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Abstract

Using the method of projection operators, analytical formulae for Racah coefficients
and 6 — j symbols of the quantum superalgebra Uy(0sp(1|2)) are derived. The formulae
obtained by this method are transformed by means of algebraic identities into symmet-
rical analvtical formulae, the form of which are very similar to the classical formulae
obtained by Racah and Regge for su(2) Racah coefficients and 6 — j symbols. Sym-
metry properties of Us(osp(1]2)) Racah coefficients and 6 — j symbols following from
these analytical formulae are studied. In particular, it is shown that, similarly to the
su(2) classical case. in addition to the usual tetrahedral symmetry. 6 — j symbols of
the quantum superalgebra U, (osp(1|2)) satisfy a Regge type symmetry.
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I Introduction

In this paper, we continue the analysis of Racah-Wigner calculus for the quantum superal-
gebra U,(osp(1]2)), by the projection operator method. This very effective method already
permitted us to derive the analytical formula for Clebsch-Gordan coefficients (denoted sqCG)
of the quantum superalgebra U,(osp(1]|2)) and many properties of these coefficients|1]. In
Ref.[2], we also defined the corresponding 3 — j symbols (denoted sg3 — j). The analytical
formula obtained by this method coincide with the formula derived by Kulish with the more
conventional method of recursion relations [3].

In Ref. [4], we have defined Racah coefficients (denoted sqRC) and 6 — j symbols
(denoted sg6 — j) for the quantum superalgebra U,(osp(1]2)). Racah cofficients were defined
as the coefficients that relate two reduced basis in two different reduction schemes of tensor
product of three irreducible representations. As in the cases of su(2) or U,(su(2)), Racah
coefficients defined in this way can be expressed in terms of Clebsch-Gordan coeflicients. Due
to this construction, using the properties of Clebsch-Gordan coeflicients for the quantum
superalgebra U,(osp(1|2)), one can derive many properties of Racah coefficients, such as the
symmetry properties and the pseudo-orthogonalty relations. It has been shown also that
5g6 — j symbols can be defined from the s¢3 — j symbols and that they are related to Racah
coefficients in a way similar to the cases of su(2) or U,(su(2)). Then, symmetry properties
and other properties of sg6 — 7 symbols follow from the properties of sg3 — 7 symbols.
However, in order to know everything about sqRC' and sq6 — j symbols, in particular to
analyse their full symmetry properties, analytical formulae are necessary.

In this paper, we use the projection operator method, to derive analytical formulae for
sqRC coefficients and sg6 — j symbols. This method was used earlier in [5] to derive the
analytical formula for Racah coefficients of U, (su(2)). The analytical formula for sq6—j sym-
bols that we obtain by this method is rather complicated and unsymmetrical. However, by
means of algebraic identities, it is possible to transform this unsymmetrical expression into a
formula which has a form very similar to the form obtained by Racah for su(2) coefficients{6].
Moreover, it is possible to transform further the formula into a very symmetrical form similar
to the expression given by Regge in his Nuovo Cimento letter in 1959 [7]. This symmetrical
formula allows us to study the symmetry proprties of sq6 — j symbols. In particular, it
follows readily from this expression that sg6 — j symbols have not only the usual tetrahedral
symmetry but presents also an additional, conditional Regge symmetry. Here we have an
interesting phenomenon: althought the analytical formula itself has full Regge symmetry
without any condition, because of the fact that the highest wheights of U,(0osp(1]2)) are
integers. we have to impose some condition on the values of the highest weights in sq6 — ;
symbol in order to preserve the integrity of all highest weights in the sq6 — j symbol obtained
after Regge transformation.

Using the analytical formula we also derive the values of some particular sg6 — j symbols.
For instance, we give the expression of sq6 — j symbols where one highest weight is the sum
of the remainings highest weights in a triangular triplet.

This paper is organized in the following way: section II contains basic definitions and
relations, which will be necessary later on. In section III, we derive the analytical formulae



for sqRC' coefficients and sg6 — j symbols and we give some particular values of these
symbols. Section IV is devoted to the analysis of the symmetry properties that follow from
the analytical formulae. Finally, in Appendix A we give a Table of values for sg6 — j symbols
where one highest weight is equal to one and in Appendix B we collect algebraic identities
that are used for the transformation of analytical formulae in section III.

IT Preliminaries

A The irreducible representations of the quantum superalgebra
Uy(osp(1]2))

The quantum superalgebra U,(osp(1]2)) is generated by 4 elements: 1, H (even) and v
(odd) with the following (anti)commutation relations

sh (nH)

C sh(2n) (2.1)

Hove] = iavj:, e v]y =

where the deformation parameter 7 is real and ¢ = e~ 3 (we choose n > 0 so that g < 1).
The quantum superalgebra U,(osp(1|2)) is a Hopf algebra with the following coproduct

Alve) = v ® g+ 2y, (2.2)

AH) = He1+1®H, A(l) = 191, (2.3)

A representation of a quantum superalgebra U,(osp(1]2)) in a finite dimensional graded
space V' is a homomorphism T : U,(osp(1]2)) — L(V, V) of the associative graded algebra
U,(0sp(1]2)) into the associative graded algebra L(V, V') of linear operators in V', such that

T(H). Tos)] = £3T(0s). [0, T(w )]+ = _shs(}vzz;(g )

(2.4)
The irreducible representation space of highest weight I, V = V() is a graded vector space
of dimension 2[ 4+ 1 with basis €/4()\), where —I < m < l,and A = 0,1 is the parity of the
highest weight vector €}(\). The parity of the basis vectors €/2()) is determined by the values
of [,m and A:

deg(el,(A\)) =1—m+ X mod(2). (2.5)

The vectors €/4(\) are pseudo-orthogonal with respect to an Hermitean form and their nor-
malization is determined by the signature parameters ¢, ¥

(9(N), el (N) = (=1)?mHs (2.6)

where ( . ) denotes the Hermitean form in the representation space.

