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ABSTRACT

We show how the prescription of taking the absolute value of the fermion
determinant in the integration measure of QCD at finite density, forgetting
its phase, reproduces the correct thermodynamical limit. This prescription,
which applies also to other gauge theories with non-positive-definite inte-
gration measure, also has the advantage of killing finite size effects due to
extremely small mean values of the cosine of the phase of the fermion de-
terminant. We also give an explanation for the pathological behaviour of
quenched QCD at finite density.
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1. Introduction
Non-perturbative investigations of QCD at finite temperature and density

have received much attention in the last years. The aim of these investiga-
tions is to find the matter conditions in the early Universe and to get a clear
insight into experimental signatures in the heavy-ion collision experiments.
Even if considerable progress has been achieved in the investigations of QCD
at finite temperature and zero chemical potential using the lattice approach,
the present situation of the field at finite density is not so satisfactory. As is
well known, the complex nature of the determinant of the Dirac operator at
finite chemical potential, which makes it impossible to use standard simula-
tion algorithms based on positive-definite probability distribution functions,
has much delayed investigations on the full theory with dynamical fermions.
On the other hand the quenched approximation, which has been extensively
and successfully used in simulations of QCD at zero chemical potential, seems
to have some pathological behaviour when applied to QCD at finite density
[1, 2].

I want to show in this article how one of the main technical difficulties
in simulating QCD at finite density, the complex fermion determinant, can
be easily surmounted. In fact I will demonstrate that it is enough, in order
to get the correct thermodynamical limit to take the absolute value of the
fermion determinant in the integration measure, forgetting completely the
contribution of its phase. I will also show how not only do we get the correct
thermodynamical limit in this way but also that it is an efficient way to kill
finite size effects present in the exact simulations and related to very small
expectation values of the cosine of the fermion determinant phase [3].

This result, which applies also to more general cases such as non-positive-
definite fermion determinants in gauge theories with Wilson fermions [4],
agrees with a recent finding of Stephanov [5] in the random matrix model
approximation. In fact QCD at finite chemical potential and with n flavours
can be seen as a theory with n

2
quarks with original action and n

2
with conju-

gate action. This notwithstanding, the zero flavour limit of the model corre-
sponds precisely to standard quenched QCD at finite density. The anomalous
behaviour of the quenched model observed in the numerical simulations re-
mains therefore unclear yet. We will give in this paper an explanation for
the pathological behaviour of the quenched model in the forbidden region, a
region of the chemical potential µ characterized by wild fluctuations [6].
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2. Complex Distributions
Let me fix here the standard notation in gauge theories with dynamical

fermions, even if the results I am going to discuss apply to every equilib-
rium statistical mechanics system with a complex ”Boltzmann weight”. The
starting point is the following partition function

Z =
∫

[dU ]e−βSG(U) det ∆(U,m, µ) (1)

where U are the gauge variables (elements of SU(3) in the QCD case), β
the inverse gauge coupling, SG(U) the pure gauge action and ∆(U,m, µ) the
lattice Dirac operator at fermion mass m and chemical potential µ.

There are several physically interesting cases in which the determinant
of the Dirac operator ∆(U) for a generic gauge configuration U is either
not positive-definite (gauge theories with Wilson fermions) or even a com-
plex number (QCD at finite density). In all these cases, standard simulation
algorithms based on the interpretation of the fermion determinant as a prob-
ability distribution function (p.d.f.) to be multiplied by the pure gauge prob-
ability distribution e−βSG(U) fail. The standard way to overcome this problem
is to take the absolute value of the fermion determinant in the p.d.f. of the
path integral. The integration measure becomes

[dU ]e−βSG(U) |det ∆(U,m, µ)| . (2)

The vacuum expectation value of any operator O(U) with the previous
prescription now becomes

〈O(U)〉 =
〈O(U)eiφ∆〉||
〈 eiφ∆〉||

(3)

where φ∆(U,m, µ) is the phase of the determinant of the Dirac operator and
〈 〉|| in (3) represents the mean value computed with the p.d.f. (2).

In QCD at finite chemical potential and due to the symmetries of the
action, the numerator and denominator of (3) are real numbers. However
simulations of this model show that the real part of the denominator of (3) in
the physically interesting region of the chemical potential becomes extremely
small and impossible to measure numerically [3]. As I will show, this kind
of measurements are not necessary since in the thermodynamic limit we get
the following factorization:

〈O(U)eiφ∆〉|| = 〈O(U)〉||〈 e
iφ∆〉|| (4)
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for any intensive operator O(U). Equation (4) implies that by taking the
absolute value prescription in the integration measure instead of the fermion
determinant we get the correct thermodynamical limit, i.e.

lim
V→∞

〈O(U)〉 = 〈O(U)〉||. (5)

To show the correctness of equation (5) let me consider the partition
function (1) and write it as

Z = 〈 eiφ∆〉||

∫
[dU ]e−βSG(U) |det ∆(U,m, µ)| . (6)

The vacuum expectation value of any thermodynamical quantity, the chiral
condensate for instance, can be written as

〈 ψ̄ψ〉 = lim
V→∞

1

V
Z−1 ∂Z

∂m

= lim
V→∞

1

V

Z−1
||

∂Z||

∂m
+ 〈 eiφ∆〉

−1

||

∂〈 eiφ∆〉||
∂m

 (7)

with

Z|| =
∫

[dU ]e−βSG(U) |det ∆(U,m, µ)| . (8)

Since 〈 eiφ∆〉|| is a bounded function of the system’s parameters for every
lattice volume, it takes a finite value in the infinite volume limit. Therefore
the second contribution to the expectation value of equation (7) will vanish in
the thermodynamical limit except, at most, in some isolated points. It gives
only non-vanishing values at finite volume. These are pure finite size effects
but they can significantly distort the results on finite lattices in regions of
the parameters where this term could be large [3].

