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Abstract. The epochs of the primary and secondary minima
of AR Lac between 1900 and 1989 are analysed with two non-
parametric methods of searching for periodicity in a weighted
time point series. An analytical model for transforming the
O—C data of eclipsing binaries into the period domain is pre-
sented and is applied to AR Lac. The abrupt period changes
of AR Lac reported in several previous studies are most prob-
ably a consequence of an oversimplified interpretation of the
O-C data, since these changes are as likely to be continuous,
and even the possibility of a cycle in the period cannot be
definitely ruled out.

Key words: Stars: AR Lacertae — eclipsing binaries, Methods:
analytical — statistical

1. Introduction

The following physical parameters are listed for the eclips-
ing RS CVn star AR Lac (HR8448, HD210334) in the cata-
logue of chromospherically active binaries by Strassmeier et
al. (1993): G21v/K01v, double-line spectrum with strong Cali
H&K emission from both components, variable Ha emission
and Py, = 1.9983222 = Ppnot- The variability of AR Lac was
first detected by Leavitt in 1907 (Pickering 1907). A continu-
ous light curve is difficult to obtain, because the orbital period
is very close to two days, and hence over two decades elapsed,
before Jacchia (1929) found AR Lac to be an eclipsing binary.
Since then numerous photometric studies have been made (e.g.
see our Table 1) and the geometric, photometric and orbital
elements of this binary system have been thoroughly examined
(e.g. Chambliss 1976, Park 1984, Lee et al. 1986). Hall (1976)
published the definition of the RS CVn class of binaries and
classified AR Lac as one member of this class. An important
detail to remember is his remark that another long period RS
CVn star HK Lac (HD 209813, see Blanco & Catalano 1970)
was unfortunately used as a photometric comparison of AR
Lac by Wood (1946) and Kron (1947), which means that some
epochs of the earlier photometric minima may not be very re-
liable.
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Numerous studies of the orbital period variations of AR
Lac have been made (e.g. Wood 1946, Cester 1967, Chamb-
liss 1976, Lee et al. 1986). For example, Kim (1991: his Ta-
ble 2) found that the range of these period changes is between
1.99831674 and 1.99832601 (i.e. about 0.900009). The possible
physical phenomena responsible for the period changes of AR
Lac have been discussed by Hall & Kreiner (1980), and later
by, e.g., Panchatsarem & Abhyankar (1982) and Kim (1991).
The proposed phenomena include: presence of a third body in
the system, effects of starspots, apsidal motion, mass transfer,
mass loss, to mention a few. Most of these alternatives have
been critically examined by Kim (1991), who argued that the
correct model to explain the period variation of AR Lac has
not yet been found. A more general discussion of the differ-
ent physical processes that may explain the short- and long-
term period changes of eclipsing binaries can be found, e.g., in
Hall (1990). A model where the orbital period modulations of
eclipsing binaries are connected to magnetic activity, was quite
recently proposed by Applegate (1992), and different types of
observational data seem to support several predictions of this
model (e.g. Hall 1990, Hall 1991, Rodond et al. 1995). This
model has not yet been tested in the case of AR Lac. Our pa-
per presents a method for determining the period variations
of eclipsing binaries from the epochs of the primary and sec-
ondary minima, and this is applied to the currently available
data for AR Lac.

2. Observations

The epochs of the primary and secondary minima of AR Lac in
Table 1 were collected from numerous sources. The earliest ob-
servations were compiled from Hall & Kreiner (1980), and their
values with zero weights have been omitted. Some modifica-
tions have been made, the most important being that when
several values were available for the same minimum, the values
in Table 1 are then mean epochs. The original references for
the data denoted by Hall & Kreiner (1980) as “B.B.S.A.G ob-
servers” are given, but the first of these values has been omitted
(i.e. HID2440933.330), because it is not listed in the BBSAG
Bulletin. Although we did not find the original references for
the data referred to as “B.A.N. observers” in Hall & Kreiner
(1980), these data have been included in Table 1. The more
recent observations in Table 1 were compiled from Kim (1991),