It has been shown in Ref.[2], that any finite dimensional grade star representation of
U,(0sp(1]2)) is characterized by four parameters: the highest weight { (a non negative inte-
ger), the parity A of the highest weight vector in the representation space and the signature
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parameters ¢.1 = 0,1 of the Hermitean form in the representation space V. The paritv A
and the signature ¢ define the class ¢ = 0,1 of the grade star representation by the relation
e =A+p+1 (mod2).In such arepresentation the operators satisfy the following relations

TH)Y =T(H), T(vs) ==x(-1)T(vg), T(Q) =T(1), (2.7)
where (x) is the grade adjoint operation defined by
(T(X)"f.g) = (~1)* (£, T(X)g), (2.8)

for any X € U,(osp(1]2)) and f,g € V.
The operators T(v+) and T(H) act on the basis €/(\) in the following way :

T(H)ES() = 7 etln),

T(vi)ed(N) = (—1)1_m\/[l —m|[l +m+1]y ei‘?ﬁ—l(A) , (2.9)
T(v)eld(n) = JI+mlll—m+ 1y el 1(\),

where the symbol [n] is the graded quantum symbol defined by

5 (=1)"g2
[n] = d 1< )1 1 (2.10)
q_E + (]5
cosh(7) . : : :
and v = —h—(;—) The representation 7' of class € which acts in the representation space
sinh(2n

VH(\) with the Hermitean form characterized by the signature parameters ¢ and ¥ is denoted

by TI; However, for simplicity, the indices ¢, @, 1 will sometimes be omitted in the following.

For g = 1, the grade star representation T, of U,(0osp(1]2)) becomes a grade star repre-
sentation of the superalgebra osp(1|2) described in [8],[13].

B The projection operator for the quantum superalgebra
Uy(osp(1]2))

The projection operator on the highest weight vector P? acts linearly in the space V. the
direct sum of all representation spaces V. It is defined by the following requirements

[T(H),PY =0, T(v,)P?=0, (P)*=P1, Ple(\)=e(\). (2.11)
It has been shown in Ref.[1],[2], that the operator P? can be written in the form of a series

Pt =S e(T(H)(T(w-)) (T(0,)) (2.12)

where the coefficient ¢.(T(H)) is an operator



T + )
er(T(H)) = 4T (H) +r + 1l[r]ly"

In the following we will consider the action of the operator (2.12) in the finite dimen-
sional representation spaces, where only finite truncations of the series (2.12) will actually
contribute, so in these cases the convergence of the formal series (2.12) presents no problem.
General formulae for the projection operator of quantum orthosymplectic superalgebras have
been derived by Koroshkin and Tolstoy [9]. In the limit ¢ — 1, the coefficient ¢,(T(H)) and
therefore the projection operator P? are equal to the corresponding osp(1]2) coefficient and
projection operator P, cf. [10].

[f we consider the space W, of all vectors of weight m. i.e., W,,, = {fIT(H)f = & [f}.
then the restriction of P? to this space is denoted by P™7 and it has the form

(2.13)

P = " e (m)(T(-)) (T(v.))". 214
r=0

where the coefficients ¢.(m) are now graded quantum numbers

2m +1]!
mo+ =

¢ (m) =

The operators Pi. P™ are even and self adjoint with respect to the grade adjoint operation.
i.e. we have

deg(P?) = deg(P?) = 0, (P%)" = P, (P™)* = p™ (2.16)

C Tensor product of irreducible representations

The space V() ® V*2(),) is a representation space for the tensor product of two represen-
tations T"l‘L LR TIQ' of the same class £. The bilinear Hermitean form in the tensor product

space VI(A) 2 V’”(/\Q) is defined in the following way :

(X1 ® Xa), (Y1 @ Ys)) = (= 1)t (X) V1) (X, 1)) (2.17)

where X;.Y; and X5, ¥, are homogeneous elements of V¥ () and V*2(),) respectively. The
generators vy and H are represented in the space V1()\;) ® V2(\y) by the operators

v2(1.2) = (I" @ T)(A(vs)) = Th(ve) @ ¢ + ¢ @ T (vy), (2.18)
H®(1.2) = (Th @ T"A(H) = TMH) @ T2(1) +T'(1) @ T?(H). (2.19)
The tensor product of three irreducible representations of the same class ¢, T'lfb, ®Ti’ﬁ &

7’22 act in the representation space V1(\) ® V2(\y) & V'3(\3), the tensor product of the

P33
corresponding representation spaces.The bilinear Hermitean form in this space is defined



with the bilinear Hermitean forms in each space Vli(/\i), 1 =1,2,3, and for the basis vectors
we have

(e, (M) ® €2, (M) @ g2, (Aa) e (M) @ €, (Aa) ® €53, (A3))
iy i —mat A ) (L —my+4; 2 willi-ma)+w, '
= (=) Xy Gmmem MmN (L elmmd s s . (2.20)

The operators H,v. are represented in the representation space by

v2(12.3) = (Th@T?@T5)(A®id)A(vs)) = Th(ve) @ g2 g g0 -
+g T R T (v) @ ¢ (H)+ ¢ T @ g ™I @ Thivy), (2.21)

H®(12,3) = (Th@T2aTh)(AQidAH)) = THH)®T(1)® Th(1) +
+Th 1) @ TR (H)® TH(1) + T (1) ® T?(1) ® T® (H). (2.22)

It has been shown in [2] and [4] that the tensor products of representations T% @ T2,

P11 P2y
and T’” ,® Tf;l,? ® T%¢, are representation of class £ with respect to the Hermitean forms

P33
(2.17) and (2.20) respectively.

