shown that short- range correlations between identical
particles are significantly stronger than those between non- identical ones.
This indicates that a large part of the intermittent behaviour is due to the
Hanbury- Brown and Twiss (HBT) correlations [7-11]. for reviews on HBT
see [12-14].

Scaling behaviour of F,(é) as given by Eq.(4) implies also the scaling
behaviour of the correlation function Cy(y:.y,) defined as

p2(y1,y2) = p1(y1)pr(y2) + Calyr. y2) (6)

The second factorial moment F3(6) can be expressed as

Fy(6) <n{n-1)> 5232 f's'ig p2(y1. y2)dy1dy, (M)
2 —— = 2
<n>% (1202, pr(3n)dn ]

The term p;(y:1)p1(y2) when inserted into the numerator of Eq.(7) cannot
lead to the behaviour like §7/2 so this has to be due to Ca(y1,y2)- For

Coy1,92) = |y — | ™" | (8)

we get from Eq.(7) the behaviour of F2(6) required by Eq.(4). For small
values of |y; — y2| the intermittent behaviour can be analyzed as well as a
function of longitudinal momentum ki at fixed transverse momentum k7.
Since y = In[(E + k1)/mr], where mg = (m?+ k2%)'/? we have dy/dk;, = l/E
and the scaling behaviour in Eq.(8) is equivalent to '

Cz(le, kzL) ~ lle - kle.’e2 : (9)

Most of data on intermittency are however presented as a function of 6 related
to y; — y2- Note also that the behaviour given by Eq.(8) cannot be valid up
to y;, — y2 — 0 since Cao(y1, 1) = 1.




In HBT studies of interferometry of identical particles [12,13.14] the cor-
relation function C,(k;.k2) is expressed as a square of Fourier Transform
(FT) of the density of sources

, 2
Caq. K) = Cyky k2) = |/p(:c,1\')e""“”d41| (10)

where four-vectors ¢q. K are defined as

kit
-9

4

(11)

q=k1—k2, 1\-

and the density of sources (the Wigner distribution) is normalized to 1 by
[ plz, K)d*r = 1.

The exact scaling in Eq.(9) for the correlation function C,(q) can be
obtained via Eq.(10), provided that the scaling is built into the density
p(r. K).To see that it is easiest to make the problem one- dimensional by
putting ¢r = 0, go = 0. Eq.(10) then reduces to

- P N y 2
Colq) = | [ ple, K)o dz] (12)

Putting now p(z) = p(z,K) = (2%)7%, a < 1/2 we get Cy(q) ~ (g%)%1.
The exact scaling is however not what is seen in the data - and because
of normalization Ca(¢ = 0) = 1 it is also impossible. The upper limit on
g = k1 — kz is given by kinematics and by the region where the assumptions
are valid on which the expression in Eq.(10) is based. For this point see e.g.
discussion in the introduction to Ref.[15]. The lower limit on g is given by the
experimental resolution in measuring momenta of final state particles and by
the accuracy with which final state interactions, including the Gamow factor,
are known. An estimate of this lower limit is about 20MeV/c.

What is seen in experimental data when studying intermittency or the
correlation function C3(g) is an approximate scaling valid in the region of
|k1r. — kar.| extending from about 20 MeV/c to a few hundred MeV/c, de-
pending on the kinematics and on the value of K. Such an approximate scaling
has been discussed in Refs.[9,16,17]. Bialas [9] has obtained an approximate
scaling with the density p(r) scaling exactly for 0 < r < L and vanishing
for r > L; in Refs.[16,17] it has been shown that an approximate scaling is
obtained in the simple case of bremsstrahlung photons emitted by charged
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particles which are created in space- time points corresponding to a picture
of an inside- outside cascade. . ;

The purpose of the present paper is to point out that an approximate
scaling is obtained also from a simple picture of the space- time evolution of
hadronic collisions. In this picture about a half of final state pions appear
as products of resonance decays. A resonance has a formation time 7; and a
mean life-time 74 in its rest frame and both these times are Lorentz dilated.
Depending on its rapidity, resonance travels some distance before decaying.
Two identical pions originated by decays of two different resonances may
have close momenta and be produced from two distant sources. This leads
via HBT interferometry to an increase of C(g, K') for small values of g. We
shall show that a superposition of resonances and of directly produced pions
gives the two body correlation function C,(g), which is consistent with data
and leads to the second factorial moment F(é) which shows intermittency
patterns. ' '

The model we are studying is admittedly oversimplified, the most drastic
assumptions consisting in putting transverse momenta of resonances equal
to zero.These simplifications permits us to do most of calculations by hand
and keep the discussion as transparent as possible. In our opinion such an
approach permits to get an insight into the problem and in this aspect it is
complementary to less transparent Monte Carlo computations. :

The paper is organized as follows: In the next Sect. we describe our
simplified model. Sect.3 deals with the correlation function Cy(g) of two
identical pions originated either by resonance decay or produced directly.
The calculated C(g) is compared with data and lessons following from this
comparison are discussed. In Sect.4 we discuss the transverse momentum
dependence of two- pion correlation function. In Sect.5 we present the re-
sulting intermittency patterns. Comments and conclusions are contained in
Sect.6. Some technicalities are deferred to the Appendix.: - '




