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1 Introduction

Ever since the discovery of chiral anomaly [1, 2, 4, a great progress has been made in this area.
Not only has its full structure been found [3], but also the deeper significance of its origin has been
investigated from path integral point of view {5] and geometrical point of view [6, 7, 8]. However,
the topic still deserves Turther investigations. One of the main problems in this area is on the

perturbative ealenlation of the chiral anomalies, a3 ran bhe seen from the follnwing observations:

In the first place, in checking the Ward identities associated with the vectog conservation and
the ones with axial-vector conservation at, say, one loop level, direct calculations of small loop
diagrams ( e.g., triangle diagrams ), which are linearly or more highly divergent, suffer from the
ambiguity of the shift of the integral variable, because a shift of the integral variable will alter
linearly or more highly divergent integral by a finite amount. Only after imposing by hand the
requirement that the vector Ward identities be held. can we eliminate the above ambiguity and get

the anomalous axial-vector Ward identity.

Therefore, to deal with these diagrams properly, one has to adopt an appropriate regularization
method, which should be consistent with chiral symmetry, to render them finite. Unfortunately,
so far we lack such a method. In the dimensional regularization method, for example, the main
difficulty is on the proper definition of s in d dimensions. In four dimensions, the definition of s
is given by

Y5 = Ifuupa'Yu'Yu'Yp"/a (’»)

i
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and the tensor ey, , does only make sense in four dimensions. So it seems that the dimensional
regularization method do not straightforwardly applicable to the theories involving v5. To solve

this problem, some artificial rules have to be imposed on the definition of vs [9, 10].

Some other regularization methods were also adopted to analyze chiral anomalies [1, 2, 3, 11].
Most of them, however. proved to be incapable of preserving the vector Ward identities which are
essential to the renormalization of gauge theories. To evade this difficulty, counterterms had to be

added by hand to diagrams involving anomaly to restore the vector Ward identities.

A few years ago, a new regularization approach named intrinsic regularization was proposed by
Wang and Guo [12]. Since then, a series of works have been done along this direction {13, 14, 15, 16].
In ref [15], the issue of dealing with Abelian anomaly was discussed, however, the application of
the primitive version of the new regularization approach to non-Abelian gauge theories seems to
be difficult.

As an improved version of the intrinsic regularization, recently we presented a new approach,

the inserter approach, and succeeded in applying it to the ¢! theory and QED (17}, and further to




QCD [18]. The most remarkable feature of this approach is very simple but fundamoental, namely,
the cntire procedure is intrinsic in the QFT. There is nothing chamged, the action, the Feynman
rules, the spacetime dimensions etc. are all the same as that in the given QFT. This is a very
important property, because, in principle, it allows us to preserve all symmetries and topological
properties of the theory we are dealing with. It iy this property that otfers us an opportunity to
calculate the chiral anomaly perturbatively in a mueh watnral e self-consistent, way. Coertainly,

this will be helpful to our deeper understanding to the chiral anomaly.

[n what tollows. with the help of the intrinsic regularization method, we will investigate this
issue in detail. By checking Ward identitics related to various diagrams involving anomaly, we
analyze anomalies in the o model, in Abelian gauge theory, and in non-Abelian gauge theory as
well. Our calculation is up to one loop order since according to theoremns given in [19, 20, 21, 22|
the structure of the chiral anomaly is not modified in the presence of higher order corrections. The
result proves to naively preserve all vector Ward identities and accordingly reproduce the famous

ABJ-anomaly {1, 2, 3] in no need of introducing any counterterms.

This paper is organized as follows. In section 2 and section J, we present in turn the detailed
calculations for the triangle diagrams in the o model and Abelian gauge theories to verify the
normal vector Ward identities and reproduce anomalous axial-vector Ward identities as well. Then
in section 4, we generalize our method to a much general case, i.e., the non-Abelian gauge anomaly.
After calculating various nne loop diagrams involving anomaly, we get the anomalous divergence

equation which is exactly the same as Bardeen’s result. Section 5 contains some concluding remarks.

2 Triangle Anomaly in the ¢ Model

The research on chiral anomaly was motivated by the study of 7 = 2y process in the o model
(2]. Let us start with this moclel. For simplicity we keep only one feemion of charge +1 (the proton)

and two mesons 7" and 7. The corresponding Lagrangian is

C o= ylig ~m+glo +iry)|y + %(Owﬁ + %(00)2 - %éw" - %qz
~dva(r? + 53 - %(7{2 +a%)? . (2)
To lowest order,
m=—gv, m3 — m2 = 2202
. The axial current
. .73 = vl;'y,,“yy/) + (00w + 18,0) + vI,m (3)

is conplerd either to the pion with a factor iq,» or directly to the formion. This feature. together
with PCAC, forms the basis of the explanation why - he effective coupling constant for 7% — 2y
does not vanish in the soft pion limit. And the key of the explanation is the existence of the
triangle anomaly, which arises from the VVA diagrams shown in Fig.1. Let us denote T,,,,,(pl, p2)
and iL,,p(pz, 71) as the amplitudes of Fig.1{a) and Fig.1(b) respectively, and the total amplitude

is
Wawn(Pr, 12} = Tuopipr, p2) + Tupplpa, p1) - (4)