The projection operator P' is represented in the spaces V1(\) & V'2(),) and Va()\) ®
V'2(Xy) ® V'2()3) by the following operators

PI2(1,2) = (T @ T™)(A(P")) Zcr 2)"(v3(1,2))", (2.23)
Pl92(1,2,3) = (ThaT2T")((ARid)A(PY)) :icT(Z)(u?(l,z,s))T(vf(l,2,3))’, (2.24)

D U,(osp(1]2)) Clebsch-Gordan coeflicients

By definition, the Clebsch-Gordan coefficients (I3my A1, lamaAo|lmA), relate the pseudo-nor-
malized basis e/}7 (A1) ® e21(Xz) of VI () ® V2(Ag) to the reduced pseudo-orthogonal basis
e (1, 1o, A) of VH(A) in the following way :

Q]
S
Dt
~

(1, A) = S (limudg, lamadallmA), €2 (M) ® €21(Xs) | (2.

mi,ma
or equivalently

Z(—l)“"m)L(llml/\l, lamada|lmN)g €9(11, 1y, X) = (= 1)t maleid (\ ) @ e (),)

Im
(

o
o

where my +me =m , L =1; + 1y + 1 and [ is an integer satisfying the conditions

[Nl

= <I<hL+1. (2.27)
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The reduced basis €4 (/,, s, \) is orthogonal but not positive definite i.e. we have
(€32 (L1, 82, A), e (I, Loy N)) = Gy Sy (—1) 20170
where

L = L+/\1+§92 (mod 2) w = (L+A2)A1+@2L+¢1+U)2 (mod?) N A= L+/\1+/\g (mod?\
(2.28)

In the following we will need the particular values of Clebsch-Gordan coefficients when | = m.
This Clebsch-Gordan coefficient can be presented as follows

(llml/\l-l'zm-z)\zlll/\)q — (_1)(11—m1+)\1)(12*m2+/\2)(_1)(Zf:1sﬁi(li—mi)+h’!i) w
(e4f (M) ® i), P9 " M) @ e (M) ) o)
(Ll Ay, Il = L AR lEN), ' o
and its analytical formula takes the following form[2]
(llml/\l, Z3m3/\3|ll/\)q =
(__ 1‘)/\1(1—11 —7122) ( _1)((1—r711)(12—m2)+ Ul_ml)(g —re ) (]“lﬂr’_l)(.liwqﬂ]' o (]_ - ‘m; e x
20+ 11l + ma]tily + m )l + {2 — 1]! s (2.30)
= mille —mo)llo =L+l — L+ 10+ + 1+ 1]! -

For more details on Clebsch-Gordan coefficients of the quantum superalgebra U,(osp(1]2)
see ref.[2]

E Racah coefficients and 6 — j symbols for U,(osp(1{2))

The reduction of the tensor product V1 (A1) ® V(X)) ® V'3(\3) of representation spaces can
be done. as in the classical case, in two different schemes. In the first scheme, one couples
first the representations 7" and T'2 and then the result is coupled to the representation 7"
in order to give as a final result the representation 7". In the second scheme. one couples
T with the result 7% of the coupling of representations 72 and 7% in order to vield 7.
These schemes can expressed in the short way

T'c(Th @ T%),T"%),, T c(T"z(T?2T4),), (2.31)
The reduced bases corresponding to these schemes are given by the expressions

el (linlz N) = D _(limyAy, lamaAalliamigAia), X

my

(llgmlg/\lg, l3m3)\3)lm)\)q 65}11()\1) X 65%2(/\2) 0% 61,%3(/\3) (232)



where 1 = 1,2, 3,12, and

el (U1, 1oz, A) = > (lamads, lamgAs|lagmazAas)q X

(llml)\l, lggmgg)\%ﬂm)\)q ei}n (/\1) & 65%2(/\2) 2 61%3()\3) s (233)
where 7 = 1, 2, 3, 23 and we have

3
m=1my + my + ms, /\:Z(/\i+l,;)+l. (2.34)

=1

The bases 6%([1, las, ) and €'4(l;5, 13, A) are orthogonal and normalized in the following way

(eii(lm, I3, A) | 65;3(5’127 I3, \)) = (_l)m,a(z—m)wlz‘a Sur Sy 6,121/12 , (2.35)
(e9(1y, 15, A) , €h2(ly, Uy, N)) = (= 1)Pr U= g 8 e (2.36)

where

Y1,23 = @123 :£+/\1+)\2+993 (mod 2) L le "}"lg‘f‘lg‘f‘l,
3
Yios = (L+lb+0)(L+1D)+ M +X+0)L+ > NN+ v (mod2), (2.37)

i<y i=1

3
’@1'23 = (lg + lg + lgg)(ﬁ + 1) -+ (/\1 + /\3 + yﬁ‘g)ﬁ + Z )‘i/\j -+ sz (mod 2)
=1

1<J

The sqRacah Coefficients U*(l1, 12, 13,1, 12, 23, q) of the quantum superalgebra U, (osp(1/2))
are defined in the standard way as the coefficients that relate two reduced bases in two
different reduction schemes [4]

el—lr?z(ZIQa l3a /\> = Z(_l)(12+13+123)(ﬁ+1) Us(llj l2; 13’ l7 1127 1237 (I) elrg),(ll7 123: A)7 (238)
log

or equivalently

el g, \) = S (=1)IFRFREIDU (1 o 1y, 1 o, by, @) (. 1. A). (2.39)

l12

In order to have better symmetry properties one can define the parity-dependent 6 —
symbols for U,(osp(1]2)) (denoted sq6 — jA) which are related to sgRacah coefficients in the
following way

U(l1, la, 15, L, 112, los, q) = (_1)>\1(32+l3+l23)+/\3(11+lz+l12)(_1)(11+la+112+l23)(ﬁ+1) %

L(L+1) Zl)\l l'z/\Q llg/\l-g

—_ p 9 D ! 9
(-1)7= \/[~l12 + 1)[2025 + 1] { s A Loshos }(’;,40)
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The parity dependence of sg6 — jA symbols can be factored out in a phase factor. so
that it is possible to define parity independent 6 — j symbols for the quantum superalgebra
U,(0sp(1|2)) (denoted sgb — j) which are related to sq6 — j\ symbols by