2 A simple model of correlations of identi-
cal pions originated either by resonance
decays or directly produced

A large amount of models of hadronization in e*e~. ep and hadron- hadron
collisions has been proposed, some of them can be traced back from Refs.
{18-21]. In most of these models an intermediate partonic stage is followed
by cluster formation and decay. It is not clear whether there are some in-
termediate "heavy clusters” which decay after some time to known hadronic
resonances. Since we wish to have the model as simple as possible we shall not
discuss such intermediate stages and we shall only assume that well known
hadronic resonances are formed after a common formation time 7; and after
being formed they decay according to schemes known from experiment. The
value of the formation time 7; will be a considered as a free parameter of
our model. Studies of resonance production in pp collisions have shown that
about a half of final state pions comes from decays of well known hadronic
resonances, although there exist also estimates that this fraction is larger.
Final state pions which cannot be ascribed to decays of known resonances
are reffered to as being ”directly” produced. It is possible that a part of these
pions is due to decays of rather broad resonances.In our simplified model we
describe “directly” produced pions as decay products of a resonance with
vanishing life- time. Direct pions are thus produced rather early and not far
from the point of the hadronic collision. The influence of resonance produc-
tion on spectra of their decay products has been studied in detail [23] and
literature on the effects of resonance decays on HBT 1nterferometry can be
traced back from Ref.[24].

Our aim in this Section is not to construct a realistic model of the effects of
resonance formation and decay on correlations of identical pions in hadronic
reactions. Such a model would necessarily include a complicated and not
very transparent Monte Carlo computations.What we shall present here is a
very simplified and transparent model. In this model we assume that in a
hadronic collision:

i) Resonances are formed in a time 7y after the colhsxon The value of 7y
is a free parameter of our model.

ii) After being formed a resonance decays with the mean life- time 74,
taken from experiment.Both 7; and 7; aré Lorentz dilated by v = (1—v?)~1/2
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where v is the velocity of the resonance.
" iii) Transverse momentum of resonances vanishes. their velocities have
only components along the axis of collision (z-axis). This assumption makes
the model somewhat unrealistic, but simplifies substantially calculations and
makes the model rather transparent.

iv) A part of pions is produced “directly”. The direct production is
described as a decay of a resonance with a vanishing mean life- time.

v) We shall work in the cms of hadronic collision and consider only simple
‘kinematical situations in which the momentum A = ( ki + 1\2) /2 is small
-and perpendicular to the axis of the collision (z-axis) and the momentum

7= ki — ks is parallel to the z-axis. An example of such a kinematics is
shown in Fig.1.This corresponds to y. .. &~ 0 and K7 small.

We shall now study the behaviour of the correlation function Cy(g. K) of

two identical pions caused by resonance decays. The two interfering ampli-
.tudes are shown in Fig.2. We assume that the two pions have - in the simple
situation considered - the same energy. therefore qo = kg — ko = 0. We
shall start with calculating function p(z, K) for a particular resonance, then
we shall sum over resonance contributions and take the Fourier Transform
-.as shown in Eq.(10).
Width T’ of a resonance of mass M, decaying to two particles of mass m
.is given in the resonance rest frame as

_ 2 &y P L |
r= [iri BB e P B i E)  (13)

‘where the standard and self- explanatory notation has been used. Making
use of E; = E; = Mrch(y) we can rewrite Eq.(13) for the decay to two equal
mass particles as

)+ &y — 32)] (14)

‘where m% = m? + k2 and

iz =n ((M/2mg) £ /(M2mr? —1); =y (19)

Boosting the resonance to rapidity yr and normalizing the decay probability
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to 1, with |T|? held constant we get

dP 1 1
T Tl —yr— )+ oy ~ur+y)] (16
prdprdody 71.\/.'\12—«1172:}[ Yo UR =)+ oy = yr + ) 3)

This probability distribution is normalized as

dP
Y 4 - -
/ppoTdodyPT prdody = 1 (17)

Note that in order to keep the calculations simple we are using here and
in what follows a "zero width approximation™ for distribution of resonance
masses.

Egs.(15) and (16) show that resonance products are shifted in rapidity
by Ay = %y, with respect to the rapidity of the resonance. The value of this
shift may be rather large. For instance for decay of the p- meson to two pions
with pr =~ 0 we get Ay = y; =~ 1.5. A pion with y =~ 0 and pr = 0 is thus
produced by a p with yp = £1.5. Such a.p moves with velocity v & tanh(y,)
in the rest frame of the pion.Note that for larger values of pr of the pion
the rapidity difference between the pion and the p becomes smaller and for
pt + m? = m2/4 the rapidity difference vanishes.

A p with rapidity y; needs some time for its formation and some time
for its decay. Pion with y =~ 0 and pr =~ 0 is thus emitted some distance
away from the origin. Two identical pions, both with small y and pr and
originated in decays of two different p’s come thus from two distant sources
as shown in Fig.2. }

For resonance decays to two unequal mass particles M — m; + m;
Eqs.(14)-(17) are somewhat modified.Calculation is sketched in the Appendix,
the final result being

P 1
déprdprdy 4z fk2 — p2

bly~yr+y) +é(y—yr—y)]  (18)

where

k= (PT)maz = ﬁ[MZ _ (ml + m2)2]1/2[M2 _ (m1 _ m2)2]1/2 (19)
and, see Eqs.(A:4), (A5)

: M? — (m? - m?)
= 7 - 2 1 :
n =h(e+va 1) o p—Y (20)




This equation is valid for vanishing transverse momenta of decay products.
For pr # 0 masses m; and m; in Eq.(20) should be replaced by the corre-
sponding transverse masses.as can be seen from the derivation of L£q.(20) in
the Appendix.

