(ERN-DD 16-

<

CERN - DATA HANDLING DIVISION
DD/75/2
D.W. Townsend
J.D. Wilson

CERN LIBRARIES, GENEVA January 1975

T

CM-P00059666

The Quintic Spline for Momentum

Determination in Omega

.,
%.m;r. ©

o3



The Quintic Spline for Momentum Determination in Omega

D.W. Townsend & J.D. Wilson

Abstract

A quintic spline model for the trajectory of a particle in a magnetic
field is compared with the conventional field-dependent helix fit, using

both real and simulated data.

The same accuracy in the estimates of the track parameters is
obtained significantly faster by the spline model than the conventional

fit.

In addition, the model is successfully applied to simulated data

at SPS energies.



1. Introduction

—_—

This report describes the use of a quintic spline model for fitting
particle trajectories in the Omega spectrometer. Position measurements
are made along the trajectories using optical spark chambers with plumbicon
camera readout. The chambers are placed within the 18 kgauss, super-
conducting, Omega magnet and are of two types: eight modules (ten
gaps/module), perpendicular to the beam direction, downstream of the
target; eight modules (eight gaps/module), parallel to the target with
four modules on each side. This layout is shown schematically in the

diagram below.
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Schematic layout of Omega

A complete off-line track recognition and geometry analysis program,
ROMEO, was written to process the data from the Omega. The geometry analysis

is based on a conventional, field-dependent helix fit to the measurements
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in order to determine the track momentum (p) and direction (A, ¢) at the
first measured point, and ultimately at the interaction vertex. As an
alternative to the helix fit, the quintic spline model proposed by

H. Windl) is used and the results compared.

This model uses a cubic spline representation of the magnetic field,
which is therefore discontinuous in the third derivative. The track model
is consequently a quintic spline, since the curvature (which is given by
the field representation) is essentially the second derivative of the

track.

A program to fit such a model has been writtenz) and its performance
on both real and simulated data is described. In addition, the use of
spline fits for momentum determination in Omega at SPS energies is discussed
in the last section. Momentum estimates obtained from a combination of
points both inside and outside the magnetic field is considered using

simulated data at 100 GeV/c.

Interface into ROMEO

The final fit to the track points in the case of the spline routine is
made in two orthogonal projections that are obtained from the original space
coordinate system by a simple rotational transformation. This transformation
is to make the slope of the track (y' and z') at each point as small as
possible (y', z' < 1). To obtain this transformation it is of course
necessary to first reconstruct the track in space, and therefore the spline
fit has been inserted into ROMEO immediately following the reconstruction of
the space points on each track. It replaces both the initial, constant

field, helix fit and the final field-dependent integration.

In order to use the track parameters output from the spline fit, a
modification to obtain the errors on these parameters was necessary. These

errors are used in ROMEO in the extrapolation of the tracks to the vertex.

As explained in ref. 1, the final fit to obtain the track parameters

a, b1 (position of first point), a,s b2 (slope at first point) and momentum

P, reduces to:



yi al + azxi + d Y(Xi)

i b1 + b2xi + d Z(Xi)

i=1... N, for N measurements.

Z

where d = lu and Y(xi), Z(Xi) are quintic spline functions that depend on the

magnetic field, y' and z'. If the fit is donme simultaneously in the two projections,

the normal equations of the least squares fit are given by:

AX = B
Frd 2
with:
a; Ly
a2 Ixy
X = d B = LYy + LZz
b1 Lz
b2 Ixz
and N Ix 1Y 0 0
Ix sz rxY 0 0
A= Y L XY ZY2 + IZ TZ X7
0 0 Lz N Ix
0 0 IxXZ Ix sz

The least squares solution is given by:

X =48

~

and the error matrix of the parameters X by:

cov(g) = é—l

The form of A is such that the inversion may be written down explicitly.
This procedure is used in the program (ref. 2) and leads to the

solutions:
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where the t, are given by:

sz Ly = IxXIXy
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The modification to the spline routine in order to determine the actual

elements of the inverse of the matrix A is straightforward once the above

expressions have been calculated.

cases the weighted sums e.g.

where W, is the weight of the ith point.

for an unweighted fit.

Nate that the summations are in all

In particular

N M2

i=1

Thus, by writing down the solution, for example, for the parameter
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The elements of this matrix give the errors on the parameters al’a2’b12b2 and %3
and the correlations between them. In order to obtain absolute errors it is
necessary to put the true weights of the points in the summations appearing

in the tes and not simply the relative weights.

The simplest approximation is to assume that all the measurements are
independent and do not depend on either position along the track or absolute
position in space. All points then have equal weight in the fit, and

the weight matrix is diagonal with elements:

i

W =

e
.
o Qq
[\
e
S
e

W =

e
.

where o is the absolute error assigned to each measured point. The absolute
. -1

errors on the parameters are then given by the elements of A ~ scaled by

a.

2

1 ¥ 2
e.g. o =o0{ T Iox; o+ tz/D} , etc.