L, I Z3 ’ (ZG /\.)(ZG l')+(26 i) liA1 s As [3A3 °
= { — i=1"" i=1"1 i=1 "7 = h D
{14 s 1 }q (F1) & U L Bhs shs (2.41)

Using equation (2.40), we get the relation between sg¢6 — j symbols and sqRacah coefficients

{ Z ]]2 51; } _ (_1‘)/\1(12+13+123)+/\3(11+12+l12)(_1)(11+13+h‘2+123)(£+1) (_Uiﬂ_}—*— «
' - q
(—1)(25:1 )‘i)(Z?zl li)+(216:11i)"3) )
- U(I,la 3, 1 g, Das, q) (2.42)
V020 + 1][205 + 1]
In order for the sq6 — 7\ and sg6 — 7 to exist, the four superspin triplets
{llal21l3}a {13514715}7 {11515516}3 {ZQ’Z4,ZS}~, (243)

must satisfv triangular constraints of the form (2.27).
For more information about sqRC. s¢6 — j symbols and on bases in representation spaces.
see Ref. 4].

IIT Analytical formulae for Racah coefficients and 6 — j
symbols of the quantum superalgebra U,(osp(1|2))

In order to derive the analytical formula for Racah coefficients, we consider the matrix
elements of the following operatotor P acting in the representation space V1(\)® V2(\;)®
V% (\3). the tensor product of three representations

P =(id @ P7(2,3))P'7%(1,2, 3)( P"?7%(1,2) ® id) (3.1)
i.e., we consider the elements
Y = e, (M) ®el(X) ®eld,_,(Aa), (id ® P75(2,3))P1%(1,2,3) x
(P219(1,2) @ id)els (\) ® ef2,_,, () @ 2, (1)) (32)
where ® is the phase factor

N 3
b = (_1‘)(11+123—l+>\1)>\2+(13+12*123+/\3)>\2+(11+123—l+>\1)(13+l2—123+/\3)(_1)991(l1+123—/)+;3(12+13—123)+Z,:l (8

(3.3)



Acting with the operator id ® P'#29%(2,3) on the left and with the operator P12¢%(1.2) 2 id
and using relations (2.16), (2.29) we find that

Y = Ol lalie — Lids|lizlioAi2)g(lalo Ag, Islag — laAs|lagloz Aas),
(e, (A1) ® €2 (L2, 13, Mas), PH2(1,2,3)e 2 (11, I o) ® €%, (As)). (3.4)

la3

Then, using relations (2.26), (2.37) , (2.39), we obtain that the matrix element Y is equal to

Y = (1) bleth=ba)q 1 N lhlg — Dda|li2linAr2)q(lalee, lalas — 1o Az llaglazNaz),
(Lial12 12, L3l — Lia s lIN) o (11l = lag A1, laglag Ao |UIN) U (I, 1o, 13, L 112 Iag, q) (3.5)

On the other hand, introducing in the operator
P®(1,2,3) = > ¢ (1)(v3(1,2,3))" (v¥(1,2,3))" (3.6)
r=0

the relations, which follow from (2.4)

V(12,3 = [ A } (47 (1,2) gD g o (3)g O (3.7)
k=0

V(12,3 =Y l t } (@@ (1 @ (12(2.3)) g IHEED (3.8)
k=0

[r]

Wh@I‘G[ Z } (q) = [_r———_km is the graded quantum Newton symbol, and using relations
(2.11) we get

e, 9}

P =3 c()(id® P1(2,3))(0 (1)g 7"V @ id ® ¢"F P (3))(PH292(1,2) @ id)  (3.9)

r=0

Therefore Y can be written as the sum of products of matrix elements of three operators
(id ® P92(2.3)), (v (1)g "H WV g id 2 ¢ (3)) and (P"299(1,2) ® id) :

oC

Y = Z(_1)T(ll+13+123+112)cr(1)®x

r=0

(651 1 (M) @ 6?3(*2) D e}, zo(Aa) (id ® P1%(2,3))

e Ia (A1) ® 5112+123 1—r(A2) ® €2 hatr(A3)) X (3.10)
(ef- oy (A1 )®6112+123 r(A2) @ et 112-{»—1‘( 3), (W (1) Y ®id ® ¢T3 (3))

e Iogir (A1) ® 6112+123 r(he) ® €2 1, (A3)) ¥

(€1 1y r (A1) ® €1 ting—1—r(A2) ® e’ 1,,(X3), (P1298(1,2) ® id)

el (M) ® e, 1, (M) ® e, (\3))

10



Where we have written only terms which give nonvanishing contribution in the products of
matrix elements. Using relations (2.9), (2.15), (2.29) we may rewrite Y in the form

oo
Y = Z(_1)(lg—l12+l)(l23+lg+llz+l)(_1>r(ll+123—-l+)\1+,\2)(_l)iﬁ;ﬁqg(lzs_hz) [2[—‘-1}' y

r=0 20 +7r+ 1]t [r)!

s

([11 g+l —=7'ly +los =z + o= s — Lo+ 1+ r]!)% (3.11)

ll + lgg - - T']' {ll — l23 + Z]‘ [13 — 112 + ”' [lg -+ l12 -] - 7‘]'
(LiliA1, Lalia — DidsllialioMa)g (il — Loz + 1 A1, lalig + o3 — T = 1 Aallialia Aa)g X
(l2l2/\2e l3l23 — lz/\sﬂzalzz/\zzs)q(lzlm +loz — L =71y, I3l —l1p + 7“)\31123123/\23)(;

Comparing this expression with (3.5), we obtain the formula for sgRacah coefficients
USUL Io, 13, [, 112, Los, (]) — (_1)(l3—112+/)(l23+12+112+l)+(13+12—l23)(123+11—1) X

r{r+1)

S (it sy LR L

Ri+7r+ 1) ]!