Expressing the four-vector K in Eq.(11) in terms of y. pr. o the function
p(z.t: K) in Eq.(10) can be written as follows

dng aP P
"dyg prdprdody YR

p(z,t;y,p'_r,o)=ZR/P(3.t;yR) (21)
Here dng/dyr is the rapidity density of the resonance R. dP/prdprdoédy is
given by Eq.(16) and P(z.t:yg) is the probability density that resonance R
with rapidity yg decays in the space-time point (z.#).Since we have assumed
that resonances move along the z-axis. coordinates x.y of the position of
resonance decay vanish.It follows from Eqs.(10) and (21) that the correlation
Ca(q, K) is essentially given by the probability distribution P(z,t;yr). For
the case of y = 0 which we consider here, the function P({z.t:yr) is symmetric
with respect to z — —z and we shall calculate it only for = > 0. In this case
out of two é- functions in Eq.(16) only the one with YR = y contributes.

The function P(z,¢:yg) is given by the space-time features of formation
and decay of resonance R. There are many models of formation of final state
hadrons in hadronic collisions. To keep our model as simple as possible
we shall select a particularly simple version. We assume that a resonance
is formed in its rest frame in time 7s and in this frame the probability of
resonance being already formed at time 7 is

Py(r) = 1 — exp(—1/7y) (22)

In the frame in which resonance R has rapidity yg its velocity is v(ygr) =
tanh(yg), the formation time is dilated to ¢ = cosh(yr)7y and the distance
travelled by R is z = v(yg)t = sinh(yp)7s.Probability that resonance R is
already formed at the distance z from the origin becomes

Pi(2) =1—exp(~2/z5),  z; = sinh(yn)7y (23)

The resonance is formed within the interval(z, z+dz) with probability density

dP 1,
)= T Lo (24)




Assuming a standard exponential decay law. the probability density for decay
in the interval (:.z + d:) of resonance produced in z; is

| .

pa(z) = —exp[—{z — z1)/za):  za=v(yr)la = sink(yr)s

=4
where 7, is the decay time in the rest frame of the resonance. Probability
density P(z.#:yr) in Eq.(21) is then given as (t suppressed )
1

Zf—Zd

P(z:iyg) = /0 pr(z1)pa(z — =1)dzy = [e7/71 — 7%/ (25)
where
5= S?.Tlh(y}{)'lfj.’ . z4 = sinh(yp)Ty

It is easy to see that P(z;yg) satisfies.the consistency . criteria: (1) Integral
from 0 to oc of P(z:yp) is equal to 1,(ii) for z; — 0 particles are formed imme-
diately and P(z:yg) approaches (1/z4)exp(—2/z2q) as expected. (iii) for z4 —
0 particles decay immediately and P(z:yg) approaches (1/z5)exp(—z/zy) as
it should. y

Function P(z: yr) for negative z is given as P(z:yr) = P(—z;yp). Shapes

of P(z) = P(z;yr) for a few values of z;,z, are shown in Fig.3. When

summing over contributions of different resonances we shall obtain weighted
sums of curves like those in Fig.3. Scaling of correlation function depends
on whether such sum of contributions shows an approximately scaling be-
haviour. A few comments on properties of functions in Eq.(25) are given in
the Appendix.

According to Eq.(10) the correlation function is expressed in terms of the
Fourier transform of p(z; K). As seen from Eq.(21) the z-dependence is given
only by P(z; yr).Note that we consider two pions of equal energy but different
longitudinal momenta.In such a situation the time of resonance decay does
not enter the results. We shall therefore need the Fourier transform (FT in
what follows) P(q;yr) defined as follows

-~

Plgyr) = [ -dze"P(z;y) (26)

Inserting Eq.(25) into Eq.(26) we get, see Appendix,

1= zp24q?
[1 + (259)%](1 + (249)?]

9

P(qg;yr) = (27)




where P(q:ygr) is normalized by P(q = 0:yr) = 1. The final cxpression is
obtained by Eqs.(10).(21} and {27). inserting branching ratio BR{R) for the
decay of resonance R to a pion of given type:

} / ’~ !2;
TrPlg:yriwp(Ni]

2 =
|P(g)]* = Calq. [\) Sh um]’\ l

(28)

where P(q: yr) is given by Eq.(27).wr(K) is obtained via Eqs (16) and (21)

. d
wr(K) = fr(K). —d"—’i BR(R) (29)

with yg given by Eq.(15) for a decay to two pions. Finally fr(K) comes from
Eq.(16) after having normalized fr{A) = C(M?—1m2%)~1/? by the condition

/ fr(K)doprdpr = 1

In this way we find

~ 2 1 1 .
Jr(K) == = (30)
77\/1‘{[2. —4m? \/MZ —4’)’71%- :
for the equal mass case. oo
For the unequal mass case {see Appendvc ) we find in the same way
11 1
(31)

fr(K) = N ey =

where k is given by Eq.(19).Functions fR(K ) are proportional to the probabil-
ity that a resonance decay leads to a pion with 4-momentum I\ (kl + kg) /2,
see Eq.(11).

