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In the context of inflationary scenarios, the observed anisotropy in the Cosmic Microwave
Background (CMB) probes the primordial metric perturbations from inflation. The pertur-
bations from inflation are expected to be gaussian random fields, there remains the pos-
sibility that nonlinear processes at later epochs induce “secondary” non-gaussian features
in the corresponding CMB anisotropy maps. The non-gaussianity induced by nonlinear
gravitational instabilty of scalar (density) perturbations has been investigated in exisiting
literature. In this paper, we highlight another source of non-gaussianity arising out of higher
order scattering of CMB photons off the metric perturbations. We find that in a flat, @ = 1
universe the skewness in CMB is dominated by the contribution from the gravity waves via
the multiple scattering effect for very small contribution of the gravity waves to the total rms
CMB anisotropy. Consequently, we provide new estimates of total secondary CMB skewness
expected in a broader class of inflationary scenarios where the power spectrum of initial per-
turbations is tilted (reddened). We find that skewness from gravity waves dominates over
the skewness arising from density perturbations for small deviations from the scale invariant
Harrison-Zeldovich (HZ) spectrum (ns < 0.92). The total secondary skewness is found to
be smaller than the cosmic variance leading to the conclusion that inflationary scenarios do
predict gaussian CMB anisotropy.
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I. INTRODUCTION

The Cosmic Microwave Background (CMB) has proved to be an extremely significant observational guide
in our quest towards understanding the universe since its discovery by Penzias and Wilson [1]. The detection
of tiny anisotropies in the CMB by the COBE - DMR group [2] was an important milestone in the study
of the universe and the understanding the large structure that we see around us. The COBE detection has
opened up a fresh avenue of investigation and has been followed by a host of new developments both on the
observational and theoretical fronts {3].

The idea of incorporating an inflationary phase in the early universe [4-7] has gained wide acceptance in
the last decade and is perhaps the most prevalent scenario within which one attempts to understand the
universe. Soon after the notion of an inflationary scenario was put forward , it was realised that besides
resolving some long standing problems of the Big-Bang model of cosmology [5], inflationary models also
predict the form of the power spectrum of the primordial scalar metric fluctuations which could seed the
formation of the large scale structures observed in the present universe [8-11]. In fact. both gravity waves
(GW), i.e., tensor* metric fluctuations [12-16}, as well as adiabatic density perturbations (related to the scalar
metric fluctuations) arise as natural consequences of the inflationary scenario, due to the superadiabatic
amplification of zero-point quantum fluctuations occuring during inflation. As gravity waves [17-19] and
scalar density perturbations enter the horizon during matter domination, they induce distortions in the



cosmic microwave background (CMB) through the Sach-Wolfe effect [20]. The relative contribution of the
gravity and the adiabatic perturbations is linked to the specific model of inflation {21-26]. The spectral index
of the power spectrum of initial perturbations can be inferred directly from the large angle CMB anisotropy
maps.

The CMB anisotropy measurements have till date been found to be consistent with inflationary scenarios of
the early universe. In particular, the spectral index infered from the COBE - 2year data (see for eg. [27,28])
is consistent with the near scale-invariant spectrum of fluctuations generically predicted by inflationary
scenarios. Another generic prediction of inflation is that the metric perturbations generated are gaussian
random fields. At the linear order, the CMB anisotropy produced would reflect the gaussian nature of initial
perturbations. However, there always remains the possibility that non-linear corrections to the growth
of perturbations and the Sach-Wolfe effect could induce some non-gaussian features in the CMB even for
gaussian initial metric perturbations.

