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whole ring in the thin- lens approximation by using the exact Hamiltonian.
sextupoles, and octupoles. Thus by combining this paper with Ref. [2], one can treat the
of the exact Hamiltonian as was already done in Ref. [2] for quadupoles, skew quadrupoles,

pz + P2 1 _ mlm l [1+ r<p.,>i‘*}
1/2

map for a bending magnet by using the “unexpanded” square root

thin - lens maps to show how to construct a six - dimensional symplectic thin—lens transport
We extend two earlier papers [1, 2] on the determination of symplectic six - dimensional
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earlier paper and refer the reader to the latter for details. OCR Output
by simply stating the canonical equations of motion for a bending magnet already used in this

The formalism and notation in this paper is similar to that of Ref. Thus we will begin

2.1 Notation

2 The Canonical Equations of Motion

presented in section 5.

and octupoles, using the new method described above. Finally, a summary of the results is
how to construct symplectic thin lens maps for quadrupoles, skew quadrupoles, sextupoles,
4, solving the equations of motion in one step. As a byproduct, it is shown in Appendix A
the Hamiltonian as in paper II into two parts. The “unsplit” Hamiltonian is treated in section
the exact Hamiltonian are specified. In section 3 we solve the equations of motion by splitting

In section 2 the general canonical equations of motion for a bending magnet in terms of
The paper is organized as follows:

energy, and shall be incorporated into the tracking code SIXTRACK
The equations derived are valid for arbitrary particle velocity, i.e. below and above transition

further approximation.
Combining this paper with paper II, we are thus in a position to treat the whole ring without

used in this report can easily be modiiied for application to a thin- lens synchrotron magnet.
E. Forest and K. Ohmi for the symplectic integration of complex wigglers The analysis

`We achieve this by introducing a generating function in analogy to the method applied by
thin- lens approximation, taking into account the exact Hamiltonian also.

In this report we now demonstrate how to treat the bending magnets within a symplectic

into account.

Hamiltonian resulting from the curvature in bending magnets, but only took their lowest order
spaces. In II we also presented a symplectic treatment of the nonlinear crossing terms of the
unchanged and the corrections due to the new Hamiltonian were fully absorbed into the drift
a straight section of a storage ring. The outcome was that the thin—lens maps remained
kinds of magnets (quadrupoles, skew quadrupoles, sextupoles, and octupoles) appearing in
in II an improved Hamiltonian was introduced by using the unexpanded square root for various

ll + f (poll

pi + PZ

up to first order in terms of the quantity

{1 _ @;1@._}
1/2

square root

Whereas in paper I we used an approximate Hamiltonian obtained by a series expansion of the
six — dimensional symplectic thin—lens transport maps for the tracking program SIXTRACK

In two earlier papers [1, 2] (which we refer to as I and II) we showed how to construct

1 Introduction
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ds Opz

[KI(sO)]L · As · 6(s — S0) -1c + Kx(s0) - As · 6(s — sg) - f(pU) ; (3.3b)

GI$ PI

(3.3a)

ds Op,

The canonical equations of motion due to the Hamiltonian H; read as:

3.1.1 Canonical Equations of Motion

3.1 The Term H;

In section 4 it is shown how to treat the unsplit Hamiltonian Hbmd.

Ref.

On approximating Hbmd by "expanding the square root" one obtains the Hamiltonian of

so —|— c § s § so —|— As (region II)

and HI; contains nonlinear crossing terms and the drift terms and is effective in the region

so § s § so +6 (region I)

whereby H; represents a symplectic kick effective in the region

Halma = {H1 + Hu , (3-2)

and

f(1>¤) · lKx(S¤) · w + Kz(S¤) · Z] + E lKx($¤)l2 · wg + §lKz($¤)l2 · Z2} (31)

: As-6(s—sO) ><

H; = 'H;(Q`; $0) · As · 6(s — so)

slices of length As. Furthermore, we modify the Hamiltonian (2.1) by writing
In order to represent a bending magnet we divide each lens into a sufficient number of thin

OCR Output3 Thin - Lens Approximation for a Bonding Magnet



Note that the factors in (3.1b, d,e) which multiply the 6—function are continuous functions of s at s0. OCR Output

These relations which are symplectic were already derived in Refs. [1, 2].