Formation time of resonances corresponds to a process in Wthh reso-
nances are - in the statistical average- produced along the boost invariant

curve given by ,
Tf2 — t2 - 22 N : - . } (32)

In a more realistic model one might think about resonances produced by
freeze- out of a thermalized system. The time 7; in our model mimics the
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proper time of the freeze- out. but our model does not contain the thermal
distribution of resonance momenta within the system at the freeze- out.

Contribution of directly produeed pions

In an inside- outside cascade thodel with hydrodynamical evolution and
and with thermalized matter decoupling at (t.z) given by Eq.(32) it is easy
to treat directly produced pions and resonances on an equal basis. Both are
produced according to Bose- Einstein.or in some approximation. Boltzmann
distribution, and after decays of resonances one can calculate the correlation
function Cq(q, K).

On the other hand it is not clear whether the hydrodynamical concepts
are applicable to a hadronic collision. In our simple model we shall treat
direct pions and their contribution to the correlation function in the same
way as that of resonances. taking direct pions as products of decay of a
resonance with a vanishing life- time. Such a treatment may provide at least
some feeling of what may be the effects of directly produced pions.

The life- time of a resonance r; =~ h/T" is approaching zero when T is
increasing. A resonance with a large width thus corresponds to vanishing
74 and z4 in Eq.(25). Formation time is taken as equal to that of all other
resonances. Taking a large width amounts to integrating over massses of the
resonance with a Breit- Wigner distribution. For simplicity we shall take
here only a single value of mass. An object with a large width is similar to
the behaviour of the S-wave. isospin zero phase shift in 77 scattering. In
such a situation we need to add one line to Table 1. Taking the mass of the
1=0,I=0 77 resonance as equal to that of the p-meson we get the following
parameters

yr = 1.67, sinh(yr) = 2.56, 14 =0, 24 = 0;
zp =2.5675,  fr(Kr=0)=0618, BR(c)=1

Rapidity density of "¢” production is chosen in such a way as to obtain the
desired fraction rg;, of direct pions.That means that w,(K') entering Eq.(28)
is determined by the condition

direct pions _‘ , wy(K)
all pions ~ w,(K)+ Y g wr(K)

where the sum over R includes other resonances.The calculation then pro-
ceeds as above according to Eq.(28).

Tdir =

1




3 Correlations of two identical pions

In this Section we shall calculate the correlation function ¢ 2(¢. ') for identi-
cal pions in our model and compare the results with the data.The calculation
contains two free parameters: the formation time 7 and the ratio ry, of di-
rectly produced pions to all pions in the final state.

Calculation of the correlation function proceeds via Eq.(28) where P(g; YR)
is given by Eq.(27) and wg(k') by Egs.(29) and (30) or (31) depending on
whether resonance decays to two pions or to a pion and another particle.

In 7*p interactions at 16 GeV [25] the authors have identified meson
resonances 7, w, p° and f,. Relative contributions of different resonances were
found to be strongly pr-dependent: pions from n- and <-decays populating
mostly the low pr region, those from p and f; decays dominating at higher
pr. In the low pr region it seems that

PPiwin: f2~02:02:005:0.03

as ratios of fractions of the total 7~ yield.

In pp interactions at 400 GeV /c [26] about a half of pions is estimated to
be produced directly (see Table 9 of Ref.[26]). Resonances, most important
for pion production in the region zr > 0.1 have inclusive cross- sections of
the following non- normalized ratios (see Table 6 of Ref.[26]):

<p>w:fy:<K >®x14:13:3:3.5:0.6 (33)

where < p > denotes averaging over three charged states and < K* > over
four of them.

In pp collisions [27] at CERN- ISR with /s = 52.5GeV, inclusive pro-
duction of some of vector and tensor mesons has been measured. Results are
consistent with extrapolations of data from lower energies and the fraction of
pions and kaons due to decays of resonances has been estimated to be larger
than 0.55. Refs.[25-27] contain rather complete lists of papers in which res-
onance production in hadronic collisions has been studied. Patterns of data
in different experiments are qualitatively similar and roughly consistent with
expectations based on quark- recombination models [28.29] or Lund Fritiof
model [30]. e

We shall now proceed to calculations of the correlation function Cs(¢, K)
as given by Egs.(10,11,21,27) and (28). We would like to stress that it is
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not our aim to get accurate quantitative results. This is hardly possible
at least for two reasons: first- our model is rather simplified and second-
knowledge of resonance production in hadronic collisions is not complete. We
wonld rather like to gain a gualitative insight into the question of whether
a sum of resonance decay contributions and of direct pions can give rise
to an approximatively scaling behavior roughly consistent with results of
studies of intermittency [2,3]. We would also like to see how the approximate
scaling patterns depend on the value of the resonance formation time Ty
and on the ratio rg, of direct to all pions. To start with we have to fix
some parameters entering the calculations. We shall take the 4-vector K in
Eq.(11) as corresponding to pr ~ 0 and y ~ 0 in the c.m.s. of hadronic
collision.Rapidity yr of a resonance of mass M decaying to two pions is
then given by Eqs.(15) or (20). where transverse mass reduces to the pion
mass. We shall treat three- body decays w — 37 and  — 37 as two- body
decays w — nd and n — 7d with "d” denoting a "dipion”. The mass my
in the w-decay is taken as my; = my(w) = 470MeV and mq4(n) = 350MeV
what corresponds to symmetric decay kinematics. In this case rapidity of a
resonance decaying to a pion with y = 0 and small py is given by Egs.(20),and
Eqgs.(4) and (5) in the Appendix.