[n the momentum space, we have

- ol
Tuvo(Pts P2) = - / aar T pmt g o syl » (5)

and f‘.,,,,,(pg, p1) can be obtained from (5) by just interchanging (u, py) and (v, p2) with each
other. By power counting expressions (5) is linearly divergent. Our goal is show whether the

normal vector Ward identities

P‘I‘Wuup(Ph ) = P;Wuw(}’l; Pz) =0, (6)

and the axial-vector Ward identity (in the limit of m = 0)
(P‘l’ +pg)Wuvp(plr p2) =0, (7)

are held in the presence of radiative corrections. To this end, we use the intrinsic regularization
method to render Tf‘,w,,(pl, p2) and Ty,,p(pg, p1) finite before substituting them into eqs.(6) and
(7).

The spirit of intrinsic regularization approach is the same as that stated in (17). The main
step of the approach for the o model may be stated more concretely as follows. First, we should
construct the inserters which are to be inserted into the internal lines in a livergent diagram to

render it finite. The inserters for fermion, 7 and o can be chosen as follows:

e The fermion-inserter:

~

¢ The n-inserter:
1"Hp) = ~6in. 9]




e The r-inserter:

by = —6ia, (10)

Note that all of these inserteres are the vertices originally contained in the theory. Given a divergent
IPEaunplitile P (g oo g ke k) at the one Joop order with 22 exteenal fermion lines

and 7, external boson lines, we consider a set of 1Pl wnplitudes U0 (g ... Prpi ki ckngi)

which correspomd Lo the diagrams with, if the loop coutained in the dingram purely consists of

fermion lines. all possible 2q insertions of the fermion inserter in the internal fermion lines, or in
other cases, all possible 4 insertions of the corresponding inserter in the internal buson lines in the

original diagram. The divergent degree therefore becomes:
d=d-[; -2, -2

If q is large enough, D"rmsd(py, ... +Pnyiky -+ kny;q) are convergent and the original divergent
function iy the case of g = 0. Thus we reach a relation between the given divergent 1PI function
and a set of convergent IPI functions at the one loop order. In fact, the function of inserting
the inserter(s) into internal lines is. simply to raise the power of the propagator of the lines and
to decrease the degree of divergence of given diagram. In order to regularize the given divergent
function with the help of this relation, we need to deal with those convergent functions on an equal
footing and pay attention to their differences due to the insertions. To this end, we introduce a

new function:

Covmadipy, - pngikty o kngs @ )
(11)
= (—ip) 2"("‘/\1 Z ries. "’)(ﬂl '1”1:,;,:];‘ t -kn.,,; q)

where gt is an arbitracy reference mass parameter. the smnmation is taken over the entire set of

such .V, inserted Minctions, and the factor {=iA)~% introduced here, in which A stands for 7 [or
fermion loop and for Af dor other cases, is Lo cancel the ones coming from the inserters. It is
clear that this function is the arithmetical average of those convergent functions and has the same
dimension in mass. the same order in coupling constant with the original (divergent 1P{ functiorn.
Then we evaluate it and analytically coutinue q from the integer to the complex muuber. Finally,

the original 1PI function i3 recovered as its 7 — 0 limiting case:
DO py, o pugi bty kng) = B DO 0 o, p ki K )y (12)
=0

and the original infinity appears as pole in ¢.

o

Through the procedure stated above, the regularized amplitude of VVA process can be written
s
Wi o paioa m) = TR0, b2 @ ) + TR, (P2, Pt @i 8) - (1)

where the explicit expression of Tlﬁ,,(pl, P2 @ p)is

q-
ZT (7)lv P2 ’I)l]

M'c-

TR (1, p2 ) = g2 L

7

=0 =0
(14)
29 271 2q—i-j+1 Nyt 1
= —py Zo/ri%”’[“fu(r‘—m) T (=) s (i)
=0 )= .

where N, = é(q + 1){(g + 2). Of course in the intrinsic regularization scheme s can be properly
defined according to (1), since we have not changed the dimension of the space-time. When g is large
enouigh, the integral expression (14) is convergent and when ¢ = 0, we have hm W‘Sfp(m, P2 ¢ p) =

Wuvp(?h P2)-

Now we are ready to show whether the Ward identities (6) and (7) can be satisfied by direct
calculations starting from the regularized expression {14). First, we check the vector Ward identities
(6):

29 2q-i
Pty 3 TR pai 0
|=0 ].—[) (15)
L2 L Ry £k L Y2a-i-i+l 1 i+l Ly
=~y "Tv:zo > /WTTUH(F;) (=) (i) 1
i=0 j=0 v

Making use of the identity

h={k+ pr~m)~(k-m), (16)

we zot

29 2~
qu—:!q Z Z .,,,(Pl. P2 q)l]
=0 j=0
, 2q Zq i +1 2q-i— +1
’"%Zﬂ > /rz"'f1 (=) (=) (i) ol
= ]_
29 29—t i 2g—t~j+1 +1
35 [T (=) (252) 7 o (pm) ol (17)
=0 j=
2¢

i+1 2q-i+1
= a3 [T (t=m) () e
=

27 _ .
L [ERT(rR) " ()