Then, in the absence of an exact calculation of the weight matrix, it is

usual to choose o in one of two ways:

a) As a constant for the given measurement system. In this case o does
not vary from point to point or track to track. It gives no indication
whether a track is well or badly measured, and is in any case difficult to

estimate for a complex measuring device such as the Omega.

b) As a function of the fitted track residuals. It is shown in ref. 3

that an unbtased estimator of 02 is given by:
2 2 _
° = Qmin/(N r)

where r is the number of parameters fitted (= 5) and szin is the final sum

of squares of the residuals, summed over all measurements.

The second method is used by ROMEO in the conventional helix fit

and extended to the spline routines, where:



2.1

2’2

. = S + S = : . . fon.
¢ ? Sxy(xz) residual sum in xy(xz) projection

i.e. summed over both projections, xy and xz.

The parameters as 3y, bl’ b2 and their errors are expressed in the
rotated system. In order to obtain the usual track parameters AO, ¢O

Y, and zo'at the first measured point X s together with their errors, it

is necessary to apply the inverse coordinate transformation, and use the

normal rule for the combination of errors.

The error calculations may be simplified by neglecting the off-diagonal
elements of the transformation matrix. In practice, for tracks with
momenta greater than a few GeV/c and small production angles this initial

4)

rotation may be omitted completely ', so that all the fitting is done in

the original space coordinate system.

Non-Diagonal Weight Matrix

The field-dependent helix fit in ROMEO is unweighted, i.e. all the
measurements have equal, unit weight, and the weight matrix is diagonal.
As mentioned above, the spline routine allows the possibility of giving
each measurement a different weight, but still assumes a diagonal weight
matrix.

The inclusion of a full weight matrix in the spline fit has been

5)

studied4’ for the purpose of treating multiple scattering and energy

loss. It turns out to be straightforward, once the full weight matrix

has been calculated. The matrix of the normal equations (é) then has to

be explicitly inverted for each track since it does not have the simple form of the

uncorrelated case that gives the solutions of eqmns. (1).

For the purposes of this comparison with ROMEO, all points fitted by

the spline are assumed to have equal, unit weight.

Estimate of First Derivatives

In the standard quintic spline routine, the estimates of the first

derivatives y' and z' at each measured point on the track are obtained from
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a preliminary cubic spline fit. In some cases, better estimates may be
obtained from a preliminary circle fit (in xy) and straight line fit (in
xz). This procedure therefore makes use a priori of information about the
track (that it is approximately circular in the xy plane, etc.) and has the
advantage of smoothing the effect of the experimental errors on the initial
estimates of y' and z'. Further improvement could be obtained by using the
actual magnetic field at each point in the preliminary fit, since it is

needed for the final fit in any case.

In addition, there is the possibility of iterating in the final fit
by using the values of y" and z" in order to estimate improved values of

' and z'. This procedure should converge provided y' and z' are small,

y
and in particular less than unity. The initial coordinate transformation
may be omitted only if this condition on y' and z' is already satisfied

in the original system, otherwise the iteration may diverge.

Comparison with ROMEO for Real and Simulated Data

For the purpose of comparing the spline method with the field-dependent
helix fit method on a track by track basis, the ROMEO Geometry program was
modified, as described above, to allow each track to be reconstructed
independently by the two methods. The parameters from the spline fit were
then put in the form required by ROMEO so that direct comparisons could be
made in histogram form. The parameters chosen for comparison were the total
absolute momentum (p = 1/d), the dip angle (X = arctan(bz)) and the azimuthal
angle (¢ = arctan(az)) at the first point on the track. Tracks with less
than six points, or which could not be reconstructed by ROMEO were not

compared, and do not appear in the histogram.

Real Data

A sample of 5000 tracks from an experiment to study reactions of the
type n-p > pX‘ at 12 GeV/c incident beam momentum was used. The results are
shown in the two-dimensional histograms of Fig. 1. The diagonal line
drawn in each plot corresponds to ROMEO and the spline giving the same
value for p, A or ¢. As can be seen, the parameters from the spline fit
show very good agreement with those from ROMEO with no obvious systematic
bias. The few points a long way off the diagonal line have been investigated

and found to come from tracks with one or more wrong points assigned by
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the Pattern Recognition part of ROMEO. These tracks may give wrong
results in the ROMEO fit or the spline fit or both, and can affect the

two types of fit in different ways.

Simulated Data

In order to compare the parameters with their 'true' values, a sample
of simulated data was generated. 100 events of the type yp > p'p, p' > 4m,
with 12 GeV incident Yy were used, giving secondary tracks up to a momentum

of about 7 GeV/c. Two-dimensional histograms were plotted of the quantities:

Pspring ~ Prrue’/Prrue VS PrRuE
(Promeo ~ Prrur’ /PrruE Y PTRUE
(Pgprine ~ ProMe0)’PTRUE ¥ PTRUE

and the results are shown in Fig. 2.

A bias of about 0.17 is seen in the PSPLINE PROMEO distribution
(Fig. 2c), which is almost entirely due to a bias in the ROMEO fit as seen

by comparing Figs. 2a and 2b. distribution can also

The PsprINE ~ PROMEO
be seen to be much narrower than the other two distributions, showing that
both fits generally give the same result.