2 2 2
yr =In(a+ Va2 -1), a=M = (my = m) (34)
: 2mM

This expression is valid also for the decay K~ — K. All parameters entering
our calculation of C3(g, K') via Eq.(28) are given in Table 1, which contains
in the last row also parameters concerning directly produced pions. We shall
briefly recapitulate symbols in Tab.1 and relations defining them:yg is the
rapidity shift between a resonance and its decay product, see Egs.(15) and
(20) for equal resp. unequal mass cases,7; = 1 /T where T is the resonance
width, zy = sinh(yr)7; is the mean decay distance; zy = sinh{ygr)r; where
7y is the formation time of a resonance; fR(A) is a kinematical factor pro-
portional to the probability density of producing a pion with a given K in
the resonance decay. Branching ratio BR(R) is recalculated to an average
charge state of the resonance. For instance in the case of the p meson we

have three charged states.We assume that in the central rapidity region

dnlg*) _ dn(s") _ dn(p) _dn, )
dy dy dy dy o h
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In the sum over p*. p° and p~ decays we shall have 27~ + 27 427+, For
dn,/dy = 1 we shall thus have two like-sign pions. This factor is included
into BR(p). In the column Adng/dy we give non-normalized ratios of central
rapidity density which are guessed from data of Ref.[26]. The symbol dng/dy
denotes rapidity density averaged over charged states of resonances in the
spirit of Eq.(35). The correlation function is then given by Eqgs.(28-30).

According to Eqs.(28-31) Ca(q¢. k) is a weighted sum of contributions of
individual resonances. To see that resonances and direct pions give quite dif-
ferent contributions we present in Fig.4 correlation functions corresponding
to the assumption that all pions are decay products of a particular resonance
- the weight wr(A') of this resonance is 1 and all other weights vanish. The
contribution of direct pions is calculated in the same way and also presented.

In the same Fig.4 we plot also the data of EHS/NA-22 Collaboration
given in Fig.5b of Ref.[31]. The data correspond to averaging over transverse
momenta 0 < @r < 40MeV/c and this narrow interval permits us to compare
our calculations done for small transverse momenta with this data.

The interpretation of Figs. 4a. 4b and 4c is rather simple. In Fig.4a
corresponding to 7; = 0.2fm/c direct pions are originated by decay of a
resonance with formation time of 0.2 fm/c and vanishing mean life- time
for the decay. Because of that direct pions are created within a short dis-
tance from the collision point and the Fourier Transform of this density of
sources is rather broad in q.A typical value of q for directly produced pions
is h/sinh(yp)ts ~0.4GeV/c. For resonances like p, A, f,, K* characteris-
tic time is increased by their decay time, for 7; = 1.3 fm/c, corresponding
to a resonance width of about 150MeV, typical longitudinal momentum is
h/sinh(yr)Ts ~60MeV /c.

With increasing formation time both resonance contribution and that
of direct pions become steeper in q. For 7; equal to 0.2 or 0.4 fm/c the
contribution of direct pions decreases slower than the data so that a cocktail
composed of resonance decay products and of direct pions has a chance to
describe the data,although at the price of increasing r4;, for increasing 7;.

For 7¢ ~1fm/c even the contribution of direct pions decreases faster than
the data and any cocktail composed of resonance decay products and direct
pions is bound to fail.

In Fig.5 we show the dependence of C(g) on both 7¢ and rg,.As can
be seen in Fig.5a a reasonable qualitative agreement with data is obtained
for 74 ~0.2fm/c and rg;, ~0.50 - 0.6. For 7; ~0.4fm/c the agreement can
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be reached with rg;, ~0.7 which seems to be excluded by data on resonance
production preferring a lower fraction of directly produced pions.

In Figs.4 and 5 our curves are somewhat below the point with the lowest
value of ¢.This might be due to the fact that we have not included the
contribution of 7.For the study of this point one would need to take into the
account also details of the hinnig procedure.

In our simplified model transverse momenta of resonances are put equal
to zero.With transverse momenta of resonances included we expect that for-
mation times 7y required by the data will slightly increase. since resonances
moving not exactly along the z-axis would need more time to decay in the
region with the same longitudinal dimension.