P0(s0 + 6) (3.4f)pO(sO)

Ulso + 6) ¤(50) — lK0(50) · 5(50) + Kz(50) ·¤(50)l · A5 · f[(2¤U(50)] ; (3-45)

pzlso + 6) M50) - lKz(50)ll · A5 · Z(50) + Kz(50) · A5 · fl(1>0(50)l s (Md)

(3.4c)z(s0) ;Z(S0 + 6)

PASO + 6) PASO) · lKx(S¤)ll · AS · $(50) + Kz(5¤) · AS · fl(1¤¤(5¤)l s (3-4b)

(3.4a)$(50) ;$(50 + 6)

leading to

0 < 6 -—> 0

with

so to so + 6

Equations (3.3a- f) can be solved by integrating both sides from

3.1.2 Solution of the Equations of Motion

(3.3f)

60@ pg
GH]

(3.3e)[I{I(sO) · x + K,(.s0) · z] · As - <$(s — sc) ·f’(pC,)

Gmds

6%]

[I(,(.s0)]l · As · 5(S — $0) · z + Kz(sO) · As · 6(zs — $0) · f(pU) ; (3.3d)

Hz@ pz
GH]



ZA magnet bending in the z- direction can be treated in a similar way. OCR Output

(3.8b)[1+ f(P0)l·K,;- 1.»({-1)
Gm@ P2

8,H]]

HJ (38),_m _ _ piwi `_ px [Ax +1] ll [1+f(pU)]2l l1+f<pU)l
“2

_ _ ,_ _1 _ z»i+pZ F_ <—22>x) ¤+f<1»>1 111 M 2{1 MM} www
1/2

d5 @22;

GH11

or, written in components:

Q Q Q2
(3-7)§= Q5; Q 2 §;»=t +1 U

and

E `m7pI7 zipzi O-7pU

E7] Z (yi, 3,/2,313, 1/4, ya ya)

with

<3-6>W _ gg y Z 1s ——(#
BH ’

The canonical equations corresponding to the Hamiltonian (3.5) take the form:

(3.5)+[1+f(p,)]·I{x·x+pa

, + p 1+f U .[&I. +1.1_J.¤L._[ (P ll [ w l2 2 {;} [1+f(pU)]2
1/2

+1%2 +172 1+f PU) ·{l—£¥—E—} [ ( l 11+ fw
1/2

, p = —[1+f(z>¤)l·!¤$·¤¤· 1~—@·"2 2 1/2 + {L} -1 11+ f<pU>12
we get from (2.2b) and (2.3a,b) the Hamiltonian:

Km gé O ; KZ = 0

For A horizontal bending magnet

3.2 Thé Téfm HH
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in As

This transformation is canonical and approximates the real symplectic motion due to eqn. (3.8) up to first order

y E ac, z, 0 .

_ P1 Z X Z Py+A$·‘a¥%
GF 871

0Py 3Py
- 371]] y Z ? Z 3,/+ As ·

The transformation equations due to the generating function F are:

(3.12b)3.-A5. —U z¤ [1+f(p)l 11. 1-lg-1/2 (([1+f(§0)]2) -1)
OSB

are

(3-ma)AS.[1<..$+1].(1_@rE-}_1L [1+ f<z%)1’ [1+ f(p.,)]
1/

l€_l/2A5·l1+f(z5..)1·[11;-$+1]-(1- -}_ L 2 11+ ffw {1+ f<p.>12
011.

ap

YVith the generating function (3.11) the transfer map (3.10) reads as:

for wigglers
This method has been applied by E. Forest and K. Ohmi to obtain symplectic transfer maps

<311> .A u f<>1 ir 11 1 S . + pa . . x + .{@2+*52 _ [1 + f(pU]2

;c-p,+z·p_,+¤-p(,+AS-[1+f(pU)]-Ir',-x+AS·pO

- A$·l1+f(P¤)l·(1—[1 + f (pol?-+ p %·L—l +AS·p¤
2 -2 1/2

-A$ - , p .[1+f(p0)].],I.x. {1-2 -2 1/2 + {% -1 u + f<pU>12

F : ;v·§x+z·;$,+0·;$,

Then:

OCR OutputOCR Outputso that (3.10) becomes a canonical transformation
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where T; corresponds to region 1 and T11 to region 11.