Non-zero skewness is a definite signature of non-gaussianity in a distribution. For gaussian initial per-
turbations the skewness in the CMB appears only beyond the linear approximation. At the leading order
the skewness arises from two distinct effects. The first effect is that initially gaussian metric perturbations
become non-gaussian when we include the lowest order nonlinearity in their evolution due to gravitational
instability. The non-linear component of the metric perturbations are non-gaussian and introduce non-
gaussian anisotropies in the CMB through a linear Sachs-Wolf relation at the corresponding order. The
non-gaussianity of the CMB is reflected in a non-zero skewness of the statistical distribution of temperature
fluctuations. The second effect is that the gaussian metric perturbations introduce non-gaussian anisotropies
in the CMB due to a second order (double) scattering of the photon off the linear order metric perturba-
tions. This gives rise to new terms in the Sachs-Wolfe relation calculated upto the second order. All previous
discussions of skewness in the CMB, have been limited to the the estimation of only the first effect, i.e.,
nonlinearity (and consequent non-gaussianity) due to gravitational instability [29,30,32]. The tensor com-
ponent of metric perturbations (GW) does not exhibit gravitational instability, consequently the possibility
of non-gaussianity in the CMB caused by the GW background has been entirely ignored in the previous
literature.

In this paper, as an illustration of the second effect, we calculate the CMB skewness produced by a
gaussian stochastic linear gravity wave background generated by inflation. In the context of @ = 1, flat FRW
models, the magnitude of the effect considered here appears to be significantly larger than the corresponding
estimate of CMB skewness arising from the gravitational instability of scalar metric perturbations. Although
inflation predicts both scalar and tensor metric perturbations, and scalar perturbations do produce CMB
skewness through both the effects, a very general argument shows that the CMB skewness arising from the
double scattering of photons off scalar perturbations is expected to be subdominant to that arising from the
gravitational instability of scalar perturbations (see §II).

In §I1, we outline the basic formalism involved in estimating the skewness in the CMB and give a very
general approach for obtaining the higher order corrections to the Sachs- Wolfe effect for a general cosmological
perturbation. In the following section (§III) we estimate the skewness in the CMB anisotropy that would
arise from a inflationary gravity wave background for a range of values of the spectral index.

II. FORMALISM

In this section, we outline the basic approach and results that are used in obtaining our result. The
first part of the section contains a brief discussion of the perturbative approach used in estimating non-
gaussianity in the CMB anisotropy. The second part gives a compact derivation of the CMB anisotropy
from the Sachs-Wolfe effect upto second order in the primordial metric fluctuations.

A. Non-gaussianity and Nonlinearity in the CMB anisotropy

It is possible to address non-linear effects in the CMB within a perturbative framework by expanding the
temperature fluctuations. AT/T, in orders corresponding to the powers of the initial metric perturbation

as :
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Given that the initial metric perturbations from inflation are linear and gaussian, any non-gaussian feature
in the CMB maps can only arise from the higher order temperature anisotropy such as (AT/T)?). We shall
call this higher order effect — secondary non-gaussianity. (The term “secondary” is used to denote the
effects which take place after recombination. The effects prior to recombination are “primary”.)

A non-vanishing skewness is a definite signature of non-gaussianity in a distribution. At the linear order,

the mean CMB skewness C5>(0) = ((AT())/T)3) = 0 where {) denotes averaging with respect to different
realizations of stochastic space-time metric perturbations of the FRW cosmological model which produce
AT/T. Substituting the expansion (2.1) into the expression C3(0) = ((AT/T)3), it is clear that the leading
order (in powers of the initial linear metric perturbations) contribution is at the fourth order,

) 3 AT (1) (AT (1) (AT (2) .
- (32)" (22" (32) ) -

(In this paper, we deal only with C:(;*)(O), and hence the superscript denoting the order has been dropped
in the rest of the text). It is clear from the above expression that the mean skewness depends not only on
the magnitude of AT(?)/T but also on the extent of correlation of this term with the linear order terms,
ATM/T. For example, in the case of scalar perturbations the second order term grows linearly with the
expansion of the universe and can attain values AT(?/T =~ 0.1 AT®)/T at late times [33]. However, in a
flat, = 1 universe the linear order term contributes only close to the surface of recombination (7 = n..)
and the second order term attains its largest value only at late times (5 = 19). Consequently in the final
result for the mean skewness, the decay of correlation between the linear and the second order term over
this large physical separation (% 1, — 7r.c) along the line of sight attenuates the effect of the growth of the
second order term, leading to a very modest value for C3(0) [30]. It was also pointed out in the same paper
that the mean skewness is expected to be somewhat larger in models (eg. CDM+A, Q # 1 models) where
the gravitational potential changes at late times leading to a significant linear order integrated Sachs-Wolfe
contribution at late times.