Table 1. The epochs of the primary and secondary minima of AR Lac [HID-2400000]: the references are mDugan & Wright
(1939), ¥ Jacchia (1930), BlLoreta %1930), “ISchneller & Plaut (1932), *!Parenago (1930), (/Parenago (1938), ["Riigemer (1931),

(81Zverev (1936), 'Himpel (1936),

"I'Wood (1946), "Gainullin (1943), 2 Ahnert (1949), !3Svechnikov (1955), MIWroblewski

(1956), "*IMakarov et al. (1957), "*'Karetnikov (1959), '"Aleksandrovich (1959), "®Karetnikov (1961), 1% Karle (1962),
(9B A.N. observers, ?!lOburka (1964), 1?2/ Ahnert (1965), *3/Oburka (1965), 2*/Hall (1968), [**)Pohl & Kizilirmak (1966),
(81 Ahnert (1966), ?"Kizilirmak & Pohl (1968) [2&Cester (1967), [2*Karle et al. (1977), B%Pohl & Kizilirmak (1970), Y )Oburka
& Silhan (1970), *?INha & Kang (1982), **Battistini et al. (1973), B4Pickup (1972), B%1Peter (1972), PKizilirmak & Pohl
(1974), BT Chambliss (1974), P sles (1973), P¥Isles (1975), “Y'Pokorny (1974), “UScarfe & Barlow (1978), [42)Srivastava (1981),
(IKurutac et al. (1981), “*/Ertan et al. (1982), 5/Pohl et al. (1982), “S1Park (1984), “")Caton (1983), [8!Evren et al. (1983),
[49)Kim (1991), ®%Pagano (1990), B!Nezry (1988), 521Martignoni (1995) and P®Panov (1987). The notations for different

systems (v, f, p, pv and e) are explained in the text (Sect. 2). The epochs of the secondary minima are denoted by «
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who revised the epochs of some previously published minima,
as well as discarding some values by Srivastava (1981) and Nha
& Kang (1982). However, the data by Ishchenko (1963) were
omitted, because Hall & Kreiner (1980) gave zero weights to
these data. The new epochs in Table 1 are from Panov (1987),
Nezry (1988), Pagano (1990) and Martignoni (1995).

The data in Table 1 have been obtained with different tech-
niques, and we use the notations by Hall & Kreiner (1980): vi-
sual estimates (“v”), a series of photographic exposures (“f”),
mid-time of exposures on which the object appeared faint
(“p”), a series of measurements with a visual polarizing pho-
tometer or similar device (“pv”) and, finally, photoelectric
measurements (“e”). Because the accuracy of the data is not
the same in all systems and most of the references do not con-
tain an error estimate, Hall & Kreiner (1980) gave the weight
w=23 for the “e” data, while observations in all “other” systems
were given the weight w =1. Therefore, the measurements per-
formed in “v”, “f”, “p” and “pv” are also referred to as “other”
systemns in this paper. For reasons to be discussed later (see Ta-
ble 3), our error estimates are o, =0.2004 and ootner =0.9011.

3. Time series analysis

The standard technique to determine the ephemerides of eclips-
ing binaries is to make linear or quadratic least squares fits to
the O—C data. This procedure has been applied for AR Lac,
e.g., by Chambliss (1976) and Hall & Kreiner (1980). Exam-
ples of linear least squares fits to parts of the data can be
found in, e.g., Chambliss (1976) and Kim (1991). In this paper
the ephemeris of AR Lac is determined with two nonparamet-
ric methods of searching for periodicity in a weighted time
point series, presented by Jetsu & Pelt (1996: hereafter Pa-
per 1), which were already applied in Jetsu et al. (1995) and
Jetsu (1996). These methods analyse circular data, i.e. a ran-
dom sample of single measurements representing directions in
a plane or phases at different time values, folded with a fixed
period. The data in Table 1 are circular when folded with any
arbitrary period, and are typical of a case where the model is
unknown. Thus nonparametric (i.e. model independent) meth-
ods offer an ideal approach to study these data. The follow-
ing abbreviations are used throughout this paper: the WK-
method (weighted version of the test by Kuiper (1960), see
Sect. 3.3. in Paper 1) and the WSD-method (weighted version
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Fig. 1. a) The O—C variations of AR Lac with the ephemeris (1): primary minima (“e” = closed squares, “other” = open squares), secondary
minima (“e”= closed circles, “other” = open circles). The (O—C)(T, Py) curves (Eq. 5: C;{(P,) from Table 2) for K =8 (dotted line) and
K =9 (continuous line) and their 1o error limits (Eq. 7). b) The total range of 1o error limits of (O—C)(T, P;). ¢) The O—C distribution