T Z T]; O T] ,

For the transfer map T of the whole region so f s f so + As we now have;

3.3 The Whole Region $0 _§ s § so -|—As

account eqns. (3.13) and (3.16).
The quantities si, 2, and 6 are then to be obtained from eqns. (3.12 a,c,e) by taking into

(3.16)

, p$+As·[1+f(pU)]·IxI· p2 + p2 C (\|[1———i———¥] +—— -1 [1 + f(p¤)l2 [1+ f(pU)l2
1+11<m·AS]

px I

the square root in (3.14), so that we may write:
Comparing eqn. (3.14) with (3.9b), it can be seen that we have to take the positive sign of

(3.15)C : —[1x’I · As]2 -12;+ 2 [Kx·As]· [1+ f(p,)] -10,,.

with

(3.14)

pz - A5 · [1 + f(p¤)l · K1 i AS · [1 + f(p¤)l · Ka I 1‘2 __+_ P2 C [- 411+]+ ——·— [1+ mw [1+ r<p..>1’
1+[1<,.A81

p’ :

representing a quadratic equation in px the solution of which reads as:

2 -2 Z {AS.11 .|..f(pO_)].[{1/_}2. {1 _ Q);. _ 1.};} [1 + f(pU)[2 [1+ f(pO)l2

{px — px + AS · [1 + f(p¤)l · KI}

or

px = 13r"AS'[1'['f(Pv)l`Kr' -2 +192 1/2 ((1-Li-} -1 [1 + f<p.>12
OCR Outputresulting from (3.12 d,f), eqn. (3.12b) takes the form:
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f(p,) - KI · sc + K [{3 · x (4.22) OCR Output
1 2

. pPl1+f(PU)l·!\x·<¤· 1-;i + Z 1/2 [*) -1 ll + f(1¤¤)l2
IH ETL 2 U _— 1 + O` - -— b d P l f(p [1+ f(pU]g

pi + PZ lm

From eqn. (2.1) we obtain for a horizontal (KZ = O) bending magnet:

4.1 The Hamiltonian

analogy to eqn. (3.11) for the whole region so § s _§ so -|— As.
In this section we treat the "unsplit” Hamiltonian Hbmd, using a generating function in

Splitting the Hamiltonian

4 A Symplectic Treatment of Bending Magnets without

integrated in the same way as in section 3.1.1 (see also Refs. [1,
The canonical equations of motion corresponding to the modified Hamiltonian 'H; may be

unchanged.
(g is defined in Refs. [1, 2]), While {HI] (see eqn. (2.2b)) and TH in eqn. (3.19) remain

[K3 +g[ · $2 and ;i—[K3 —g[ · 22

appearing in the Hamiltonian H; and HI (see eqns. (2.2a) and (3.1)), have to be replaced by

[Kx(s0)[ 2 · xg and g[1<.(S0)]2 · z2

synchrotron magnets. ln this case, the terms
3) The calculation of the transport map for a bending magnet can easily be extended to

ing Hamiltonian (2.1).
one obtains the exact solution of the canonical equations of motion corresponding to the start

As ———> O

by construction. In the limit
2) The transfer map T is symplectic for an arbitrary As, since Tl and T2 are symplectic

T 2 T[](AS/2) O T] O T]](AS/2)

1) One could also use the more symmetric decomposition

OCR OutputRemarks:
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(4.30) OCR Outputpx — [K,. - As] · [1 + KI - nr] + [KI · As] · [1 + f(p.,)] - ([1 TT-? ll + f(2>a)l

px Z

OI`, H.fiZ€I` SOIHC analysis:

I$I+A5·[l+f(Pg)[·Kx· (4.29)~2 + p2 C \[[l——?·—[·I——·;—-——1 [1+ f(P¤)l2 ll + f(P¤)l2
1+[1<x·AS]

p” :

that we may write:
the equations of motion, that we have to take the positive sign of the square root in (4.25), so

As in section 3, it can be seen by comparing eqn. (4.25) with the linear approximation of

C : — [Kx · As[2 ·p; + 2 · [KI · As] · [1 + f(p(,)[ - [EI

with

(4.27)

~2 _[_ pz G 1%-4-S·ll+f(P¤)l·KxiAS·ll+f(P¤)l·Kz· \[ [l—i£-3-) +—··—·— [1+ f(P¤)l2 [1+ f(Pg)l2
1+[1<x·A5]

p” :

This represents a quadratic equation in if the solution of which reads as:

(4.26)px : p,,—As·[ —f(p.,)·Kx+K;·:z:

with

I m5·u+r<p )l·1<}2·[1——~i·———i~—) [1+ f(P¤)l2 [1+ f(pU)l2

{1% -2% +A$·l1+f(P¤)l·Kz}

OI`

+As·[ —f(P¤)·Kx +I{§·a:

- , px : px——As·[1—[—f(p,,)[·I&x·lpi +p§‘”2 ([——··———-} —l ii + f(pU)l2
OCR OutputOCR Outputresulting from (4.22 d,f), eqn. (4.22b) takes the form:
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(A.1) OCR Output+£·(:1:3—3a:z2)+%·(z4—6;r2z2+x4

