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Abstract

The 1/m. and 1/m; corrections to the Ay = A. semileptonic decay are
analyzed by QCD sum rules. Within the framework of heavy quark
effective theory, the subleading baryonic Isgur-Wise function of Ay — A,
has been calculated. It is shown that the corrections due to the 1/m
Lagrangian insertion are negligibly small. The sizable 1/mq effect to
the decay lies only in the weak current. The decay spectrum and the

branching ratio are given.

PACS: 12.38.Lg, 12.39.Hg, 13.30.Ce, 14.20.Mr.
Keywords: heavy baryon, weak decay, heavy quark effective theory, QCD

sum rule, 1/mg correction.
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The weak decays of heavy baryons provide testing ground for the Standard Model.
They reveal some important features of the physics of heavy quarks. From the study
of the heavy quark physics, some important parameters of the Standard Model, for
instance, the Cabbibo-Kobayashi-Maskawa (CIKXM) matrix element V,, can be extracted
by comparing experiments with theoretical calculations from the decay mode Ay —

AdD.

The main difficulties in the Standard Model calculations are due to the poor under-
standing of the nonperturbative aspects of the strong interactions (QCD). Besides the
numerical lattice methods, some analytic, model-independent nonperturbative QCD
methods have been developed. For the heavy hadrons containing a single heavy quark,
an effective theory of QCD based on the heavy quark symmetry in the heavy quark
limit [1], the so-called heavy quark effective theory (HQET), has been proposed {2].
The classification of the weak decay form factors of heavy baryons has been simplified
greatly in HQET {3]. To increase the precision of the analys-is, subleading corrections
(4] to the results in the heavy quark limit have also been considered for baryons {3).
However, for a complete analysis to the heavy baryons, we still need to employ some

other nonperturbative methods.

Combining the QCD sum rule {6] method, the complete analysis for heavy baryons
can be made in HQET. As a nonperturbative method rooted 'll:l\\QCD itself, QCD sum
rule has been applied successfully to calculate the properties of various hadrons [6, 7).
For the heavy mesons, it has been used in the framework of HQE'EI‘ to the leading order
heavy quark expansion to calculate the masses, the decay constants and the [sgur-Wise
function (8). And 1/mgq corrections have also been calculated [9, 10|. Heavy baryons
were first calculated by QCD sum rules in Ref. [11]. The heavy baryon masses and
the baryonic Isgur-Wise functions have been calculated in the HQET sum rules to the
leading order heavy quark expansion in Refs. [12] and [13] respectively. We [14] and

another group [15] have calculated the 1/mq corrections to heavy baryon masses of




the results of Ref. [12]. In this paper, the subleading Isgur-Wise function of the weak

transition Ay = A. is further studied in the HQET sum rules.

The hadronic matrix element of the weak current for A, — A, is parameterized

generally by six form factors &; and G; (i = 1,2,3),

< AV)EP(L = V| Aw(v) > = b, (V)(F1Y* + Fav* + Fav)uy, (v)
—iip, (V)(G17* + Gov* + Gav™) 1Py, (v)

where v and v’ denote the four-velocities of Ay and A, respectively. These form factors
need to be determined by some nonperturbative QCD method. Within the framework
of HQET, the classification of them is simplified very much. To the order of 1/mg, the

effective Lagrangian for the heavy quark h, is

[:“f = fl,,iu . Dh,, + 2711‘;[,’

(2)
CI

Ry(iD)?h, — 1hya,,G*h, .

In the heavy quark limit, the form factors are determined by only one independent
function £(y),
< AV RO TRE|Ay(v) >= £(y)ta, (v)Tun, (v) | (3)

where y = v-v’ and I is some gamma matrix. To the order of 1/mg, they are determined

by one mass parameter A and one additional function x(y) which are defined as follows,

A\

\i A=my, -mq, (4)
l
and '
(e ) L'(z) A _ '
< A(v)[TROTR®; / e N UE LNCOLNOR (5)

Both the leading order universal function £ and the subleading one x are called Isgur-
Wise function. While £ and A have been calculated by the QCD sum rules, we are

going to calculate the subleading Isgur-Wise function x.