in bins of 0.02 for the “e” (dark) and “other” data (white)

of the test by Swanepoel & De Beer (1990), see Sects. 2.2.-2.3.
in Paper 1). The number of analysed time points (¢;) with er-
rors o (0.9004 or 0.9011) is n=156. The ratio of the weights
(wi = ;%) between “e” and “other” systems is ~ 7.6, which
is more than twice as large as that of Hall & Kreiner (1980).
The means of all available values for any particular minimum
were derived, because all values for the same minimum would
be close in phase to any tested period, which might mislead
the period analysis. Because both methods are suitable for the
analysis of multimodal distributions, the data of the primary
and secondary minima can be analysed simultaneously (see
Figs. 1c and 2c). The results of these tests using trial periods
between 1.996 and 2.900 are given in the ephemerides (1) and
(2). Both periods are extremely significant, because the solu-
tions for the critical levels of Eqs. 19 and 30 in Paper 1 exceed
the available computing capacity, i.e. they are below 102!
No other significant periodicities are present within the above
period interval, since all other periods revealed by the peri-

odograms are spurious values resulting from the data spacing
of 365% (see Jetsu 1996: Eq. 6). The ephemerides obtained were

HID2415298.321(+.003) +1.983208(%.000006)Ewk (1)
HID2415298.646(+.005)+1.983184(%.000007)Ewsp.  (2)

The error estimates for the periods (FPs) of the ephemerides
(1) and (2) were determined with the bootstrap approach ex-
plained in Sect. 4 of Paper 1. However, the method for deter-
mining the zero point (o) for these ephemerides is formulated
here for the first time. The notation is the same as in Pa-
per I. The original data are denoted by the vectors ¢ and @,
and a large number (g:) of random samples are drawn from
these original data vectors, and are denoted as tj, ..., ¢,;, and
W3, ..., W, - This random selection procedure is the same as ex-
plained in Paper I, i.e. the connection that w; is the weight of
t; is preserved in every random sample. Each random sample
(k=1,...,q1) yields the following estimate for the mean of the
O—C values for a constant Py and a fixed zero point (t')
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Fig. 2. The same as Fig. 1, using the ephemeris (2)
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where the notation FRAC means that the integer part of (¢ —
t')Py ! is removed, while a =0.0 and 0.5 for the primary and
secondary minima, respectively. The final result for the zero
point of the ephemeris is

Pk = Zw, (FRAC [(t; - ¢)F5]

i=1

to = tl + PO((¢k) + U¢)¢)7 (4)

where (¢x) and o4, are the average and the standard devi-
ation of the g, estimates of ¢x. The O—C variations for the
ephemerides (1) and (2) are shown in Figs. 1a and 2a.

4. The O-C and P variations

Note that 0.5 has been subtracted from the O—C values of
the secondary minima in Figs. la and 2a to shift them to the
level of the primary minima. The standard technique in study-
ing the period variations of eclipsing binaries is to fit linear or

higher order polynomials within limited time intervals to the
O ~C values, and the previous studies of AR Lac contain ex-
amples of this approach (e.g. Chambliss 1976, Kim 1991). For
example, visual inspection might suggest that the variations
in Fig. la could be adequately presented by five or six linear
fits, which would more or less resemble the approach chosen
by Kim (1991: his Fig. 1). On the other hand, perhaps four
or five linear fits might suffice for rough modelling of Fig. 2a.
The interpretations would then be that the period has been
decreasing from the beginning of 1960 (Fig. la), or increas-
ing from the beginning of the century to 1980 (Fig. 2a). One
might even claim that Fig. la may indicate periodicity in the
O—C variations. But the main problem with these interpreta-
tions is that abrupt and discontinuous period changes seem to
occur at the epochs where the lines fitted to the O—C data
intersect. Furthermore, there is plenty of freedom in choosing
the intervals for fitting. Unfortunately, the results also depend
on the chosen Py to derive the O —C values.