+§g·:c—§g·z—N·.rz
1 1 22

pi + PZ = pa—l1+f(p¤)l·[1 - ·—#——] ii + r<p.,>1’*
I/2

the Hamiltonian reads as [1, 2] :
For a straight section containing quadrupoles, skew quadrupoles, sextupoles, and octupoles

A.1 The Hamiltonian

Account the Exact Hamiltonian

Skew Quadrupoles, Sextupoles, and Octupoles Taking into

Appendix A: A Symplectic Treatment of Quadrupoles,

and interesting discussions.
We wish to thank Wolfram Fischer (Brookhaven National Laboratory) for very stimulating

Acknowledgments

exact Hamiltonian (without expanding the square root).
be to try the construction of the symplectic thin- lens transfer map for the solenoid using the

Following this thin-lens treatment for the conventional magnet types, a future task could
energy, and shall be incorporated into the computer program SIXTRACK.

The equations derived are valid for arbitrary particle velocity, i.e. below and above transition
maps obtained are automatically symplectic.

Since the equations of motion (resulting from a Hamiltonian) are canonical, the transport
in a way analogous to that suggested by E. Forest and K. Ohmi in Ref.

We achieve this with a technique different from Refs. [1, 2] by using a generating function
framework of the fully six—dimensional formalism, taking into account the exact Hamiltonian.
of motion for a thin- lens bending magnet and also for a thin- lens synchrotron magnet in the

By extending Refs. [1, 2], we have shown how to solve the nonlinear canonical equations

5 Summary

(4.30a) ), if one replaces px in (4.26) and (4.27) by px.
For example, eqn. (3.14) or (3.17a) is obtained from (4.27) (which is equivalent with

to the Hamiltonian HI;. In (4.30 a, f) additional terms appear resulting from the Hamiltonian
OCR OutputEquations (4.32 b, c,d,e) have the same form as the relations (3.18 b, c, d,e) corresponding
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x+A5 (A.3a)·{i- }_.%
1/2

w—AS·[1+f(P¤)l·§i1— }·
_1/2

gpx

BF

reads as :

:¤»px,z.pz.¤.p¤·* ¤»1¤4» Z»2¤z,¤.p¤) (F

With the generating function (A.2) the transfer map

A.3 Transfer Map

(A.2)A 3 2 li 4 2 2 4 +;-(x —3xz)+i·(z ——6:rz—}-sc)

.|. A . . $_ . .-. N s g g z ;r z
2 23 2 2

- +A · 0 5 P-2 -2 _ + p, A · 1+f ¤·{1——&··+—} 5 l (P )l [1+ fm]2
l/2

Z $`pz`l`Z`pz`+'O"pa

1 x•p1`+Z·pZ+g.pU+AS·H(x7p_T;z7pZ;U1p-U)

F(¢¤,15x; 2.15;; mia)

Analogously to eqn. (3.9) we define:

A.2 Generating Function

d) ;z;£O; g=N:/\:0: octupole.
c) /\ # O; g : N : rr = O : sextupole;
b) N yé O; g : /\ : p = 0: skew quadrupole;
a) g qé 0; N = /\ = p : 0: quadrupole;

In detail, 0ne has:

(g, N, A, and p are defined in Ref. [1]
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a pure quadrupole, skew quadrupole, sextupole, and octupole.
of quadrupoles, skew quadrupoles, sextupoles, and octupoles. In particular, we get the map of

The relations (A.7a—f) describe the thin- lens map of a _lens consisting of a superposition

[1+f(p£)]2
»-· (Au)Ui S- ,$· I . +A A np;) {1

-€ (A" lZ1 5+A _ _ (1¤£)2+(2¤Z)2}—_ pi il u+f<p2>12 u+x<p2>1
1/2

H (Md)CE, 5+A _ _ <p;>2 +<p;>2}*_ pg; il u+f<p£>12 u+f<pJ>1
”

pa;PJ (A.7c)

pg-aa4-g-Z2-N·x1-A-(m1)(zi)+§-[(z‘)3-3(I*)2(zi)]} , (Mb)

p;—As·{+g·;z:'—N-z'+ ·l(w')2 — (¤’)2l + E · l(¤¤i)3 — 3 (xi) (ZW} &<A—7¤·)

we may finally write:

g]°(s0 + As) ,xf Z

(A.5)3]($O) g#1. _

Using the notation

(A.4) into account.
The quantities 5:, 2, and 6 are then to be obtained from eqns. (A.3 a, c,e) by taking eqns.

pg : pc (A.4c)

(A/lb)OCR Outputpz : pz——As·<—g·z—N·x—/\·:cz+%·(z3—3x2z)}g
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