QCD sum rule is a calculation method for some nonperturbative physical quantities
{8]. The Green's function, from which the Isgur-Wise function can be obtained, is the
three-point correlator of the heavy baryonic currents }’s and the weak current in HQET.

Generally the current of the heavy A-baryons is
7" = (g Clrap)hs , (6)

where C is the charge conjugate matrix, 7 is an antisymmetric flavor matrix, a,b,¢
denote the color indices, and the choice of the gamma matrix [ is not unique, there
are two choices,

Fi=v and [2=g7s. (7)
The current (6) is denoted as 7¥ for [\ and 73 for [’y respectively in the following. Before
performing the sum rule analysis for the three-point correlator, which is required to
pbtain the subleading function x, let us first review some of the two-point correlator

results of QCD sum rule [14}, because they are related to the three-point correlator

analysis.

In Ref. [14], we obtained the heavy baryon masses and the so-called baryonic
"decay constants” to the order of 1/mg by the QCD sum rule analysis of some two-

point correlators. With the definition of the "decay constant” f in HQET
<0l"|Aq >= fau, (8)

where u is the spinor in HQET, the sum rule gives 2

C 1 we 4 m < o,GG >
2 ,=-2A/T __ 5 ,—w/T = = 2 -=% 3 2
8fx e~ M = T o dww’e +3<qq> e w4+ 247r3—T
1 3 we 6 mi<gg>? _~% 13 < ,GG >
[y S de -w/T 0 2 3 3
mq(5x277r*/1; we T e Ty
)

3There are some errors in the coefficients of the gluon condensates in the 1/mq corrections in Ref.
(14]. For A baryons, the coefficients are modified in this paper. Besides, in Eq. (20) of Ref. (14}, the
coefficients 42 and § should be replaced by 3. However these modifications do not affect the numerical
results of Ref. {14].

™,




for j¥, and

-2 1 ot b2 om <a,GG>
Sf,zhe WMa/T - SR BT / dww’e™T + 3 <gg>-eeT +—_——2"1r3 2
Vo1 oo o wr, M <qa>? = 19<0.GG >y
- Q(?-77f4 A dww’e + T e T 4 R T3,

(10)
for 3;‘. In above equations, T is the Borel parameter. And w, is the continuum thresh-
old.

The three-point correlator Z{w,w’, y) which we choose for sum rule analysis in the
HQET is

Eplww,v) =P [ d'Td'ze 4 < O3 (R ODKR 5510 >, i,i =12,
(11)
where w = 2v- k and ' = 2v' - k'. Because of the heavy quark symmetry, mg and mg

are taken to be equal for simplicity. The hadronic representation of this correlator is

affe+ A '
[t mg) | 14+ 4 rit 4 +res. , (12)

Sl ) =l Gmh -7 2

where A and f? have been given in the sum rules (9) and (10) to the order of 1/mq. On
the other hand, Z(w,«, y) can be calculated in terms of quark and gluon language with
vacuum condensates. This will establish the sum rule. Only the diagonal correlators

(i = j) will be considered.

N

!

The calculation of Z(w,«’, y) are straightf’orward. In addition to the Feynman di-
agrams at the leading order heavy quark expansion which were given in Ref. {13}, the
diagrams of the 1/mq corrections to the three-point ccrrelator é(w, w',y) are shown
in Fig. 1. They are calculated by including insertions of the 1/mq operators of the
Lagrangian (2) with standard method. The chromo-magnetic operator insertion is van-
ishing for the Aq — Ag transition. Therefore only the kinetic energy term insertions

need to be considered in our case. Instead of the momentum representation, we adopt

the coordinate representation in our calculation. The heavy quark propogator is in
a very simple form in the coordinate representation so that the calculations become
comparatively easy. Taking the insertion of the purely kinetic energy term at the order
of 1/mq into account, the heavy quark propogator is