In reality, the function for modelling the O—C data is un-
known. Furthermore, the shape of this function depends on FPs.



The weighted fits shown in Figs. lab and 2ab are

K
(0-C)T, Po) = Y _ Ci( )T, ()

=0

where K = 8 or 9. The time scale is T' = (¢t —¢"") /36525, where
t" =HJD2431516.8396 is the mid point of the time interval of
the data. The values Co(Fo), ..., Ck(FPo) for the curves in Figs.
lab are given in Table 2. A simple connection exists between
the models (Eq. 5) for the data in Figs. lab and 2ab, because
the transformation between them is

P,—- P
PP

PT, — BT,

(O—C)(T,Px)—-(O—C)(T, Pz) = P1P2

T+

+(6)

where T, and Py, and T» and P, are the zero points and pe-
riods of the ephemerides (1) and (2), respectively. The model
gives different values only for Co(Po) and C,(FP,), while values
of Ca(PRy),...,Cx(Po) are the same for P, = P; and P;. The
coefficients on the right side of Eq. 6 determine the differences
in Co(Po) and C1(Fo). Although the O—C variations in Figs.
la and 2a do not appear similar, Eq. 6 shows that the model
does not strongly depend on the choice of F;.

Why should the model of Eq. 5 be better than some more
arbitrary model? What is the reason for choosing K =8 or 9
in Figs. 1lab and 2ab? The answer to the first question is that
whatever the form of the unknown function suitable for mod-
elling the O—C data, it can be expanded in a Taylor series,
unless it or its derivatives are discontinuous. The coefficients
of Eq. 5 can be interpreted as coefficients of the Taylor ex-
pansion of this unknown function. In conclusion, this is all the
information that can be extracted from the O—C data with
an unknown model. The O—C variations of AR Lac may in-
deed be discontinuous, but the observations in “e” system cer-
tainly do not suggest this (Figs. la and 2a: closed symbols).
It rather seems that the accuracy of the data in “other” sys-
tems is relatively low. While the continuity of the O—C curve
of AR Lac can not be proved beyond doubt, we will continue
by assuming that this is the case. The lo error limits for
(O—=C)(T, P) in this model (Eq. 5) are

coc(T, Po) = (7

where oc; are the 1o errors of the free parameters C;(FPp). Be-
cause only a Taylor expansion of the unknown model is avail-
able, these error estimates diverge strongly at both ends of the
time interval of the data, as shown in Figs. 1b and 2b.

The question of choosing the order (K) in Eq. 5 can be
settled by setting all weights to unity and modelling Eq. 5 to
different orders. The mean residuals given in Table 3 stop de-
creasing at K =9 for both the “e” and the “other” data. These
mean residuals with weights of unity should satisfy an approx-
imation (oe) = (€e) = 0.9004 and (Gother) = {€other) = 0.9011
(see, e.g., Press et al. 1986) and thus they were chosen as er-
ror estimates for the data in Table 1. Inspection of Table 3
also reveals that it is unnecessary to model the data in higher
orders (i.e. K > 9), because the mean residuals will not de-
crease. The weighted modelling for K =9 with the above error
estimates yields x? = 287 for the data of Fig. la. The proba-
bility for this or a smaller value of x? is unity, i.e. the fit is

Table 2. The coefficients Ci(F) of Eq. 5 in Figs. lab (i.e.
Py=5)

K =9 Co=-0.01744+0.0013 C;=-23.4%3.0 Cs = —362+74

C1=0.036x0.012 Cs=—41+12 (Cy = —-T77£220
C2=0.91£0.11 Ce=158+27
C3=4.15+0.68 C7=126+88