These results apply for any thermodynamical quantity. The general rule
is therefore to take Z||(β,m, µ) as the generating partition function, the loga-
rithmic derivatives of which will give us the right vacuum expectation values.
Notice also that the practical rule of taking the absolute value of the fermion
determinant works also for any intensive operator, like correlation functions,
which can be obtained as a derivative of the partition function with external
sources.
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3. The Quenched QCD Puzzle
The results of the preceding section tell us that the fermionic contribu-

tion to the integration measure of QCD at finite chemical potential can be
written as (det ∆ det ∆+)1/2, i.e. QCD with n dynamical flavours is a theory
with n

2
quarks with original action and n

2
quarks with conjugate action [5].

The zero flavour limit of this model is however standard quenched QCD. I
will show here, with the help of the fermion effective action formalism [7],
that quenched QCD at small but finite chemical potential actually breaks
dynamically chiral symmetry. Furthermore the chiral transition at finite µ
is second order in the quenched model, a fact that is most likely to be a
pathology of the quenched approximation and which will be removed with
the inclusion of dynamical fermions. The very large fluctuations observed in
quenched simulations [6] should be a manifestation of the second-order char-
acter of the phase transition. If the inclusion of dynamical fermions makes
the phase transition of first order, as expected, fluctuations will decrease
due to a strong selection in the relevant configuration sample caused by the
inclusion of the fermion determinant in the integration measure.

The effective fermion action formalism is based on the definition of an
effective fermion action, which depends on the gauge energy density E, bare
fermion mass m and chemical potential µ. This can be done by including
in expression (8) a δ function δ( 1

6V
SG − E) and a integral over the gauge

energy density E [7]. This allows us to write the partition function (8) as a
one-dimensional integral:

Z =
∫
dEN(E)e−6βV E〈 |det ∆(U,m, µ)|〉E. (9)

N(E) is the density of states of fixed energy E and 〈 〉E the mean value com-
puted over gauge configurations of fixed energy density E. The normalized
fermion effective action SFeff (E,m, µ) is then defined as

SFeff (E,m, µ) = −
1

V
log 〈 |det ∆(U,m, µ)|〉E. (10)

The thermodynamics of this system can be solved in the infinite volume
limit by the saddle point technique. The chiral condensate 〈 ψ̄ψ〉 and number
density 〈J0〉 will be respectively given by

〈 ψ̄ψ〉 = −
∂SFeff
∂m

〈J0〉 = −
∂SFeff
∂µ

, (11)

both expressions evaluated at the energy E(β,m, µ) which satisfies the saddle
point equation. In the quenched approximation the fermion effective action
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does not appear in the integration measure. The saddle point solution for
the plaquette energy E depends only on the inverse gauge coupling β in this
approximation; therefore, it does not change by changing the fermion mass m
or the chemical potential µ. The fact that also in the quenched approximation
the chiral condensate and number density are finite numbers for any value
of the gauge coupling β tells us that the fermion effective action must be
a continuous function of m and µ for every value of E and with finite first

derivatives. Simple mathematics shows that also
∂SFeff
∂m

and
∂SFeff
∂µ

will then
be continuous functions of µ and m, respectively. Taking now into account

that
∂SFeff
∂m

is the chiral condensate and that by changing µ the energy E
does not change in the quenched approximation, we get as a result that the
chiral condensate is a continuous function of µ for every value of m in this
approximation. Since chiral symmetry is dynamically broken at µ = 0 it
must be broken also at small µ. Even more, the chiral transition at finite
µ must be continuous. The only way to get a discontinuous transition is to
have a two-minimum structure in the full effective action (9). The compact
U(1) model has a first order chiral transition in the quenched approximation,
since the pure gauge action has a two-minimum structure. Since the pure
gauge SU(3) model has no first order transitions at zero temperature, only
the inclusion of dynamical fermions can produce such a structure in the full
effective action. In such a case and for some selected values of the model
parameters, the plaquette energy, which verifies the saddle point equation,
will jump between two different values as well as the other thermodynamical
quantities.

4. Summary
I have shown here how the difficulty in applying standard simulation

algorithms to QCD at finite density, due to the complex nature of the fermion
determinant, can be easily surmounted by taking the absolute value in the
integration measure. This prescription not only gives the properly behaved
thermodynamical limit but also has the advantage to kill unwanted finite size
effects. I have also shown that the solution to the quenched QCD puzzle is
on the line pointed out in [6], i.e. chiral symmetry is spontaneously broken at
small µ. The only pathology of the quenched approximation, which is most
likely to change with the inclusion of dynamical fermions, is the continuous
character of the chiral transition; this allows us to understand the large
fluctuations observed in quenched simulations.
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