The differences in angle, ASPLINE - XROMEO and ¢SPLINE - ¢ROMEO’
are shown in Figs. 3 and 4. They are both well centred on zero to

better than 0.1 mrad.

As can be seen from Figs. 2a and 2b, some tracks with momenta less
than a few hundred MeV/c can be badly fitted by either or both methods.
In addition, the presence of tails to the distributions in Figs. 2c, 3 and
4 indicates that these low momentum tracks can give different results for
the two methods in the same way as the badly associated points in the case
of real data (section 3.1). 1In general, a track that is badly fitted in
either ROMEO or the spline fit results in poor (and different) values for
all these parameters p, A and ¢. The same track will then appear in the

tails of all the distributions shown in Figs. 2, 3 and 4.
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3.4

Accuracy

The results from the spline fit given in the previous sections were
obtained using a cubic spline estimate for the first derivatives. No
obvious improvement was obtained in the final result by replacing the cubic

spline with circle and straight line fits, as discussed in section 2.2.

However, a noticeable improvement was found when two iterations of the
spline were made, but more than two iterations produced no further improvement.
Since the spline uses the reconstructed space points, the field needs to
be looked up only during the first iteration. Subsequent iterations
simply improve the estimates of the first derivatives. It is even possible
that the spline could achieve the same accuracy with fewer field calls
than at every measurement (e.g. in 15 cm steps instead of 5 cm - the mean

space point separation). This is because the field representation for the

helix fit is step-wise with a discontinuity at the end of each step. This
leads to a second order spline for the track, which could be expected to be

less realistic than the quintic spline track model.

On the other hand ROMEO looks up the field not at the reconstructed
space points, but at points estimated from the parameters of the initial
helix fit and the corresponding arc length. Tracks for which these
initial parameters are far from their true values require at least two
iterations of the final fit, but with the magnetic field looked up in
each iteration. The above comparisons were made for two iterations of the

spline and at least two iterations in ROMEO (until the fit 'converged').

Timings

The processing time for a given track depends on the number of points
to be fitted and the number of iterations to achieve the required accuracy.
The same sample of events was processed by both methods, allowing first
one iteration and then two. The results, for a CDC 7600 are given in the

table below:
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No. of Iterations Time/Track (msecs)
ROMEO ! 8.1
2 13.2
1 L]
SPLINE 2.9
2 3.5

The large increase in the ROMEO time compared with the spline when
going from one to two iterations is due to the fact that for ROMEO the

field is looked up in each iteration (see section 3.3).

The overall time/event will depend on the fraction of tracks for
which more than one ROMEO iteration is necessary. However, even with only a
single ROMEO iteration, the spline could speed up the Geometry processing

time by a factor of about 2 for a typical 4-track event.

Extension to Higher Momentum

The spline fit was tested using simulated data with an incident beam momentum
of 100 GeV/c. No unexpected deterioration or bias in the momentum estimates was
observed up to the maximum momentum of the secondary tracks. In Fig. 5,
the fitted and simulated values of momentum are compared as a function of

the simulated momentum.

All the above results2 both for real and simulated data, have been for
tracks measured entirely inside the magnetic field, in a region where the
field is uniform to ~ 15% to 207%Z. 1In order to provide the necessary
momentum resolution at high energies, spectrometers such as Omega will be
equipped with some downstream chambers in zero or low field regionms,
outside the magnet. The momentum of the fast tracks will be determined
by a fit to points both inside and outside the field. This may readily be
done with the spline fit, but some care is necessary when inserting extra

field points, as the following example shows.

An entirely fictional layout such as in Fig. 6 was tested with tracks
of momenta up to 100 GeV/c. Five 'modules', each giving an unambiguous

space point, were used, two inside and three outside the field. The
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results of using the spline fit to estimate the momentum is summarised in
Fig. 7. 1In each case the diagram on the right shows the Ap/p (%) comparing
the fitted and simulated momenta for a sample of tracks, and the diagram
on the left shows the cubic spline fit to the magnetic field (for a
"typical™ track) compared with the actual field distribution used in the

simulation.

In Fig. 7a, no extra field points are inserted between the measurements,
resulting in a v 307 bias in the momentum estimate (pSPLINE > pTRUE)’ due
to the overestimate of the field integral. Five extra field calls
between chambers 2 and 3 reduces this bias to about 37 (Fig. 7b). Ten
extra points however increases this bias to < 47, because of a worse fit
to the field in the sensitive region between chambers 1 and 2 (Fig. 7c¢).
Five points between 1 and 2, and five between 2 and 3 eliminates this
bias almost completely (Fig. 7d), even though the simulated field
distribution did not really satisfy the implicit assumption that the field

is smooth and satisfies Maxwell's Equations.

Although, for this simple example, the result is rather obvious, the
point to be made is that biases in the momentum estimate from the spline
may easily be introduced unless the magnetic field is correctly represented.
These and subsequent tests have led to the conclusion that there is no

evidence for any inherent bias due to the method.

Biases of a similar type have been observed in other applications of
. . 6 . .
the spline fit ), but for the examples given above there 1s no reason to
believe that such biases cannot be removed by a careful choice of extra

field calls.
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