K =8 Cy=-0.01754+0.0012 C4=~24.3+2.3 Cs = —383+55

C:=0.038£0.010 Cs=-37.7£5.2
C2=0.94£0.10 Cs=166+20
C3=4.01+0.45 Cr=96£17

not significant. However, this result is due to outliers. For ex-
ample, the three residuals for the data by Karle (1962) and
Martignoni (1995) contribute 31% to this x? of 156 residuals,
while the mean “e” residual is already (e.)=0.90031. But the
elimination of outliers is a questionable procedure, especially
for an unknown model. Therefore we conclude that modelling
the data in Fig. la with K =9 is sufficient, although the fit is
not significant due to outliers in the “other” systems. However,
we do note that an alternative approach to decide the limiting
order K in models similar to our Eq. 5 has been proposed,
e.g., by Kalimeris et al. (1995). They concluded that the or-
der is sufficient, if “no oscillatory term can be traced in the
residuals” of the O—C modelling. Another approach might be
to formulate criteria based on the “expected noise” level (e.g.
correlations between residuals or x?) but this is quite difficult,
if the residuals are unevenly spaced in time and/or the errors
of the data are unknown.

Although trivial, we note that the y? values for the data
in Figs. 1 and 2 are equal for K =8 and 9 (see Eq. 6), and the
residuals are also the same (i.e. Table 3). The results for the
model with K =8 are also outlined in all our figures, because
they show how strongly the error estimates depend on the order
of the model (Eq. 5), although the solutions for (O—C)(T, P,)
and P(T, Py) (see Eq. 8 below) remain nearly unchanged.

Table 3. The mean residuals (ec) and (eqther) [d] for the non-
weighted fits to the data of Fig. 1la in orders K of Eq. 5

K <5e> <fother) l K (5e> (fother> ' K (fe) (fother)
4 0.006 0.018 8 0.005 0.012 {12 0.004 0.011
5 0.007 0.017 9 0.004 0.011 |13 0.004 0.011
6 0.005 0.014 {10 0.004 0.011 |14 0.004 0.011
7 0.006 0.012 {11 0.004 0.011 |15 0.004 0.011

The nonparametric bootstrap for regression coefficients for-
mulated by Efron & Tibshirani (1986) was chosen to estimate
the errors oc; of the free parameters C;(Po), because outliers
are present and the error estimates for the data are based on
the residuals of the model. An example of this method can be
found in Jetsu (1993) and the same notation is adopted here.
If the model g of Eq. 5 is denoted as g= (T, Py, a), the vector
of the free parameters is a=[Co(FPo), C1(FP), ..., Cx(Po)]. The
random samples y*(T;) for a fixed Po are derived as explained
in Jetsu (1993: Eq. 5). The only difference is that the corre-
spondence that w; is the weight of the residual ¢; is conserved
when selecting the random samples € and the modelling is
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Fig. 3. a) The period variations P(T, P1) and their 1o error limits (Eqs. 8 and 9) with K =8 (dotted line) and K =9 (continuous line).
The results by Kim (1991: his Table 2) are outlined with thick horizontal lines. b) The total range of 1o error limits of P(T, P;)

performed for the weighted samples 4*. The estimates of oc,
obtained with this bootstrap procedure for the models in Figs.
lab are given in Table 2.

Because the variations of (O—C){(T, ;) for Po=P; and P»
are not very large over 90 years, the ratio P(T, Py)/P, remains
close to unity, and the relation

AT AT
A(O-C)(T, Po) = B " PT.ER)

is satisfied during any short time interval AT. This means that
the period variation for the model (Eq. 5) is

K

P(T, Py) = %o - Zic;(Pg)Ti-‘]

(8)

i=1

while the error estimate of P(T, Fp) is

K 2
op(r,pe) = [P(t, Po)) [Z (iTi‘loci)z} + (%};) )
i=]1

The transformation of Eq. 6 shows that the difference between
the coefficients C;(P;) and C1(FP;) for the model of Eq. 5 is
(P, — P)(P.P;)™". Because all other coefficients Ca{Ps), ...,
Ck (Py) are equal for both periods, it is quite easy to show that

P(T, P,) = P(T, P,). (10)

In conclusion, the results for the period variations are the same
for the O—C data of Figs. 1 and 2. The P(T, P,) variation of
AR Lac is shown in Fig. 3.