Similarly,

2q g-e
Ptg M55 SRR (my prs )i
PN
L) I'A \ i+l ) -1+
s "% Z/"NJ I(Hl;—m) 7"(E_-—m) 7177-"| (18)

‘“"".V';Z [ () (i) e
R
When q iy large enough. the integrals in (17) and (18) are convergent, so0 we can make a shift of
the integral variable. If we lot & — k + py = py in the first integral of (17), it equals to the second
integral of (18) and they cancel with each other. Similarly, if we make a shift k — &k — p2 in the
second integral of (17), it cquals to the first integral of (18) and they cancel with each uther too.
So. we get

"lW,E.’},}(Pl. P u)=0. 19)

Similarly, we can get
pW oy, pa; g py=0. (20)

Thercfore, we conclude that the vector Ward identitics (6) are naturally satisfied in the intrinsic

regularization method.

In the same way, we can also start from the regularized cxpression (14) to check the axial vector
Ward identities (7):

(0} + D)W (o, o ai )
2q fq-i

=0 E Ty S N TR o pa ady P TR o1 a))
ey

BRI
3

= 5 Z Z /—rl/[“m m)z’” ]H“/u(y_,,;—.m)w‘(llw ,/)2)"/5(),m/",'_‘m‘)”'l
e=f) =t}
W g

—ptr Z Z /—'2%‘—71‘7 [m, y_—m)l:"—._lﬂ“(“(,;:y:—_;)w‘(ﬁl%- Ih)“/.’.(Mm)JHl .

=0y 0

By using the identity

(+ bavs = —(f= 2 = m)ys = y5(f+ p1 —m) - 2mnys (21)

we et
20 29—t
(p? +P2)H"”I‘lq'—‘z SRR o v @)is
7 i=0 y=h)
270 d%
= 1[7vn P2 i) — uv(’)!v 'y i‘)l + 27”#4 N Z Z / Y. ),‘ B(’ J) (22)
Ti=0 j=0
2q ..q v 2y ..q [ |
. Vk ik .
+u"‘—— /(( Ali,7) + uH— Z /(2 A+ L -1,
"- V=0 ”:—n, 1 L
N
where T,“,(p q; 1t) denotes the two-point VA function, and
L 1 24—i—j+l j+1
11(114) = TT[’Y’A(ﬁ"__" "‘) (/&‘ ,‘? m) (k+ I)I ) ] ) (23)

Bli,1) = Trin(==)"" 7" ' (

l+l 2+t
k—-m /C—ﬁz—m) (/€+ﬁ1—m) .

To evaluate the trace of gamma matrices in A(i, j), we divide the summation in A(i, j) into

four classes:

29 298 7 q-a 9 ¢-a
2D AGG) = Y AQRa28) + Y. S A(20,20 - 1)
i=1 j=0 a=I =0 a=|f=1
q—a
+Z}:A(2a—12m+22“a—1 B+1), (24)
a=10=0 a=1f=0
where

= Trly (Whm)?a=20=20+y, (4 g 4m) 22 gy (45 +m)30+1
A2 28) = TR TR ATk s pr =TT (252)

AQ2a,20 - 1) = Trlyu(Fm)29- 202042, (i g pm) 3%y (4 +m) 20

(k3 —mi)ta~ia~ ! (25b)

. Trlya(Kmm)e—ta-20 42y, S—pam)H— ot m)®2 s (Kp +mHt )
|(2r1 -1,28) = ity Ve Ta =TT+ (K —p3 7 = me Tk 4 pr) - m IO T (25¢)
A2 — 1234 1) = Trfv(K+m)2a-da=104t, (g ml[k—na—:n)“"'qli@ﬂl+m|“”’2] (25d)

kT —mya=Ca= U“((k-p-”z—m |...|(k+p”7__,,|2]m+l

As our interest is only-in anomalous terms which are independent of the mass of fermion, we can
work in 2 more simpler case, i.e., in the massless limit. Therefore, the B(i, ) term in (22) can
be neglected, and the mass mn in the numerators of egs.(25a), (25b), (25¢c), and (25d) can also be
set to zero. Nevertheless, the mass m in the denominators of the above equations are remained
temporarily to avoid possible infrared divergence for q large enough. As we will see, it has nothing

to do with the final result.




Now we consider one by one the four cases in (25}, (20b), (26¢), and (25d0). First, it is casy to
see that the contribution of the second case, i.e., A(2ex, 24 — 1), is zero, sinee Triy,y,7s) = 0. For
the first case, we have

q v’—{l

/(2 E A(200.208) = /[2 ),Trlvu Frrs( A+ p)l

. U=k ~ ) f(l = o))
(k2 = )220 =2 )7 3B (E £ )2 = rrd]28 T

"n i, l =0 (26)

By using the formula Trivanw s Yevs] = die; 00 to carry out the trace of y-matrices, and with the
help of the Feynman parameterization to perform the integral over loop momentum k, we get

" 4k

s 7
v, Z 27 )1 A2, 28) = fuwwp‘l Pz +ofg) . (27)
- :|=(:

Similarly, for the third and fourth cases, we have

‘l"zq:qf/—-{ﬂk A2a g 1,28 .