< 0| Thy (2)Ry(0)[0 >= [” di( 1—1—-—8“6 ,)6(z — tv) 1—+—/J- (13)

The fixed point gauge {16] is used. All the condensates with dimensions lower than
6 are retained. We also include the dimension 6 condensate < §(z)q(z') >? in our
analysis which is a main contribution. We use the gaussian ansatz for the distribution
in spacetime for this condensate [17]. We use the following values of the condensates,
<gg> =~ —(0.23 GeV)®
< a,GG > 0.04 GeV*, (14)
< 9§0,G*g> = mi<gg>, mi=08GeV:.

N

The normalization Trr!T = 1 has been used in the analysis. In the fixed-point gauge,
the space-time translational invariance is violated, but it is restored by adding all the

diagrams in Fig. 1. This is a check of our calculation.

We use the commonly adopted quark-hadron duality for the resonance part of
Eq. (12). Generally the duality is to simulate the resonance contribution by the
perturbative part above some threshold energy w.. The perturbative contribution of

the three-point correlator é"'“(w,w', y) can be expressed by the dispersion relation,\

Zrenfut,y) = & [ [ a2 TGS &

(@ — w)(w' —w)

The integration domain is a kitelike area. With the redefinition of the integral variables,

o+a
Wy = 9 1
16)
- y+1 - (
o = It

9 ]

the integration becomes

[omdo/:’w...=2(z—;{-)'/’/0°°w+/:do_... . an

6




It is in w,., that the quark-hadron duality is assumed {18],

y=Yan (%4 [ ae Im=Pe(@, &', y) 18
res: 7r(_/+1) /u */_m G-w—w) (18)

In the heavy quark limit, we have double checked the analysis of Ref. [13]. There are
two sum rules for the leading order Isgur-Wise function corresponding to two choices
of the baryonic current. When w, lies between 1.8 — 2.5 GeV, the stability window of
T exists, T = 0.3— 0.6 GeV. The two resuits for the Isgur-Wise function are consistent
with each other. For y lies in the physical region 1 — 1.43, the linear approximation

can fit the results,
Ey)=p-(p-1)y, p=1355%£015, (19)

where the uncertainty of p accounts those of w, and T, in addition to the difference of
the two sum rule results. For y lies in 1 —3, we find that the following function fit very

well to our numerical results for the Isgur-Wise function for reasonable w. and T,

-1

2
Ey) = (y+l) S exp(—0.8 L by

(20)

We note that the y-dependence of the Isgur-Wise function is not as steep as that of

the Skyrme model (19] and the quark model (20].

\
N

The sum rule ;for the subleading Isgur-Wise function x(y) is

x() = W?[J(y) EwI, (21)

where
W) = (g e [ e oty <107
B+ 4_";20_(y2 _ 1)13—."; w4 S a,t;v'G >(%yi 1)3(4y2 +3y+6),
Jly) = gm)" /.., duwbe/T E‘i%l’@i [3+ -lT2 1)]e—§%-(y+l)
T< a,GG > 1 )(2y P8y by +5),

3 (& 2ry+1

(22)
with the subscripts 1 and 2 denoting the two kinds of baryonic currents. The Luke’s
theorem [4] in the baryon case x(1) = 0 is satisfied automatically. The numerical
results are shown in Fig. 2 where the two curves correspond to the two sum rule
results. The range of w, is the same as that in the leading order. The sum rule window
is narrower than the leading order one. In the window T = 0.35 — 0.53 the results for
the subleading Isgur-Wise function are stable. The two results can also be regarded
as being consistent with each other. Nevertheless, it is obvious that the subleading

Isgur-Wise function is negligibly small,
x(y) = 0(107%) . , (23)

This point is similar to the heavy meson case [10].