Even in a flat, @ = 1 universe, contributions to linear order integrated Sachs-Wolfe effect comes from
inflationary tensor perturbations (gravity waves). Consequently, one expects that the correlation between
the linear and second order terms is not attenuated in this case leading to larger values of C3(0). The
second order AT(?)/T in the case of gravity waves comes only from double scattering since GW do not
exhibit any gravitational instability. Scalar perturbations also give rise to second order anisotropy through
double scattering. However, for flat, @ = 1 models the contribution to the mean skewness is expected to be
even smaller than that from gravitational instability considered in {30]. This can be seen from the fact that
AT®) /T from double scattering too has contributions only at late times (implying attenuated correlation
with the linear term) and, moreover, for scalar perturbations this second order effect is smaller than that
from gravitational instability.

B. Second order CMB anisotropy from the Sachs-Wolfe effect

In a perfectly isotropic universe the CMB would have the same temperature in all directions on the celestial
sphere. If, however, the cosmological metric is perturbed away from isotropy, the temperature observed today
fluctuates over the celestial sphere.

The dominant contribution at large angular scales (6 > 1°) to the observed temperature fluctuations
comes from the change in the frequency of any CMB photon as it travels from the surface of last scattering
to us. In the case of an isotropic universe, the overall increase in the scale factor a(no)/a(nre.) redshifts
the entire Planckian distribution of photons leading to a Planckian distribution at a lower temperature
given Ty /To = a(no)/a(7rec). The presence of the perturbations hqs(7,x). produces an additional change
in the frequency and direction (momentum) of a photon as it moves in and out of the fluctuating metric
perturbations.

We consider the trajectory of a photon (or ray) in a perturbed flat FRW universe and work in a synchronous
coordinate system where the line element has the form

ds® = a(n)® [—dn® + (6as + has (0, 2)) dz°dz’] ‘ (2.3)

where hgp = hfllb)(~ €)+ hg‘;)('v €?) is the metric perturbation, and ¢ € 1 is a small number characterizing
the amplitude of deviations from the unperturbed background FRW universe.



The photon’s trajectory can be obtained by perturbatively solving the eikonal equation for the optical
path or phase S(z, 7). The eikonal equation for a photon propagating in a spacetime with metric, gy, is

S oS

w _
drhgzr I T 0, (2.4)

(analogous to the Hamilton-Jacobi equation for a massive particle). The frequency and the direction of the
photon can be obtained from the the optical path, S(z,7)

w(z,n) = —;(;—)s,o(z,n), ka(7) = Sale, 7). (2.5)

where we use the notation 8/8n = , and 8/0z* =V, = ;.
Keeping terms to order €2 when inverting the metric the eikonal equation becomes

)db )Cb

—(S,p)? + (8% — RV _ @ L gOIONG 5 = (2.6)

where we use background spatial metric 8, to raise and lower the spatial indices. We perturbatively solve
for the trajectory by expanding S(z,7) in powers of ¢

S=8+SN(~e)+ SB(~ e?). (2.7)
The zeroth order equation is
2 ,a
(s<°>,0) 50 g0 =g (2.8)
The first order equation is
S5 4 50t - %hU)“”s("),as("),,, (2.9)

and the second order equation is
) ,a ]. 2 ]. ,a a
S0 4 505 - (gm ) - _5(1), S 4y sy gO)
+ [h (2% _ h<1)“°h(1) ]§°),as‘°>,b. (2.10)

We have to solve these equations for rays arriving at the observer from different directions. This can be
done by considering rays that leave one observer in all possible directions. We evolve (or trace back) these
rays backwards in time until they reach the last scattering surface. This allows us to relate the observed
frequency with the emitted frequency of the light. The zeroth order solution is

SO (z,n) = kez® ~n+C. (2.11)
We choose the constant C to get the photons zeroth order trajectory as
(X)) = k%(no — A) (2.12)

and n(A) = X with n.(emitted) < A < n,(observed). For our purposes we consider this as a photon going
in the direction k from the observer who is at the origin of the spatial coordinate system and we consider
the photon to be propagating backward in time, i.e.. from n, to 7. In reality this corresponds to a photon
emitted at frequency 1/a(nrec) at the last scatterring surface and received from the direction k at the
frequency 1/a(no) by the observer.