IV" a=1 =0 (2”)‘ ‘1 ) 24rn 16‘"’” Pz t+ 0(q) (28)
1 2T 'k .

E’"X::“Z /(2 7 ARa-1,28+1) = Y Ieﬂ"ﬂ"plpz +olg) . (29)

Summing over (27), (28) and (29) yields

L5 35 3l (L T W :
ha o/ et W)= gratuvsePipz +0(q) . (30)

it the siune way, we have

| By {
7 Z Z i A+l j-1) = r/“,,,,,p,pz +ofq) . (30
Ty o

Theretore, from (34), (22), (30) and (31) we conclude that

nup

fn(p) + YW (e, pai a5 )
.

2q 2g-i

= l""(l) + ) — Z TR e pai )iy + TR (02, pii 0)is) (32)
Ny i=0 =0

= £oa
= Q"ZEWWMP: .

The RHS of eq.(32) is the well-known triangle anomaly which violates the axial-vector Ward identity
©..

3  Triangle Anomaly in Abelian Gauge Theory

Now we turn to the anomaly in Abelian gauge theory. The conventional Abelian gauge theory
where vector current is coupled to the fermion through the least coupling is QED. Its Lagrangian

is given by
L= —-i—F,,,,F‘“‘ + P —A — mpw . (33)

For our purpose, according to the theorems stated in {3, 23, 24|, we may only consider the VVA
diagrams which consist of an internal fermion loop connected to two vector couplings and one

axial-vector coupling.

The total amplitude of VVA process is the addition of the crossed diagrams Fig.2(a), Fig.2(b).
The spirit of intrinsic regularization approach is the same as that stated in the previous section, i.e.,
inserting in all possible ways 2q inserters in the internal fermion lines. As was discussed in detail
in {17}, the inserter is borrowed from the standard model, it is a f f¢-vertex of the Yukawa type
with a zero momentum Higgs external line. In the momentum space, the regularized amplitude of

VVA process can be written as
Wi, p2 @ 1) = TR (o1, p2s 5 1) + TR 2 Pt @ 1), (34)

where the explicit expression of T, .,,(Pl, P2; q; p) is given in (68) in the appendix.

Again, what we are going to do now is to check the vector and axial-vector Ward identi-
ties related to W,Eﬂ(p;, p2i q; p). It is not hard to see that this task is much easy, because
T‘ﬁ,p(pl, p3; q; ) given in (68) is almost the same as T,,,,,,(pl, P2 q; ) given in (14) except for
an unimportant factor. Thus, following the completely same procedure as that in the o model, we

innnediately get

"W,“ﬂ(m, P2 ) =1, (35)
Wil pai g ) =10, ) (26)

and

llm(p" +Pp) ,,,,(Pl; P2 4 u)

27 2q~t .
= lim(p? +ph) 5~ Z 2T pu o @ Wl + Thplpn pii @ Wl (37)
q i=0 ;=0

1 o
= g;ifuuwpll’z .

10




Therefore, we conclude that in QED the normal victor Ward identities related to VVA amplituce
are satisfied in the intrinsic regularization method, while the axinl-vector Ward identity is violated

by an anomaly which is the same as that in the ¢ model.

For an alternative theory where the gauge fickl is coupled to the axial-cureent instoad of the
veetor current {25], i.e., the interaction part of the Lagrangian (33), —udy, is replaced by —1[141‘75w.
the only diagrams involving anomaly become the AAA triangle disugrams as shown in Fig.J(a) and
Fig.3(b). each of which consists of an internal fermion luop connected to three axial-vector couplings.
[n the present case. the only work to be done is to check whether the axial-vector Ward identity

{in the massless limit)
(P} + Wi (pu, pas @3 ) =0, (38)

i3 held in the presence of radiative corrections, where W,“,p(pl, p2) denotes the total regularized

amplitude of the AAA process which can be written as
WD (ow, p2 4 w) = TR (o1, p2; @ u) + TR (o2 v @ ) (39)

with the explicit expression of T‘:fﬂ(pl,pz; ¢; 1) given in (69) in the appendix, and T, w(pg,p,, q; 1)
obtained from (69) by just interchanging (u, pi) and (v, pp) with each other. To check (38),
we may llowing o much similar way as we have done in the ¢ model, ie., we may wmultiply

W’;‘(J,l,)(pl, P2 @ ) by (p{ + pj), then split it into four terms by using the identity (21):

(P! + YWD (o1, pa, p3; @ )

> 29 2q-i dk .
=iTR(o +pa; @ w) - uu(p2+p3; 5 p)} + 2mp? —Z > /(2”)43(1»1)
"z—() =0
, 2q ’q 1 ’l k 2 29— d' (40)
'—'7— i+ 1Ly —1t
W 5 e g 3 [t -