4 Transverse momentum dependence of the
correlation function Cy(q, K)

So far we have assumed that K = (k;+k. )/2 has been small. calculations have
been performed for Ky = 0, K, = 0. It is easy to see, that the correlation
function Cy(g, K’) is very sensitive to Kr, even if we restrict ourselves to
vanishing K. Value of K7 enters results via two factors. The weight wg(K)
as given by Eq.(29) contains the factor fr(K) given by Egs.(30) and (31).
Functions fr(K) increase with increasing At and their ratios are changing.
More important is the dependence of yg on mz. As seen from Egs.(15) and
(20) values of yp decrease with increasing K7 which in turn decreases values
of z; in lgs.(23) and (24) and in the same way values of z; in Eq.(25). From
Eq.(20) it follows that

sinh(yr) = z%;? -1 (36)

for resonance decay to two pions.The value of sink(ypn) is thus decreasing
with K7. As follows from expressions of z; and 2z, in Eq.(25), they are both
proportional to sinh(ygr). For small values of ¢ Eq.(27) gives

P(g;yr) = 1 — ¢*[sinh®(yr)(r? + 774 + 72)] (37)

Writing P(g,yr) ~ 1 — ¢%a} where ap is a typical length,analogous to Ry
,we can see that the contribution of resonance R to a% decreases with pr in
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the same way as sinh?(ygr) as given by Eq.(36).

To illustrate the effect we give in Table 2 the dependence of yg on Kr.
The rapidities yr were calculated by Eqgs.{13) and (16) tor fixed values of
resonance masses.Blank places in the table indicate that resonance decay for
the given K is kinematically forbidden.

The calculation of correlation function C3(q. A') for a given value of K1
would proceed exactly as above via Egs.(28).(30) and (31).In a realistic model
resonance contributions are averaged over their mass- and transverse momen-
tum distributions. The simplified model shows where are the reasons for the
decrease of Ry with K7 of pions.We shall not discuss this effect in more detail
here.

5 Intermittency patterns due to resonance
decays

The second factorial moment as defined by Eqs.(6).(7) and (10) can be writ-
ten as

1 r6/2 §/2
A6 =1+ / dy: / dy2Co(mrsinky, — mrsinky;)  (38)
62 J-s/2 -5§/2

where we have suppressed the K1 and expressed the longitudinal momentum
difference in terms of rapidities

g = kip — kog, = mrsinhy, — mrsinhy, (39)

The function Cy(q, K1) in Eq.(38) is calculated by Eq.(28) and presented
in [Fig.4. We shall study here the second factorial moment I5(6) for 7y =
0.2fm/c with r4;,=0.5 and 7;=0.4fm/c with r4, =0.7 which give a reason-
able description of the correlation function Cy(g).We shall include the same
resonances and the same weights as in Fig.4.

In Fig.6a we plot F,(6) as a function of 2/8, both in the logarithmic scale
for 7;=0.2fm/c and ry,=0.5.The fit of results by the Fialkowski curve Eq.(5)
is also given in Fig.6a.The values of the coefficients obtained are

Cr=011+£0.20, Cs=022+0.17, f,=031+0.13
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In Fig.6b we present F3(é) for ry=0.4fm/c and rz,=0.7.The values of coeffi-
cients are

Cr=0164£03.. Cs=022+£025 f,=033£02

Rather large "errors” are probably due to the fact that the coefficients are
strongly correlated.The value of the intermittency exponent f; is larger than
values found from data integrated over rather large interval of pr [32-35].
This is not quite surprising since the EHS/NA-22 Collaboration [32] have
found a rather strong dependence of the intermittency index on the size
of the pr bin over which one integrates.In particular the increse of Fy(é)
with 1/é6 has been found [32] stronger for 0 < pr < 0.15 GeV/c than for
0 < pr <0.15 GeV/c and for 0.15 < pr < 0.30 GeV/c.

The interval 0.0 < pr < 0.04GeV/c studied by the NA-22 Collabora-
tion in Ref.[31] is more narrow than those studied previously and it is not
surprising that the intermittency index f; is larger.

The f; found in our analysis is somewhat smaller than values found in
three- dimensional analyses by Fialkowski [2] what is also not surprising if
the correlation is of a short range in the momentum space. It will be very
interesting to see the intermittency analyses of the data of Ref.[31] in the bin
0 < pr < 0.04 GeV/c.Our model indicates that values of f; should be about
0.3+0.15.

6 Comments and Conclusions

We have described above a very simplified model of effects caused by reso-
nance formation and decay on Bose- Einstein correlations of identical pions
in hadronic collisions.Due to the simplicity of the model our results should
be rather considered as hints to what one can expect in more detailed calcu-
lations.The results can be summarized as follows:

- The correlation function Cz(g, K) for K = 0 as measured by the EHS/NA-
22 Collaboration [31] in #* interactions at 250GeV/c can be understood as
due to an interplay of resonance decays and of directly produced pions pro-
vided that the fraction of directly produced pions r4, = 0.5 and the formation
time of resonances and direct pions is rather short 7y ~ 0.2fm/c. For the
formation time of 75 & 0.4fm/c the fraction ry;, increases to about 0.7 and
for 74 & 1fm/c consistency with data cannot be achieved. D
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Note that our estimate of the fraction of directly produced pions is larger
than results obtained by Lednicky and Progulova [24].

-The second factorial moment [5(§) calculated within the model shows
intermittent patterns.When described by the Fialkowski's formula the value
of intermittency exponent is fo & 0.340.15 for small K.This value is larger
than those obtained from data averaged over larger regions of pr [32-35)
and smaller than values found in three- dimensional analyses [2].It would be
most interesting to see the intermittency analysis of EHS/NA-22 data for
0;pri0.04GeV/c.