[11—lz3+l—7‘]!{l1+l23—]/]![l3+llg—l]!{lg——lw-{-l+7“]! %X
‘]1 = [yg — [ — 7}' :L]l — fon + L {/; — 112 + ]}' L[; + =1 = IJ'

J

(3.12)

(111 — Loz + rAp Dalia + bag — 1 — rallialiaAia) g (lalis + log — 1 — rXa, I3l — Lo + 1 As]laslas Nas),
(LialiaAga, I3l = Lia As|UN) (1] — Tz Ay, Laglag Aas|TIN)

Substituting here the explicit expression (2.30) of Clebsch-Gordan coefficients, we obtain a
general analytical formula for sqRacah coefficients in the form of a single sum of factorial

fractions
Us(l1, Iy, 5,1, l12, log, (]) — (_1)/\2(123+12+l12+l)+(13+112+1)(i23+11+l) w

1

(_1)5(ZQ~123—l12+l)(12—123—112+l—+~1)([zlm + 1] [2123 + 1])§ %
Al o 1) Aoy U5, 1a3) ALy, Is. DA, Dog, 1) 1 + los + 14+ 11 I3 + Lo + 1+ 1!

T—loy 7 s — T - 0T — b 2l [ — o ) o — fo - Lol Ty — Tl ! )

r{rt+1)

5 (—1)yrthrlarbt DD [+ L= Ly + i [+l =l + 7] [l A Do + 10 — 1 = 1!
2[ +r+ 1]’ [7]' [/1 — 1+ 123 - 7"]' ;]3 —1 -Jr-lyg - 7‘]! ‘[lg — 123 — 112 + 1+ I]'

T

where the integer summation index r runs over all values for which the arguments of all the
factorials are non-negative.

This formula shows that sqRacah coefficients, similarly to Clebsch-Gordan coefficients
for U,(osp(1]2)), depend on the parities A; but depend neither on the class £ nor on the
signature parameters ;. v; ¢ = 1.2,3. In Ref.[5] a similar general analytical expression tor
Racah coefficients of the quantum algebra U,(su(2)) has been derived through the same
method of projection operators.
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Using relation (2.40) we get the following analytical formula for the parity dependent
5g6 — jA symbols

s
ll/\l 12)\2 112>\12 — (_1)%(ll+l3+123+112)(ll+13+l23+112+1)X
l3A3 l/\ l23)‘23

(_1)/\1(l2+13+123)+/\2(123+12+l12+l)+/\3(11+12+l12)+(11+123)(13+112)+l(11+13+123+112+1) > (3.14)
A(ly, lg, 112)A(lgy 13, 123) Al12, I3, DA Loz, 1) [+ log + T+ W3+l +1+1)
[ll — l23 -+ l]' [13 - 112 + l] U‘) — ll -+ ll‘)] [ll — lQ —+ 112] UQ — 13 -+ l23] [lg — lg -+ 1)3]
> T ) b U= Dy 7)1 s + 1 — b + 7] [l + b + lao — L — 7!
[2l+r+1]'[ } [ll——l-f—lgg—r} Ug—l-{-llz——r] [lz—lgg-—]m-&-[—%ﬂ

T

(_ 1)T(l1+lz+la+l+1)( 1)

Factorization of the parity dependence (2.42) vields the analytical formula for the parity
independent sg6 — j symbols

S
bl bs |yt (SL, i) Ha) -l al+ls o
Iy Is s

(—1)BrHalatta)atstlat ot D A (1) 1y 1A (I, Ly, U6) A(l3, L, 1s) Al s, Is) % (3.15)
I+ lg+ls+ 11 s+l + 15 + 1!

e —To o =l + o] flo — b+ 0o [l — b + 0o]! [lp — la + ]! [la — Lz + la]|

A 4l =l ] [l b5 — )l ls + 15 — 15 — 7]

2 20 +r =1 =5+ ls — 7] {la — s + 13 — 7! (o —lsg — I3+ 15 + 7]

T

(_1)r(11+l2+14+15+1)( 1)

This formula is rather complicated and unsymmetrical. However, using repeatedly the alge-
braic identities (B.2-B.4) given in Appendix B, it is possible to transform this formula into
the following more symmetrical analytical expression

{ 51 loa I3 } _ (_1)(’2”5)(2?:1li>+(11“6)(13“4)*’2‘5“314”1’6><
4 s s
q

(— 1)ttt Bl D A (] 1y 13)A(l, by, 16)A(ls, 1y ) Al s, 1) %

v(v+1) v+l

Z (—1)””1“3“4”6)( 1) [ll+13+l4+l6+1—v}
[l4—l2+16——v] [lg“l5+l4—v] [ll—l ~|—l6—v]

1
[] [l5+12—l1—l4+’U] U5+12‘—Z3—16+U] [l1+13—]2—’u]

(3.16)

where v runs on integer values such that all arguments of the factorials are non-negative.This
formula is very similar in form to the corresponding well known formula given by Racah for
the classical case of su(2)[6]. Finally, performing the summation index substitution

z=hL+l+la+1l—v, (3.17)

12



we obtain the simplest and very symmetrical analytical formula for s¢6 — 7 symbols

S
Iy Iy 13 :(_1)%@?:1zi)(2f=11i+1)+zf:1%mzi—nx
ly Is s

A(h)lQaZ3)A(l2ﬁl4716)A(13al4»l5)A(l17l5al6) X (318)

5 (=1)2*ED [z 4 1!

2 [Z—ll—lg—l3]![2—l4—l2—ls]![z—lg—14—l5]![2—l1-—l5—l6}
1

[ll+13+l4+l6-—Z]![Zg,—}—lg—i—lg‘f‘lﬁ—z]![ll+lg+l4+l5—l]!

X
!