HpomY e (o)

where
ey 1 2q-1=y+1 l i l J41
Aig) = 7*[7,.7.»(‘_ - m) 7.,7.,(#_ ",)12 _m) ’r..(/H_ = m) B )
see ooy 2q-i=j+1 i+l e+l
B'(i,5) —Trh"""(x—m) 7.,75(}____ W _m) vs(M_ A _m) .
29 29-i 27 29-i
In evaluating Z Z /%{A'(l,]) and Z Z /é‘—:},‘-;/l’(i + 1,7 — 1), we may [ollow similar pro-
=1 3=0 1= j=1

" cedure with (24)~-(29), the only difference is that in (41) extra ys appear in the positions next

to v, and Y» tespectively, so we need to move them together to drop them with the help of the

1

propertics of 5 brlore we carey ont the trace of v-matrices. For this sake, the term corresponding
to (25c) changes by a minus while the other two terms corresponding to (25a) and (25d) remain

unchanged. 7herefore, we have

=y 1 s
KA Z Z /(27”‘ i,7) = mfuupampz +olq) . (42)
T izt =0
L d'%k 1 (43)
_”'Z Z /(2 ),iA('ﬂ' J-1)= 24n 573 CuveaPiP3 +0(q) .
i=f y=1

Therefore, from (39), (40), (42) and (43) we conclude that

lim(P':' + )W (o1, pa; @i w)
2q 2¢-t

= lim(pf +P")-—Z YT, pa @ Bl + TR (P2, pu @ )i (44)

" i=0 j=0
1
= 4
= Swzfuupup{p‘z .

The RHS of eq.(44) is the anomalous term which violates the axial-vector Ward identity (38). As
we have known, it differs from (37) by a factor %

4 Non-Abelian Gauge Anomaly From Intrinsic Regularization

Now we apply our method to a much general case, namely, the Gt x Gg non-Abelian chiral

gauge theory, which is described by the following Lagrangian:
£ = —STr(Fu F™) +5{( ~ A) -y (45)

In rerms of vector field V, and axial-vector field .1, (VA notation), A, and Fy, can be writlen as
Ay = Vit ysd, = VIT) + AT,
fuv = FVuu + 'YSF,luu = F\’;uuTV +’75F“‘"T?4 )

where
F{}w = V7 - OVV,‘“ +1if
zuu = aMA: - aVA: + i(

Vi, Vo +il4g, A7),
Ve, A2)+il4s, vl

In the present theory, as was pointed out in Ref.[7], the diagrams involving anomaly include not
only VVA, AAA triangle diagrams, but also VVVA, VAAA box diagrams, and VVVVA, AAAAA,
’ VVAAA pentagon diagrams. The main step to regularize these diagrams by means of intrinsic

12




regnlarization approach is the same iy that stated in [18], and the regnlarizoed integral ('xprvssidns
of the diagrams are presented in the appendix.

The total amplitides of VVA and AAA processes are the addition of the erossed clingrims
Fig.4(a), Fig.A(b) and Fig.5(a), Fig.5(1) respectively. The calculation of the triangle diagrams hore
is almost the same as in the 0 model and QED. The only difference is that here an extra color factor
i added to each disngram ( Tr| Ty Ty T.af for VVA diagram and 71T T, T 1 for AAA dingenan ).
Therefore. thromgh o nmch similar evaluation to that in the previous section. we ean easily prove
that the nurmal vector Ward identitics are naively preserved by the regularized functions in the

intringic regularization method:

AWy pai i w) =T (TY, TYITOTE (2 @ 1) = TRy + 925 @ )}, (46)

PSS o pri a ) = ATr((TY, TYITONTR (0 + P2 4 ) = T (o @3 w)} . (47)
And the axial-vector Ward identities are violated by anomaly:

lim(@{ + )W NS (1 P2 @i )

(48)
=TT, TYTANTLE @ #) = Tas o w)}+Avva,
lim(pf + )W (P, P @i w) (49)
= T[T TUTINT (i + o i 1) = Tl # 0w 45 0} + Daan
where
1
Ayya = WTT({T". TV} TS epwpn P15 0)
and
l 2
Agln = ——_—TT({T?; T?\}TZ)EI‘W’"P}IT’Z ' Gy

122
are the anomalous terms which violate the axial-vector Ward identities.

The ealeulations for farger loop diagrams, ie., box and pentagon iagrams, are also simubar
to that for triangle ones in principle. In what follows, as a typical example, we will calculate the
VVVA amplitude in some detail, then we will directly give the results for other amplitudes.

The total amplitude of the VVVA process is the addition of the crossed diagrans Fig.6(a)-(1).
Let us denote the total regularized amplitude of the VVVA process as W(R‘),':,h:g(pl, P2, U3 4 W)
[n the momentum space, it can be written as

M)abed
Wl o, pr, o i )
1 g 29-i2q—i-j (52,

= Z’{Tr(T"',T'(,Ti,T‘,‘l)FZ > Titoa PV, P2, P3; % I‘)i;‘l} .
74=0 ;=0 (=0

13

where 3=’ denotes snmmation over all p()ssi'blc permutations of {(;,a.p1), (v.b.p2), (p,c.p3)},
Ny = %(q+ 1){q +2)(¢ + 3) is the total number of possible ways in which the inserters are inserted,

I and the explicit expression of Tlﬁ,p,(pl, P2, P35 @ M)t is given in (70). When q is large enough.
the integral expression (70} is convergent and when ¢ = () the original infinity arises manifestly as
pole in q.