We next use the zeroth order solution in equation (2.10) to obtain the first order solution. Using the
notation A((X) = h1)(z(X), n(A)) the first order solution is

T (1) — l me (1) apb
S (z,p) = 7 hay (Mk2k dA . (2.13)
0



Using the first and zeroth order solutions, the second order equation has the solution
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Using these we can relate the frequency of the observed photon to the frequency of the emitted photon.
Keeping terms upto order €2 we have

We =

S, (ze,me) — S""),,,(xe,ne)] (2.15)

where w, = 1/a(n,). We consider a photon with unit frequency when it leaves the last scattering surface
and write its observed frequency in terms of the emitted frequency obtained by inverting equation (2.15).
We then have

1
(M)

and w, = 1/a(n,). This relates the observed frequency to the emitted frequency and the metric perturbations.
Using these we obtain expressions for the fractional change in the frequency of the observed photon relative
to the frequency that would be observed if the universe were unperturbed. Since the CMB photons have a
Planckian distribution, (frequency independent) fractional changes in frequency translates to fluctuations in
the temperature characterising the distribution. At the linear order we recover the familiar (linear order)
Sachs Wolfe effect

(14 5D g(zesme) + S, (2e, 1) = (S 22,1V (2.16)

Wo =

(1) 0 .
A? = —% ;’h(“(z()\) n(A))k%kPdA . (2.17)

Nrec

The expression for temperature fluctuations at the second order can be split into two distinct set of terms
as follows

ATR) 1 [ 8 (o b
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(Effect I : Nonlinearity from Gravitational Instability)
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(Effect II : Nonhnearity from double scatiering of linear terms.) (2.18)



As indicated above, the CMB temperature fluctuations at the second order arise from two distinct physical
effects. Consequently, the expression (2.2) for the leading order contribution to the mean skewness, C3(0),
will in general consist of two distinct effects :

I. The first effect arises due to the non-linear evolution of metric perturbation, i.e., gravitational insta-
bility. The initially gaussian metric perturbations, hgp, become non-gaussian when we include the

lowest order nonlinearity, hffb) in their evolution due to gravitational instability. The non-gaussian
metric perturbation, hg), induces a second order CMB fluctuation (AT/T)(*) through the first term
of (2.18) which in turn leads to a non-zero skewness, C{*(0) in the CMB anisotropy map [29,30,32].

I1. The second effect relates to double scattering of CMB photons from gaussian linear order metric
perturbations which introduce non-gaussian anisotropies in the CMB owing to the terms that arise
purely from the initial linear metric perturbations, but are non-gaussian and non-linear since they
depend on the product of two hgp’s. We shall refer to this as the double scattering effect.

The expression for temperature fluctuations upto second order in the metric perturbations has been
recently obtained by explicitly solving the geodesic equations {34]. The authors have used it to estimate
the correction to the variance of CMB anisotropy. Qur calculation based on the eikonal equation is much
simpler than explicity solving the geodesic equation. The corresponding Boltzman equations correct upto
second order effects can be found in [36], however, the equations have not been solved to explicitly obtain
the second order temperature fluctuation.

1I1. SKEWNESS FROM GRAVITY WAVE

For an isotropic stochastic background of primordial GW, the metric perturbation can be written as

: Bk Ag(k Kx o o
hab('),x)=fz§ﬂ,—)3 i(% )hk(ﬂ) ek Xeqaq (3.1)

where the gaussian random variable, af, satifies the relation
(agaf) = 6k - K )6°° | (3.2)

the temporal evolution of the modes of the gravity waves in a @ = 1, dust dominated FRW universe is given
by

hi(n) = k—?’,;jl(kn) , (33)

and a, 3 take two values + and x refering to the two polarization states of gravity waves. The quantity
AZ(k) is the power spectrum of the GW which has been factored out from the gravity wave modes for
notational convenience.