-Our simple model shows in a very transparent way a strong dependence
of the correlation function C,(g. K) on the value of K=(k; + k;)/2 and in
particular on the average transverse momentum Kt of the two identical pions.
We shall discuss this point in more detail in a separate work.

- In our model resonance formation and decay plays an important role and
as a consequence of that the correlation function C3(g) is quite different from
a Gaussian.This indicates that the data on correlations in hadronic collisions
should be rather fitted by functions which correspond to a sum of directly
produced pions and one or two resonances.When taking only one resonance
one should probably take parameters of the p to take into account resonances
of width comparable to that of the p and when taking also a second resonance
one could take parameters of the w to take into account also objects with a
longer life- time. '

Models analyzing effects of resonance formation and decay on correlations
of identical particles have been studied earlier by numerous authors [36- 46].
As far as we know the intermittency patterns in this type of models have
not been studied in a quantitative way as we have tried to do in the present
work. Conclusions about resonance formation times and average life- times
have been made by Lednicky and Progulova [24] who have considered a model
containing p- mesons and direct pions, by Csorgé et al. [40] who have evalu-
ated analytically the average formation time of resonances as 0.77+0.1fm/c
and mean life- time of resonances as 2.88 fm/c and used then the Monte
Carlo program SPACER to analyze data on Si+Au collisions at 14.5GeV per
nucleon and O+Au interactions at 200 GeV /nucleon.

Padula and Gyulassy [42- 44] have analyzed pp and pp data at CERN
ISR energies and in particular the sensibility of data to the abundance of
resonances. They have found that the data are inconsistent with the full res-
onance fractions as predicted by the Lund model. Their results are consistent .
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with those of Kulka and Lorstad [46] and with our results at lower energies
as shown in Fig.4 above. The reason of this result is due to to the fact that
resonances tend to increase R; whereas direct pions work in the opposite
direction. oo Ry

In most of analvses the presence of resonances leads to marked deviations
from Gaussian shapes of the correlation function C;(¢) .reasons for that being
simply visible in our model. Coi

It would be most interesting to have data on correlation functions for
pp; PA. and AB collisions at the same energy which would permit to study
differences of correlation functions as a function of the atomic number of
colliding particles and search for the onset of collective expansion, which
should be visible via long time delays [47- 50].Unfortunately the increase
of < z? > may be due both to an increase of the time delav and to the
increase of the abundance of resonances and these two mechanisms should be
disentangled before firm conclusions conld be done. A step in this direction has
been recently performed by Wiedemann [51] in an interesting analysis which
combines hvdrodynamics in heavy-ion collisions with effects of resonance
decays.

There is a lot of most interesting aspects of data which we have not
discussed in the present paper.Apart of the pr- dependence of correlation
function these include at least: multiparticle correlations and higher facto-
rial moments, correlations of un- like pions which appear naturally in models
based on resonance decays, and the rapidity dependence of correlation func-
tions.We have also limited ourselves to a simple situation with two identical
pions having the same energy and have studied only the dependence of the
correlation function on the difference of the longitudinal momenta' @z. The
model can be generalized also to other types of variables upon which the
correlation function depends and we hope to return to these issues in the
near future.
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Appendix

A Rapidity shifts in a two body decay

For the sake of completeness we shall give here some simple formulas for
rapidity difference between the decayving particle and its decay products and
we shall derive Eq.(16).Consider a particle with mass M decaying in its rest
frame to two particles with masses py; and p,. Decay products are character-
ized by their transverse momenta pr; = -pr; = pr and by their rapidities y,
and y,. Denoting transverse masses as my = /pu? + pk. jiz = /pp? + p% the
cnergy and momentum conscrvation implics

M = mycosh{y,) + macosh(y.) (1)

0 = mysinh(y1) + masinh(yz) (2)

Expressing sinh(y2) from (A.2) and using cosh®(y;) = 1+sinh?(y,) we obtain
from (A.1)

2

M = mycosh{y:) + mz\/l + (:—Z—lsinh(yl)) (3)
2
From Eq.(A.3) we find

M? — (m2 - m?)
leM

cosh(y)) =a =

Via‘tiuadratic equation for 2 = exp(y;) we get

1 = tin(a+ va? - 1) (5)

and g 1/2
. Mt - 2(m? + m3)M? + (m2 — m?)?
R e s T
For the equa,l mass case my; = my and formulas simplify to
M A
cosh(y1) = S = a

y = +in ((M/zml Y2 + /(M/2m; )2 -.1),_ Q
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stnh{y) = :i:\/(]\f/'lml)2 -1

Starting with Eq. (13) putting |T| = 1 and integrating over ps we get for the
equal mass case

dPl d3P1
6 _ -
(27)°T = /)EIZEZ (E — Ey - E) = /7E12E26(M 2B (7)

writing d®p,/E1 = 2xprdprdy;. Ey = mycosh(y;) where m; is the transverse
mass, and using 2F; = 2F; = M we find

rprdprd -
7)6T = _/ il y5 M = 2mycosh(yy)) (8)
2M
rpT(l'PTd'/ 1
(27)°T = / 2M ‘)mllsznh yi)l oy =) Y

where the sum goes over two possible va.]ues of y;.Expressing y; in terms of
M and m; we find