T . . P . A RYabed
Verification of the vector Ward identitios related to the amplitude ' ,):,,f., (prs 2, P34 p)

it straightforward. A4 we have done for triangle diagrams, we may consider the product of p} and
the amplitude. With the help of identity (16), we can split it into two terms. After performing a

suitable set of shifts for integral variables in these terms, we immediately find that

.”‘\‘W(Rgnaub;:(m, P2, P3i T M) (53)
= z’{iTr(T?,T';,TE,T',‘,)[T.,‘ﬁ,,(m, pai @ ) = TR, (p1 + 2, p3i @ p)]} ;

Eq.(53) is exactly the normal vector Ward identity related to the amplitude of VVVA process.

Now we proceed to check the axial-vector Ward identities related to W(R,):,b,fg(p,, P2, P3; q; W):

R)abed
®% + 95 + o)W RLL (01, D2, 3 4 1)

29 2q-129-t—j
= WA T TR ) 3 [ELTr b1+ b2+ b3 50
=0 j=0 (=0
i+1,

) i+l L {+1 | 2g~i—j-1+1 \
o (Fﬁ) 7#(1—,/.-".) YV(y—y.,-,/,—m) 7’(77—71—71—#:—'") ]
+all possible permutations of {(u,a,m), (v5,p2), (p,c, ri)}.

By using the identity

' (b1t b2t pa)vs = —(fk~ pr— p2— b3 —m)ys — v5( k — m) ~ 2mvs ,

we pret

(7 + 3 +pIWNS D1 pay p3s i )

= i Tr(TYTY TS T[T, (P2, pai @ ) = TR (o1, p2; ¢; )]
2q 2q-i2q-i—j

. 1 dik
HEMTr (T T, TR T = 5 / v IO )]
Nqi=l Jj=0 I=0 (2")

2q 2q—-12q—1—j . (55)
| +ig T (T TS, f,'r';g)ﬁ;zz > B A+ 1,7 -1
! =0 j=t (=0

2q 2q-i2q—i~§

+UmpHTr (T TV T TE) -3 ). D / (fT’,*rB(i.J',l)

i=0 j=0 (=0
J +all possible permutations of {(p,a,p1), (v,5,p2), (p,c,p3)}.
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where

)2:1—|—I—I+I

Afi, ) = TT['YS( _',,,)j::'h‘(y._,,:__,,,)H:‘Yv(y_yl_ly,_m rms l+"Yp(y—'————_m_”;_yj_m)‘lﬂ (56)
.. g—i—y— .
[}(hl:l) =T7'(’)’5(k'1,") 7;t(y_yll_,,|) 7u(y_yl_lp’_,,‘) ! 7,,(?_‘”‘_,/;_”—_’") I

To evaluate the trace of gamma matrices in A1, j,{), we divide the summation in A4, 4,1) into

eteht elasses:

20 lg—dip—t—y q=cvg—rr—} q g

1
L2 A=Y T AQe2M2M+ Y T Y A2u - 1.25,2)
n=t

=l j=0 (=0 A=0 ~=0 a=t =0 =0
7 A= g—a~; 7 g=ng-n-

3
+2.0 Y AQa28-1.2+ 3 T S AQ2a-1,28+1.2)

a=td=1l =0 =l =0 =~=0 -
q g-ng-a—-3 4 = qg—rr—i) (37)
T2 o ARa282y -0+ 3 T Y A@2e- 1,282y + 1)
a=14=0 <=1 a=l =0 v=0
7 7—ngq-a-3 9 9=nq-n—y
+2, 2 ACaB L2+ D)+ 3 S T A2a-1,28+1,2y-1),
a=t =1 =0 a=| =0 v=1
where
- A(20,20,27) = Trivs Avu(h— (k= b1~ b2)v,|
(kz)n k— ]1]7 k—py— He—a—-- k—pt—pa—p3 T
X(kz_ml)’mﬁ[(k_m)I[Emlp];wl([((k_::_::))zl_.,,,:l:.-1:[-(— -lhg-"l[[z.’_?pll_p,‘_ya)2_m1]1at (58a)
-“(:’" - l~2H~27) = Tr(75 /;"ht(ﬁ— l,l)‘YVYﬂ(ﬁ— f'l" ‘/’2'— f"!)]
% , {£2)°[(k=p1)21*[(k=py ~pg)?|*=2=~8 =1+ [(k—py ~ps—p3)?| (58b)
(k’—m2)"r“"[(k—m)’—m’]h*'[(k-m—pg]‘-m2| =20~ ']"")[(k—pl—ﬂz—rla)’-—mll““’
A20, 26 - 1. 29) = Tr{vsv. (k= p)vral
(£)2((k=p1)*)[(k—pr —pg)2[7=" ~# =7+ {(k—p\ ~pa—~pa)?]* (58¢c)

x ET=m) B (k=p1 = [P T{(k—ps 2 ) =21 = To= W05 FH (ke py — p )T =[5 1

A2a = 128 + 1,2y) = Trlysv( k= pi)vl k= pr= palv,(f— 1= pa— $3)]