The semileptonic decay Ay — A P can be analyzed directly after obtaining the
hadronic matrix elements from the QCD sum rules. By neglecting the lepton mass, it
is easy to show that the differential decay rate is

1 dD(A = AdD) _ GHVal'mj,
vyt -1 dy (2r)

V-1
+—T(Ar2 +2Br+C)},

mJ
e f(1=2ry +rD){(y - VF + (y + 1)GY]

(24)




where 7 = my_/m,,. In the above equation,

A = 2RF+ (y+1)F} +2G,Ga + (y— 1)GE,
B = Flz + AP+ By P+ FF + szFJ + G'f - GlG2 - G';G:; + G3G1 + ngGa ,
(25)
To the order of both 1/m, and 1/ms, the form factors F; and G; are expressed as
A X
R o= Clué) + (2-m—c + :_,E)[2x(y) +§),
_ A A y-1
G = Clp)ély) + (2—mc' + 2—771;)[2X(y) + mf(y)] ,
- G i (26)
2 = Gy= —mf(y) )
A
B = -Gj=-——Fr—
3 3 mb(y+ I)E(y) '

where C(u) is the perturbative QCD coefficient. The subleading Isgur-Wise function
can be safely neglected. The 1/mq corrections are mainly due to the weak current.
With the form of the leading order Isgur-Wise function (19), the differential decay rate
of Ay = AP is shown in Fig. 3. In Fig. 3, we have taken the heavy quark masses
my = 4.83 GeV, m, = 1.44 GeV and & = 0.79 GeV {14], the renormalization point
4 = 470 MeV, the CKM matrix element V,, = 0.04 {21]. The width and the branching

ratio of this decay mode are

r 6.05 x 10~ GeV ,
N (27
Br = 9.8%. !

The 1/mq correction possesses 10% in the above brancLing ratio.

We have analyzed the Ay — A, semileptonic decays by QCD sum rules within
the framework of HQET to the order of 1/m. and 1/m,. In the heavy quark limit,
the analysis for the A, — A, decay depends on one independent form factor which is
the leading order Isgur-Wise function and was calculated in the QCD sum rules {13].

However, for a more precise analysis, only leading order calculation is not enough.

9

In this paper, we have considered the 1/mq corrections. The subleading Isgur-Wise
function has been calculated by the HQET sum rules. It is shown to be so small that
it can be neglected. This conclusion simplifies the phenomenological analysis of the
decay Ay — A.. The 1/mq correction to the decay Ay — A. results only from the
weak current. The decay differential distribution has been given. The branching ratio
is predicted to be Br(Ay — A.lP) = 9.8% after taking Vu = 0.04. This will be useful
to the experiments in the near future. The polarization effects of this decay have not

been calculated which will be considered elsewhere.

Finally we would like to make a remark on the perturbative QCD corrections in
the sum rule calculations. Such corrections to the baryonic Isgur-Wise function which
still have not been included, would involve us in the three-loop calculations. However,
we expect that they should be small. The Isgur-Wise function obtained from the QCD
sum rule actually is a ratio of the three-point correlator to the two-point correlator
results. While both of these correlators subject to large perturbative GQCD corrections,
their ratio does not depend on these corrections significantly because of cancelation.
Therefore the results for the Isgur-Wise function are more reliable than that for the
heavy baryon masses. This is what happened in the heavy meson case [8]. The per-
turbative QCD corrections to the two-point correlators, therefore to the heavy baryon

masses, will be calculated elsewhere.
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Figure captions

Fig. 1. Feynman diagrams for the 1/mq corrections to E-.'.(u,w’, y). The insertions

are only the kinetic energy terms at the order of 1/mq.

Fig. 2. Subleading Isgur-Wise function x(y). The lower and the upper curves
correspond to the sum rules (29) of J = J; with w, = 2.2 GeV, T = 0.55 GeV and J,
with we = 2.5 GeV, T = 0.39 GeV respectively.

Fig. 3. The differential decay rate of Ay — A 5. (y = v - ')
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