It is quite remarquable that, except for the phase factors, this formula has exactly the same
form as Regge formula for 6 — j symbols for the algebra su(2)[7]. '

From these analytical formulae one can calculate particular values of s¢g6 — j symbols.
For example, when one argument vanishes, the value of the s¢6 — 7 symbols is

LI, 1 s -1 3 +ly=lg) (I +lp+l3+1)
{ 1 2 3 } ( ) , (319>

In the same way, if [5 = [3-+14, only one value of the suinmation index z is possible in formula
(3.14). and we obtain a simple expression for the corresponding sqt — j symbols

ho L s
la b+l ls |

(_ 1>l2(11+l2+/s)+1116+1314 (___ 1)721-(11+13+l4+15)(11+13+l4+/c+1) > (320)

2] 20 [l + L+ ls — L] [l + o — L) I+ 15— L]\
I
Tl;

X

[11 -—lg“l-lg}![—ll +l2+13]! {ll +lo+ 13+ 1]!“4%*‘[2 +lg+1

[ll+l3+l4—ls]![11+l3+l4+16+1]!
Db+l b — s — it lo) [l + 0o — o) 2l & 25 + 1.

It is also possible, for small fixed values of one highest weight, to derive from the general
formula simple algebraic expressions for particular sg6—7 symbols. For instance. in Appendix
A | the analytic expressions of sg6 — j symbols in which [; = 1 are given.

IV Properties of sgRacah coefficients and sg6 — 5 sym-
bols

A Symmetry properties

We start our analysis of symmetry properties that follow from the analytical formulae, by
considering the symmetry related to the substitution ¢ — ¢~'. The invariance of sqRacah

13



coefficients and sq6 — j symbols with respect to this operation is not obvious since the symbol
[n] itself is not invariant when ¢ — ¢~*. Namely, we have

(7] = [n], = (=)™ [n]

q (4.1)

q—l

Bv a direct calculation, one can easily check that, althought the symbol [n] itself is not
invariant, the analytical formulae for sqRacah coefficients, sq6 — jA and s¢6 — j symbols
remain globally invariant with respect to the substitution ¢ — ¢~ !.that is we have

US(Z].: l?a l3al7l12’ l237q) = Us(llr lQa l3717 l127 l237 q_l) (42)
and
Wl s " _[h b DA bde Isds |7 [ b LA fahg |
Lods do f, 7 Ve ds I f 0 Llade B Bode S, | lada Bshs ok f
(4.3)

From the formula (3.18), it follows immediately that the sg6 — jA symbols satisfy the same
symmetry properties as su(2) and osp(1]2) 6 — j symbols. Namely, they are invariant under
any permutation of columns and they are invariant under interchange of upper and lower
arguments in each pair of columns, i.e., they possess the tetrahedral Sy symmetry. This result
was already obtained in Ref.[4] where it had been derived, in a rather laborious way, from
the the symmetry properties of sg3 — j symbols, whereas here it is straightforward. Indeed.
the analytical formula (3.18) exhibits in the best way all symmetries of sg6 — 7 symbols. In
particular it follows from it that sq6 — j symbols possess additional symmetries of Regge
type. Let us consider the following Regge tranformations of highest weights l;, (¢ = 1,2, .., 6)
in sg6 — 7 symbol

: 1 / 1
ll = [, l2=§(l2+13+l5—l5), l3=§(12+l3+16—l5), (4.4)

/ 1 / 1
l4 == l4, l5:§(l2+l6+l5—l3), l6=§(l3+l6+l5—l2)

" 1 "

1 N

ll = 3([1 + lQ + l4 - l5), l2 = 5(12 + ll -+ l5 — l4)’ lS = l3‘ (45)
it 1. " 1 1

ly, = §<l4+ll+l5_l2),~ ls ‘—‘5(14+52+l5—ll). ls =g
1 1 " " ].
ll = 7)'(11 + 13 + l4 - l6)a l2 = 12, l3 = §(l1 + l3 + 16 - 14), (46)
1 1 e 11 1
ly = §(l4+11+le—l3), Iy =Is, lo = 5la+1ls+13— 1)

We remind that for the quantum superalgebra U,(osp(1]2)) the highest weights are all inte-
gers. This is very important for the above tranformations since one can check that in general
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[;.1; (i=1,2,.,6) in the above relations need not be necessarily integers. For example if
;. (i =1,2....6) are the following

l1 = 10 12 = 6, lg = 5, l4 = 3, 15 = 4, ZG == 6, (47)

then for the third transformation (4.6) we get

1t m " 1

I =6, I, =6, I =9, I, =7, s =4, lg =2, (4.8)
but for the first transformation (4.4) we obtain

9 / 13 : ,
5: Z3:._5-7 l4’_‘37 55:

’

=10,

9

o

So. in this case, [, (i = 1,2, .., 6) are no longer highest weights for the quantum superalgebra
U,(osp(1]2)). Therefore, it appears that some conditions have to be satisfied in order that
Regge transformations be true symmetries of sg6 — 7 symbols.

Let us introduce the following notation

Lije =0+ 4+ 1k (4.10)

"
)

fors. 7.k = 1.2....6. In this notation we have the following conditions for integrity of l;, l;', [
in relations (4.4-4.6) :

7 N

if Lyos = Lis6 (mod?2), then [, (i =12 ..,06)are integers (4.11)
if Lyo3 = L3ss (mod2), then l;/, (t=1,2,.,6) are integers (4.12)
if L1gs = Loge (mod2), then [, (i=1,2,.,6) are integers (4.13)
Note that, because of the relation
Liss+ Lise+ Loas + Lzas = 0 (mod2), (4.14)

conditions (4.11-4.13) could have been written in a different form: for instance, condition
(4.11) is equivalent to the condition Logg = L5 (mod2).