(A2 (k = p )] [(k =p1 ~p2) 2] =" =1 = Y {(k = py ~pz~p3)?]”
x m“[(k—rll JT=mI[B+ 1k —pa)? —"lllz"‘r'"m“'][(k—m “pr—mi—mipa (58d)

M2, 28,2y - 1) = TT{‘Y:’, k‘YjL'YV’YﬂI

) VA0 h PP I = py =z P2 I E Uy ey I (58e)
K T TS md Ik gy —pra ¢ < T SR Tk Ty T T e O
ARa = 1.26.2y + 1) = Trlys kvuvelh— p1— p2)vp( k= = pa— )]
RNk —p )21k g o) Iy =P (581)

x (kl—1nfw*r[(k—pl)‘-milr'*’!(k—pl—,;7)1—1113]2""‘"‘“ =5F(k —py —pr—py)E —mi[=

AR 20 - L2y + 1) = Trlysvun (k= = b2)v)
x (kN[ —p1 )27+ [(k~py —p3)} |72 ~B=((k=p) —p2~p2)?]" (58¢)
(l:*—m“ )”((k—pljz—m‘r“”*‘((k—m _P”l_,n)ll-,-]u—m—h+ll(k-m —p2 _m)i_mIFZ ’ vog

A2a = 128 + 1,2y = V) = Triwvan1s( k= f1— pa~ )]

x (K0 {(k—p1 ] {(k—p1 = p3) |7 =8~ T+ (km py —py=p)?] (58h)
(K= mD) T3k~ p1 ) =m[ 7 ((k=py —pa)? ~mI - = T0-T+T{(k _py —p;—p3) T ~mI[7a *

L5

and so does for Afi + 1,5 - 1.{). By neglecting the mass terms in the numerators of the above

equations, and considering one by oue all cases from (58a) to (58h), we get

ik it LTS 1 1 1 1
——— A(20,20,27) = — —p7 + —p3 + =p? .
L5 L [ 28,231 = = el b1 + rh + 88) +ola)
Yy qeaq—-n—d 4 i
Ak 1 1 1 1
S Y [ AR - 1.28,29) = ~Trifwee (30T = 13P8 4+ 57p3) + ola)

:‘l d=0 =0 (271’)‘
L e R ] l . )
Y‘\_“\"/' A2 28 = 1,29) = =y =) — —<p =~ —p7) + 0l) .
astizt v 1 (0 (2020 = 1.27) = = om0l — 302 — q70) +ol0)
LTSk 1 1 1 1
—— A(2a - 1,2 , =_—— Zp% 4+ —p% 4 —p? ,
o=mz=:o oo/ e (2= 126+ L27) = — T uweo (gP1 + 1308 + 349%) +ola)
49 9-aq~a~3 A% { 1 1 t (59)
— A2 _ - -p? 4+ p? 4 —p7
ugly‘{;) ; /(2")4 A(20,28,2y - 1) 4"2€uuw(sl71 12?2 + 241)3) +o(g),
7 ~aq-a-f 4
d*k 3 1 1 1
—— A2 - 1,282y + 1) = —~— =p7 — —=p5 + =p%) + ,
gug) ;2:‘0 /(2 Ao = L2827+ 1) = = g uns (g0 = 1578 + g#8) +ola)
7 q-agq—a-8 rys 1 1 1 1
—_— 2 —-1.2 — e (NN - S . § adipoy- N
;g g /(2")4‘4( @, 26~ 1,2y + 1) 4"z‘uvw( 33 T 13P2 + 241’3) +o(g) ,
i q-”—fﬂ/ d‘_"A(za -4,20+1,2y~-1)= .__l_e " (LPi' + ip; + lpg) +olq)
astozo 4= (@t ’ 4x2 PP 94 12 8 '
Swmming over the contributions of egs.(59) yiclds
29 29-i2q—i-j
1 / ko 1
=3 Y | Al = — —5€up(p] +95) +olg) - (60)
Moo = @ 8n?
In the same way, for A(i + 1,7 — 1,1) we have
1 29 29-129—1—) ![‘k. 1
v )IDDI /’—‘(2,,)4A(* 1= L) = = e (P] +95) +olg) - (61)

izt g=1 (=0

Therefore, from (55), (60), and (61), it is easy to see that the anomaly arising from VVVA diagrams

is
Bvvva = = o (THTYTYTLTS - THTVTLTHGF + )
+Tr(Ty Ty TY TS - THTY TV T (] + p3)
+Tr(TYTY TV TS - TVTH TS T (6 +93)} - (62)

After a straightforward (but tedious) calculation, we find that for all other diagrams, the vector

Ward identities are preserved in our regularization method. And the anomalies are as follows:
» : a b me md ¢ mé mae md 4 4
Avaaa = o3 tuveo {(Tr(TY Ty TOTY ~ TL TV THTY) (0] ~ p§)

16




FTHTPTETETS - TETETE T 0] - 1)

~Tr(TETYTUTY - TUTETS TN AT +p) + )} . (63)
1
Ay = =3 v S e(abee)Tr(Ty T8 T T, TY) (64)
o all permu. of (nbce) .
1 .
S = ewse DL elaber) Ir(TYTYTL T TA) | (05)
all permu. of (abce)
1
AVV{‘/‘;‘ = l2;r‘z C;‘ym((zab“" + Zrlcbrd ¥ Zb,,nr:d * Zom]r:rl + chchll + uz:abﬂ.d)
~(a =)} . (66)

where Z%*¢ = Tr(T§ T} T T TY + TTL TS TS TY), and e(abee) = +1 for even permutation

of {abce), and e(abce) = —1 for odd permutation of (abce).