(2n)°T = [ 2nprdprdy

oy =)+ 8y +m))
2M\/M? - 4m1 1 '

what corresponds to Eq.(14) in the text.For the unequal mass case we have
instead of Eq.(A.7)

(10)

2r prdprdy; 1 (

27)T = - -
(2) 2E,2F, Z |misinh(y:) + masinh(yz)(dyz/dy1)|

Y —y1)

| (11)
where the sum goes over the two solutions in Eq.(A.5).For the expression in
the denominator we use Eq.(A.2) to get

_ [ 2mprdprdy; , 1 .
(27)°T = / 4F, Imysinh(y1)(1 + mycosh(yy)/macosh(yz)] [5(y-3:1)-;-5(y+y1)]
12
By using Eqs.(A.4) and- (A.5) we find

2rprdprd B |
0T = | SR M + G = o0~ ) + 6 + )
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For the equal mass case m; = m, we come bhack to Eq.(A.10).
The maximal pr .(pr)mer = k is given by the condition

M= \Jud + 1+ 12+ k2 (14)

leading to

k=§ﬂ7 (M2 — (py + p2)?][M? — (i1 — p2)?] (15)

In terms of k£ we can rewrite Eq.(A.14) as

2x prdprdi
(27:,)6 :/ rpraprdy (16)

m[é(y —y1)+ 8y + )]

The normalized probability distribution for the resonance decay then be-
comes
dP 1

' = 6y — ) + 8y + 17
doprdprdy 4%_',\_.\/]67:—15[ (y — ) (y + 1)) (17)

For the equal mass case and for pr = 0 Eq.(A.18) leads to Eq.(16) in the
main text.
Contribution of a resonance to P(z) and to its Fourier transform
For z > 0 the contribution of a single resonance to P(z) = P(z:yg) is
given by Eq.(21).Putting f = zy and d = 24 we have

P(z) = f]_ d(e-z/f -e-z/d); z2>0 (18)

P(z) = P(-=z); z2<0
P(z) vanishes for z = 0 then increases and reaches a maximum at

_Inf—lInd
=g fd - (19)

It is easy to show that for d < f it holds d < z,, < f and that as expected

zm increases with both f and d. The Fourier transform of P(z) is
1 - fdg?

[1+ (fg)’I[t + (dg)?]

P(g) = /_ ‘:" P(2)ei%dz = (20)

22




Figure Captions

Fig.1 Simple kinematical situation for study of HBT interferometry in
the c.m.s. of hadronic collision.

Fig.2 Two interfering amplitudes for production of identical pions with
momenta k; and ks.

Fig.3 The shape of function P(z) as given by Eq.(21) for a set of values
zpand zg: a) zp=zg=Liblzy=1.20=3;¢) zy =3. 25 = 5.

Fig.4 Contributions of individual resonances and of directly produced
pions to the correlation function Cy(¢). Data points taken from Fig.5b of
Ref.[31]. Contributions are plotted for three values of the formation time: a)
7= 0.2fm/c; 74 = 0.4fm/c: ¢) 77 = H{m/c. _

Fig.5 Comparison of data [31] on Ca(q) for 0 < pr < 0.04GeV/c with
coctails of resonances and directly produced pions: a) 7y = 0.2fm/c: b)ry =
0.4fm/c.

Fig.6 Second factorial moment F3(8) as calculated in our model: a)ry =
0.2fm/c, rgiy = 0.5: b) 74 = 0.4fm/c, rgir = 0.7. The lines are fits by the
Fialkowski’s formula.Parameters are described in the text.
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Table 1. Basic parameters for calculation of correlations of
identical pions (lengths in GeV ')

Res. {yr | sh(y.) | 7 24 2y frR(K) | BR(R) | A%z | w(r)
p 1.67 | 2.56 6.66 | 16.96 | 2.567; | 0.618 |2 0.31 }0.38
ow 1.257 1 1.615 | 118.6 | 191.6 { 1.6157; | 1.615 | 0.89 0.31 |0.45
fa 235 |[5.2 5.41 | 28.1 | 5.27 0.21 0.57 0.07 | 0.01
K= | 147 |2.06 41.2 |1 84.9 | 2.067; |0.96 1.33 0.08 0.1

A 1.26 | 1.62 8.3 13.5 | 1.627, | 1.57 1.33 0.11 {0.23

Table 2. Dependence yi = yp(K7) for a selected set of resonances

K7r[GeV/c] | 0.00]0.05]10.10]0.1570.2010.2510.3070.35 | 0.40
Resonance

p 1.67 | 1.62 | 1.45]1.24 | 1.03 | 0.80 | 0.56 | 0.205

fa 219 12141198 }1.80|1.61|1.43{1.27]|1.11 |0.96
K 1.47 1 1.41 {1.2311.01 { 0.77 | 0.34

A 1.25 {1 1.19 {1 0.99 | 0.74 | 0.40

w 1.24 1 1.18 | 0.98 | 0.73 | 0.38

n 0.76 | 0.67 | 0.31
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