We decompose a gravitational wave traveling in the : direction into two polarization states et and €,
For a gravitational wave in some arbitrary direction n we choose the two polarization states to be the ones
obtained by rotating the gravitational wave traveling in the = direction so that it travels in the direction n.
If Rgp(n) be this matrix that performs this rotation. we have

» JEEL

has(n,x) = Gre k% hi(n)e™ ™ Rac(n)Ras(n)[af e}, + afe ] A (k) . (3.4)

At the lowest order the skewness is

o= {(3) )=+ (552 (352))

where the angular bracket denotes an ensemble average over different realizations of the stochastic GW
background. The CMB observations can at the best provide an average over all directions for one realisation.




viz. the observed sky. The value obtained by taking an angular average over one sky would generally differ
from the ensemble average over all realisations by a cosmic variance which is discussed later. We also invoke
the isotropy of the background spacetime to assume equal contribution from the two polarisations.

We substitute the expression for an arbitrary GW (3.4) in the expressions for the temperature fluctuation
i.e. equations (2.17) and (2.18) and then put them in equation (3.5) to calculate the skewness. Integrating
over the solid angles corresponding to different directions of propagation of the gravitational waves along
the line of sight we obtain a rather lengthy expression for the skewness.

31104 o opme o ,
Cs(0) = Gyt / dk, / dk; / dn: / da / dn A%(ky) A%(k»)

Nrec Nrec
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We numerically evaluated the above expression to compute the skewness for different spectral indices of
GW power spectrum. A dimensionless number S3 can be constructed by dividing the skewness, C3(0) by
the square of the variance, C2(0). The variance of AT/T that arises due to relic gravity waves from inflation
[21] is given by

’ o0 o no
G0 =g [ FAs® [T T[S thn) i) olktn - (37)

Nrec

The power spectrum of the initial gravitational wave perturbation is assumed to be a scale-free power law,
A%(k) = A kT, where np = 0 corresponds to a scale-invariant spectrum. Power law models of inflation can
produce gravity waves with ny < 0. We compute the CMB skewness for a broad range in nr (-0.5 < ny < 0).
We find that the value of S3 varies between —61 to —74 for nr varying from the scale invariant spectrum
to np = —0.5. It is interesting to note that the skewness arising from gravitational instability of scalar
perturbations is much smaller for the same range of tilt ( ~ —2.2 for scale invariant (n, = 1) spectrum [30]
and lesser in magnitude than ~2.5 for 0.5 < n, < 1).

In a general inflationary scenario, the relative contribution of scalar and tensor contributions to the
CMB anisotropy can be related to the spectral index of the power spectrum of gravity waves. The ratio
of the contribution to the quadrupole of the CMB anisotropy due to gravity waves to that due to scalar
perturbations is given by, @%/Q% ~ —Tnt (for a more precise relation, see [31]). In a very broad class of
models, the power spectra of scalar and tensor perturbations are (nearly) scale free (i.e., power law over the
range of astrophysical scales) and the spectral indices are related by n, = 1 + ny [26.31]. We restrict our

discussion to this class of models alone. The ratio C(T) 0)/C(S) 0) can then be obtained using the predicted
values of the CMB anisotropy at higher multipoles from scalar as well as the tensor perturbations for a given
spectral index {37].

It is then possible to combine the skewness from gravity waves (through double scattering) and from scalar
perturbation (through nonlinear gravitaional instabity) to estimate the total secondary skewness in CMB.
The solid curve in Fig. 1 gives the value of the skewness parameter for various values of the spectral index.