Finally, we note that higher order polynomials have been
previously used in modelling the O—C variations of eclips-
ing binaries. For example, Wood & Forbes (1963) derived
ephemerides based on third order polynomials. In particular,
the method formulated by Kalimeris et al. (1994, 1995) uti-
lizes higher order polynomials, but the period variations are
not solved directly from the free parameters, and no error esti-
mates are presented. Although Kalimeris et al. (1994) correctly
emphasized the uncertainties connected with the modelling of
the data in parts, they sometimes found necessary to perform
this procedure with spline interpolation between different parts
of the data. If “no oscillatory term” could be traced in the resid-
uals, they concluded that the degree of the polynomial model
was sufficient.

5. Discussion and conclusions

Hall & Kreiner (1980) reviewed several physical phenomena
that might explain the period variations of AR Lac: third
body, magnetically driven anisotropic mass ejection, effects
of starspots, apsidal motion, etc. More recently, Kim (1991)
suggested a new alternative, a beat phenomenon, where sev-
eral periodicities due to different physical mechanisms inter-
act to produce the observed aperiodic and seemingly irregular
O —C variations. He also summarized the reasons for reject-
ing most of the previously proposed models for explaining the
period changes. Qur paper has concentrated mainly on devel-



oping a method for extracting information about the period
changes of AR Lac, as well as of other eclipsing binaries, based
on analysing the epochs of the primary and secondary minima.
However, we do note that it is possible to explain the period
variations of AR Lac without abrupt changes. In fact, our Fig.
3a does not even rule out the possibility of a cyclic variation in
P(T, Py). The period changes of AR Lac may well be contin-
uous and Fig. 3a might indicate the presence of gquasiperiodic
trends with a period of about 30 years. Unfortunately, the er-
ror estimates for the period variations are as yet too large to
verify this possibility (corresponding, e.g., to the presence of
a third body), but a few decades of new photoelectric deter-
minations of the epochs of the primary and secondary minima
will certainly determine whether a cycle in P(T, Py) exists. In
general, it might be more fruitful to transform the O—C data
to the period domain and then consider the alternative physi-
cal processes, because direct interpretations of the O~C data
with any P, have their disadvantages, as explained below.

The time series analysis of the epochs of the primary and
secondary minima of AR Lac with the nonparametric WK-
and WSD-methods gave two different periods for studying the
O—C variations. This contradiction is apparent for three rea-
sons. Firstly, although both methods are nonparametric (i.e.
model independent), they are not equally sensitive to different
types of distributions, as discussed in greater detail in Jetsu
et al. (1995). Secondly, the period of AR Lac is variable, and
the available data cannot be used to decide whether these vari-
ations are stationary. If they are nonstationary, i.e. both the
mean and the standard deviation of the period are not constant
over a longer time interval, then a unique period for determin-
ing the O—C values does not exist or, equivalently, any time
series analysis method will fail. Thirdly, although the different
periods (Po) detected with the WK— and WSD-methods yield
different O —C values, the temporal variations of the period of
AR Lac with the model of Eq. 5 are the same for both values
of Po.