If we introduce relations (4.4-4.6) into the analytical formula (3.18), we obtain the fol-
lowing symmetries of the s¢6 — 7 symbols

if L17213 = L1’5’6 (mod 2), then

A P R
Wl s [~ |l

if 193 = L3qs (mod2), then

S

o+ 1541 —1lg) 3lt+l+ls—15
(lo+lg+15s—13) 5(ls+1ls+15—1a)

B[00 |-
o=t

q
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bl 3" _ [ shi+h+la=ls) slb+h+is—1l) I (4.16)

l4 l5 ZG q %(l4+l1+l5—lg) %(l4+lg+l5—l1) ZG o g
if L1903 = Laas (mod?2), then

bl I °_ [ Sh+ls+la—le) b 3(h+l+ls—1) | (417

ol ds [, | Mlatbi+ls—l) &5 Jlatlo+l—10) o

We shall stress here that the right hand side of the analytical formula (3.18) is invariant with
respect to the Regge transformations (4.4-4.6) without any condition. Conditions (4.11-4.13)
are necessary to preserve the integrity of highest weights on the left hand side of the analytical
formula, i.e., in the sg6 — j symbol.

One can verify that any sg6 — j symbol always satisfy one of the conditions (4.11-4.13)
and therefore any sq6 — j symbol has one of the Regge symmetries (4.15-4.17). This means
that the symmetry group of any sg6 — j symbol is at least Sy x Sz and contains at least 48
elements.

If an sg6 — j symbol satisfies two of three conditions (4.11-4.13), then, because of the
relation (4.14), the third one is also satisfied and we have

L1’213 = L1,576 = L2v4y(3 = L3,4’5 (HlOd 2) (418)

In this particular case the sg6 — j symbol possesses the full set of Regge symmetries, that is
besides symmetries (4.15-4.17) we have also

bl 3] )
{uzsg}q_ { .Q+h+g—g}“m
)
)

| o

and together with the 24 tetrahedral symmetries, Regge symmetries form a group of rank
144, isomorphic to the group Sy x Ss. Let us remark that in this case, similarly as in the
classical case of su(2), in the set of five Regge symmetries (4.15-4.17.4.19.4.20) only one (4.15)
is essentially new, the other ones can be obtained from it and the tetrahedral symmetry.
For the classical case of su(2), in order to exhibit all symmetries of 6 — j symbols,
Bargmann [11], [12] proposed to associate a 3 x 4 array to a 6 — j symbol. With this
description, each of the 144 symmetries of 6 — j symbol is represented by some combinations
of permutations of rows and columns of the array. This Bargmann representation of the full
symmetries of a 6 — 7 symbols, can be extended in a natural way to the case of sqg6 — j
symbols for the quantum superalgebra U,(osp(1]2)). Let us associate to an sq6 — j symbol

Lh+ls+1lg— 4 (I, +1a + 1y 5

( ) 5l
(la+ls+1—h) L
(h+13+ 1= 1lg) ?h+h+g Ly
( ) slla+la+is—1h

(b+ls+13—1) 3
(+ls+1l—13) 3
(h+h+%—g)%
(Is+1g + 15— l2) 5

WOP=o - B =ns

o+l +1lg—13
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an array in the following way

[ ERes st 1) (=1 Pes(lo i — ) (1)l s — D)

Lol I3 || (D) Bes(lg+ 1y —15) (—1) F2as(lg+ 1y — 1) (—1)L123(11+/o—13)
oI5 ls [ | (FD)Pes(li+ls =) (D)2 +l-h) (=1) 24s(z4+z>—16)
(=DF23(ly+ 1 =) ()53 (ls 41y — la) (1) "28(l5 + 1 — Ig)

(4.21)
This array differs from the original one of Bargmann by the presence of phase factors in the
entries of the array. The 24 tetrahedral symmetries of the s¢6 — ;7 symbol are represented
by permutations of rows and columns of this array and the phases in the entries of the array
transform in the same way as the remaining part of the entries. It is not the case for Regge
tranformations. where the phases tranform in a different way than the remaining parts of
the entries. For instance, for the third Regge tranformation (4.6) we have

L

(D) Br2s(lg+ 1y — 1) (=DIess(lg+15— 1) (1) s+ 15— 13
(—1)Eeas(ly + 13— Is)  (=1)E2a0(ls+ 1y = 1) (=1)F23(lg + Iy — L
(-1 ( ) (=1) ) (=1)
(—1)

(h+la+ls—1s) I
(la+l+1ls—13) s

LIl—toi—

s(li+ s+ 1g — 1) _
s(la+1ls+13 - 1) a

B |t

—1) s

)
( ) Lo
Liss [{)+/1_15 -1 L1.2,3(16+12_l4 L24‘s(]/1+]‘2_13) (42—)

bras(ly by =) (1) "o (ls + 13— 1y) (=102l + 1 — )

Comparing (4.21) and (4.22). we see that the right hand side of (4.22) is related to that one
of (4.21) by a permutation of the second and third rows only if condition (4.13) is satisfied,

ie., if
Llyt_)_3 = L2,4,6 (mod 2) < L1,5,5 = L3‘4’5 (mod 2) (423)

Therefore, Regge transformations (4.4-4.6) are represented by permutations of rows of the
array only if their respective conditions (4.11-4.13) are satisfied and then they are symmetries
of an sg6—j symbol. If condition (4.14) holds, then all phases in the array (4.21) are identical
and the corresponding sg6 — j symbol possesses the full Sy x .S3 symmetry.

In [2] it has been shown that Clebsch-Gordan coeflicients possess also a Regge type sym-
metry. It seems, however, that similarly to the classical case of su(2), there is no connection
between Regge symmetries of sqClebsch-Gordan coefficients and Regge symmetry of sq6 —j
symbols.