In Fig. 2 we present a plot of C. (T) (0)/C. (s)(O). We find that the ratio C;(,,T)(O)/CéS’(O) exceeds unity for
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n, < 0.92, implying that the GW background from inflation dominates the secondary skewness in the CMB
for very modest tilts. It should be noted that inflation never predicts a perfectly scale invariant spectrum
and an effective spectral index n, ~ 0.9 — 0.95 is quite generic for inflationary scenarios. (In the context of
cosmological observations, the spectral indices of scalar and tensor perturbations from simple inflationary
models can be taken to be a constant “effective value” and the relation n, &~ ny + 1 holds.)

The corresponding observable quantity for the skewness, C3(0) is the sky-average C3(0) =
(4m)~t [ (AT(G,gp)/T)3 dQ of one particular realization. The value obtained by taking an angular aver-
age over one sky would generally differ from the ensemble average over all realisations by a cosmic variance
for the skewness. The cosmic variance for the skewness can be expressed in terms of an angular integral over
the two-point correlation function, C(#), and is roughly of the order of ((AT/T)?)3/2 [35]. The skewness
originating due to any effect would have an observable significance if the predicted signal stand above the
cosmic variance. This is a fundamental limitation and a minimal requirement. In practice, a detectable
signal has to stand above additional variances such as instrumental noise, finite beam width of antennas,
incomplete sky coverage etc.

The Cosmic variance can be expressed in terms of an angular integral over the two-point correlation
function, C2(8) [35]. Assuming a gaussian approximation for the two-point correlation function, we express

Ll +1) ¢
2

where the cut-off, {., in the AT/T angular spectrum at large values of the spherical harmonic eigenvalue,
1 (I = no/Nrec ~ 49 for GW [21] and I, = 250 for scalar perturbations). Using equation (3.8), the Cosmic
variance, 653, for the case of a CMB anisotropy arising from gravity waves is given by S5 = 1/(C»(0) .} =
670. The Cosmic variance for the scalar case is around 5 times smaller [30]. The Cosmic variance is larger as
the power spectrum tilted away (reddened) from scale invariance for both scalar perturbations and gravity
waves. It is clear that #n principle the secondary skewness in the CMB for a CDM model (2 = 1,2, = 0.05
and Hy = 50kms/s/Mpc.) is unobservable since it is below the cosmic variance.

C2(8) = C2(0) exp| ], Ca2(0)=~3x107° (3.8)

IV. CONCLUSIONS

In this work we investigated the possibility of secondary non-gaussianity in the CMB, i.e., whether initial
gaussian metric perturbations (as expected from inflation) should lead to a gaussian CMB anisotropy. We
point out that besides nonlinear gravitional instability, secondary non-gaussianity can be induced in the
CMB maps due to multiple scattering of CMB photon off metric perturbations and estimate the skewness
in the CMB that is expected to arise from a relic inflationary gravity wave background. By including the
efffect of gravity waves (in tilted models), our work compliments and extends previous work on this issue
where only the contribution of nonlinear evolution of scalar perturbations to the skewness in the CMB has
been considered [30,32].

The gravity wave background is a generic prediction of inflation, the extent of its contribution to the CMB
anisotropy being fixed by the spectral index of the metric perturbations. We find that the secondary skewness
from the inflationary gravity wave background dominates the effect of nonlinear gravitational instability of
scalar perturbations even for very small contribution of the gravity waves to the rms CMB anisotropy.

Combining the skewness from both scalar and tensor perturbations, we give new estimates of the secondary
skewness expected in a flat, = 1 model. However, the skewness parameter, Sz, is shown much smaller than
the corresponding Cosmic variance. Consequently, for the class of models we have investigated the CMB
anisotropy is expected to retain the gaussian nature of inflationary metric perturbations.
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FIG. 1. The skewness parameter, S;. expected in the CMB anisotropy from power law models of inflation with
a range of tilts, ny(= n, — 1). The dashed line shows the skewness parameter {from the double scattering effect)
assuming the CMB anisotropy to arise from GW alone.
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FIG. 2. The ratio of contribution to the secondary skewness from GW to that from scalar perturbation is plotted
against the spectral index of the GW perturbation for Power law models of inflation.
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