All O—C data of AR Lac was modelled (Eq. 5) with K+1 =
9 or 10 free parameters in Figs. 1 and 2. However, the error es-
timates of (O—C)(T, Po) and P(T, Py) diverge strongly at both
ends of the time interval of data. But this is unavoidable, if only
a Taylor series of an unknown model is available, and the aim is
to analyse the whole time series simultaneously. Naturally, the
centre (t”) of the Taylor expansion can be shifted, for example,
closer to the recent data, but the cost will be that the error es-
timates diverge even more strongly for the earlier data. In any
case, the results of the modelling of Eq. 5 are independent of
the chosen t”. Another approach would be to determine these
expansions for parts of the data, but this would most probably
only yield discontinuous period curves, which have been amply
discussed in the earlier literature of AR Lac, as well as that
of other eclipsing binaries. Furthermore, the selection of these
parts of the data for modelling would be subjective. For exam-
ple, Kim (1991) modelled the period variations of AR Lac with
six linear fits for separate parts of the data and a similar ap-
proach can also be found in Chambliss {1976: Table 2). The six
linear fits in Kim (1991) required 12 free parameters, while the
epochs selected to subdivide the data represented 5 additional
free parameters, giving total of 17 free parameters. Moreover,
the subdivision was made by eye and would most probably
have been different, for example, if the value of P, in our Fig.
2 had been used to derive the O—C values. That model results
in discontinuous period variations, interpreted as abrupt pe-

riod changes (see Fig. 3: thick horizontal lines). The results by
Kim (1991) are in quantitative agreement with our P(T, Po)
curve, except between 1938 and 1961. This is mainly due to
omitting the data by Ishchenko (1963) from our Table 1, while
these data were analysed by Kim (1991). As already mentioned
earlier, Hall & Kreiner (1980) gave zero weights to these data.
Had we included the data by Ishchenko (1963), then the other
data with zero weights in Hall & Kreiner (1980) should have
also been included, but this would have only introduced more
outliers to the modelling. Note that this problem of outliers
was discussed in Sect. 4., in connection with the data of Karle
(1962) and Martignoni (1995).

There are at least two approaches that could reduce the
uncertainties in the determination of the period variation. If
the model remains unknown, new date will eventually reveal
more details of the period variation of AR Lac, and there are
certainly eclipsing binaries where the model of Eq. 5 will not
require so many orders (K) and/or the quality of the data is
better. Hall & Kreiner (1980) note that AR Lac has one of the
most “baffling” O—C curves among eclipsing binaries, which
in terms of our model means a high value of K in Eq. 5. For
example, modelling the O —C variations of RT And or SV Cam
would most probably succeed with K < 9in Eq. 5 and give more
accurate estimates of the period changes (see Hall & Kreiner
1980: Figs. 1 and 5). Another possibility is that a known model
with less free parameters than in ours is developed, that is,
some parameters can be fixed on physical or other grounds. The
partial derivatives of this hypothetical model with respect to
the free parameters should not have a similar time dependence
as in our model (Eq. 5), e.g. trigonometric functions might be
utilized. In any case, the method outlined in this paper ought
to motivate observers to obtain new epochs of the minima of
eclipsing binaries.

The most important conclusions of this study are:

1. The period variations P(T, Po) of AR Lac can be mod-
elled (Eq. 5) with a continuous curve, and the results
are independent of the period Py used to derive the
O—C values.

2. A decrease or increase of O—C values should not be
interpreted as a decrease or increase of the period, re-
spectively. These changes of O—C depend on the cho-
sen P,, while the real period changes depend on the
derivative of the O—C curve, and are independent of
Py. For example, the O—C values will always decrease
when P(T, Py) < Py, regardless of whether P(T, Pp) it-
self is decreasing or increasing.

3. Different types of regularities, as for example periodic
variations of the O —C values, are meaningless, because
the period is not constant. These apparent regulari-
ties depend solely on the chosen P,, which can not
be uniquely determined. Moreover, the period changes
may be nonstationary, ie. the long-term mean and
variance may not be constant. Even periodic changes of
the orbital period do not necessarily show as periodic
changes in the O—C data. For example, let us assume
that T3 is the time interval for the period to increase
from the minimum (Ppin) to the maximum (Prax ), and
the corresponding time interval for the decrease back
to Pnin is T5. If the period changes are not symmet-
ric, e.g. T1 # T, then the O—C data do not necessarily
show this cycle (i.e. T1+T3), although the O—C values
were derived with the mean period (Pmax+ Pmin)/2.



4. Linear, or even higher order, fits to parts of the data
are oversimplifications which give misleading results for
the period variation. Moreover, because the whole data
set is not analysed simultaneously, discontinuous period
changes will result.
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