B The limit ¢ =1

In the limit ¢ = 1, Racah coeflicients, s¢6 — j\ symbols and s¢6 — j symbols become
coefficients and symbols of the non deformed Lie superalgebra osp(1{2) and present similar
symmetry properties. This follows from the fact that, in the limit under consideration,
Clebsch-Gordan coefficients, projection operators P?, P™ and bases €/2()), ed(l,los, A),
e!(l15,13. \) become in a continuous way Clebsch-Gordan coefficients, projection operators
and bases for the Lie superalgebra osp(1|2) (for more explicit formulae see [1], [2] and [4}).
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In particular, for ¢ = 1, the sg6 — j symbols become identical, up to a phase factor (—1)¥,
to the s6 — j symbols of the superalgebra osp(1]2) defined in Ref.[13]

Wl I3)° g da )
(—1)‘P{ S } = { J1 2 s } : (4.24)
4 b5 e f o Ja Js Je

osp(1]2)

li : .
where 7; = 5 i the superspin and the phase WV is

6
U o= S L+ +1)+1s) + (o +5) s+ 1) + (s +le) (I + 1) . (4.25)

=1

The phase difference between the two symbols in (4.24) derives from the fact that in Ref.[13]
a different basis in the representation space had been used.

Thus, in the limit ¢ — 1, the functions defined by the analytical formula (3.18) of s¢6 — j
symbols, tend continuously towards the numerical values of the corresponding s6 — j symbol.
However, when ¢ — 1, the analytical formula (3.18) loses its compact and symmetrical form.
This phenomenon follows from the fact that, in the limit ¢ — 1, the value of the symbol [n]
depends on the parity of its argument n. Indeed, from definition (2.10) of the symbol [n], it
follows that

0, if n even

] = cosh(Z)n = (lzl_rg[n]z 1, if n odd

Thus we have, for instance,

Li+l+13

[ [
11m_tl_1_+2—+l3} = L4l —13
1

if l14+1l+13 even
a—1 [l + Iy — 3] '

if ll + lQ + l3 odd

(4.27)

Therefore, it is impossible to write down the analytical formula (3.18) for ¢ = 1 without
specifying the parities of arguments of all symbols [n] in the formula, ie., for ¢ = 1. one
cannot write an analytical formula for s6 — 7 symbols in a compact, symmetrical form similar
to Eq.(3.18).

However, in order to calculate the numerical value of a given s6 — j symbol of the
non deformed superalgebra osp(1]2), it is always possible to calculate from Eq.(3.18) the
corresponding sq6 — j symbol, which is a function of g, and then calculate the limit ¢ — 1.
The non deformed case of the superalgebra osp(1]2) has been studied separately in Ref.[13]
where, due to the inclusion sl(2) C osp(1]2), it was possible to analyze all properties of
s6 — j symbols and to compute their numerical values without knowledge of their analytical
formula. For all sg6 — j symbols with /; < 4,we have checked [14] that their limit ¢ — 1 is
equal to the numerical values of the corresponding s6 — j symbols tabulated in Ref.[13]
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Appendices

A Analytic expression of s¢6 — j symbols with [, =1

TABLE. The symbols holb iy
1 15 g

lg \13 I3=15+1

A ([11 ~ 19 —15] [11 — s —15+1] [ll —lg+l5] [21 — s+ s +1}>
[2[2 + 1} [2[2 + 2] [2[2 + 3} {2[5 + 1] [2[5 + 2] {215 + 3}

[

I, +1

Lo

1 ( 1>11+12+1A<[11—l2+l5+2} [ll —l2+l5+1j [—ll +lg+l5+1] [ll 4.—12——[5:; [2])
5 —

03] (202 + 1] (202 + 2] [205 + 1] (205 + 2] 265 + 3]

N ([—11 tlo ) [—h s+ Yl 2L F s +1}>%
) [2[2 - 1] [212} [2[2 + 1] [2[5 + 1} [255 + 2] (205 + 3}

Is= 15

Uy + o+ 15+ 2 [l — o + 1] [l + lo — I5 + 1] [~11+12+z5+1}[z]>%
2

o — l1+l5+1[\ - -
lo+1 ) (~1) ( 20y + 3] [212 + 1] [219 + 2] [2I5] (205 + 1] [2I5 + 2]

[11 + 1o — 15] [ll — 1y + 15] + (—1)114—15_{42 [—ll + 1o + 15] [ll + o+ 15+ 2]

12 <"'1)11+1A T
([202] (202 + 1] (202 + 2] [21s] [25 + 1] 215 + 2])2
1
1 (—-1)12+1A <[l} +lo+ 15+ 1] [ll + 1y — 15] [—ll +lo + l5} [ll —la+ 15+ 1] [2]) 2
2 20y — 1] [20a] [2la + 1] [215] 205 + 1] (205 + 2]
Is=15—1
11 A h+b+l+1h+l++2-L+b+1][-h +12+15+1}>%
= ! 2y + 1] [21y + 2] [2lo + 31 [205 — 1] (205] [205 + 1]
1
1 (_1)15+1[\ [11 +lo 415+ 1} [ll 4+l — s+ 1} [ll — Iy + 15] [-—ll + 1o + l5} [2])3
2 2Ly + 2] [2y] [21o + 1] [215] 205 + 1] (205 — 1]

A([h+12—15][11+12—z5+1]{11—12+ S [11—12+15+11)%

ls]
=1 (205 — 1] [200] {202 + 1] [205 — 1] [215] [205 + 1]

where A = (_1)%(11+12+ls)(11+lz+15+1)_
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B Algebraic identities

From the equation

n+r _ n r —i)(r—i) lr=ndn) _ rinokdr) :
[ k lek—z‘Hi}(_U(k e .

=0

one can derive the following factorial sum rules

(_1)(a—b)(a—c)+s(c+b+l)q%(a—b)(a—-c)q-%as [a _ b]l {a _ C]'

[b}![cuzg la—b—sllla—c—s|'b+c—a+s) s | (B-2)

ﬂi;_ll Lo(bte—a—1 [a—s]! o _c%_}_ac %c{b—i—c—a—l]![a—c]! '

XS:(#U 7" )[b—s}![c—s]![s}!— ! @ [b—a—1]1[b]![c]! (B3)
forb>a>c¢c>0.

&;12 %s b+c—a—1 [a—s]! _ (_1\bc -%-bc [a—b]![a—c]! A

et g - Y g B

8

fora>b6>0,a>c>0.
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