[n the coordinate space, the above equations (62), (63), (64), (65}, and (66), together with (50),

and (51), amount to the anomalous divergence equation of the axial-vector:

1

M ja 1 K 1 8
PI = e THTG P L + PP

2i 2i 2i
—?’A"A"F(;" - ?:-A“F","'A” - :—;F“,“’A"A" - gA“A"A"A”)] , (67)

which is exactly the famous Bardeen anomaly {3]. It should be noted that, unlike other regulariza-
tion methods {1, 2, 3, 11), in our method, there is no need to introduce any counterterms, since all
vector Ward identities are automatically preserved by the regularized amplitudes. As a result, the

direet ealeulations of the diagrams involving anomaly exactly give rise to the Bardeen anomaly.

5 Concluding Remarks

In this paper, we have studied the problem of how to analyze the chiral anomalies from the
intrinsic regularization method. In the framework of our method, with the help of the intrinsic
relations between the divergent diagrams and the convergent ones which we explained in refs. 17
and (18}, a divergent diagram is simply regularized as a limit case of the convergent ones which are
originally contained in the theory and share the same loop skeleton with the divergent one, and

"nothing else changes: Therefore, the ambiguity of shifting the integral variable in a linearly or more

highly divergent integral, which has been the only obstacle of verifying the normal Ward identitics

L7

related to divergent diagrams, is naively removed. and consequently all vector Ward identitics are
preserved in a much natural and intuitive way. As a inevitable result, the anomalies occurring to
the axjal-vector Ward identities are exactly the Bardeen anomalies, in no need of introducing any

counterterms.

We are to make a little remarks on this point. As is well known, since the chiral anomalies
were anadyzed from the path integral point of view [5] and geometrical point of view 6. 7. 8]
physicists have realized that the anomalies are actually inescapable non-perturbative effects. but
uot_merely artifacts of the regularization as a result of the violation of some symmetrical and/or
topological properties of the original theory. Even so. various regularization methods still affect
the results of the calculations of the anomalies in their own ways. [t turns out that different
regularization methods yield different sets of anomalies, and in general both vector Ward identities
and axial-vector Ward identities are violated after the regularization. Only through a procedure of
introducing various counterterms to the diagrams involving anomalies to restore the vector Ward
identities which are vital to renormalization of the theory, can we extract the “real anomalies”
which are independent of the choice of the regularization method. What we would like to comment
is that although the violation of symmetrical and/or topological properties of the original theory
resulting from the regularization does not account for the existence of the anomalies, it does account
for the difference between the anomalies obtained from different regularization methods. With this
regard, we should not be surprised about that our method directly yields the “real anomalies” in
no need of introducing any counterterms, since the method is “intrinsic” from the viewpoint of
the standard model, that is to say, there is nothing changed, the action , the Feynman rules, the

spacetime dimensions etc., are all the same as those in the original theory.

Appendix: Integral Expressions of the One Loop Diagrams
In Gauge Theories Involving Chiral Anomaly

"There are a number of one loop diagrams in gauge theories involviug chiral anomaly. In Abelian
gauge theory, only two kinds triangle diagrams involve anomaly, i.e., VVA, AAA triangle diagrams.
[n non-Abelian gauge theory, not only VVA, AAA triangle diagrams, but also VVVA, VAAA
box diagrams, and VVVVA, AAAAA, VVAAA pentagon diagrams involve anomaly. All of these
diagrams are illustrated in Fig.2-Fig.8. In what follows we present the integral expressions of the

regularized diagrams in the momentum space.

1. The regularized integral expressions for VVA diagrams in Abelian gauge theory as shown in
Fig.2:
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For Fig.2a, we have
g Q-1

. 2
T, P2 ) = l‘v_,z: STTR (m, 2 @)

1=t y=1) . "
20 = (68)

= ‘Il"’-l—z Z/ ';I,T ['7'['71: p:,—"):'l_‘_} H'Yu(y_'yl,_m)wtYﬂ"/“x(y‘,.yl,—m)lHl'

izl =0

where N, = 5('1 + Mg +2) is the total number of possible ways in which the inserters are inserted.
The regularized integral expression for Fig.2b can be obtained from (68) by interchanging (i, p;)
el (v, pg) with each other.

2. The regularized integral expressions for AAA diagrams in Abelian gauge theory as shown in
Fig.J:

For Fig.3a, we have

29 2q-t
pvp(ph D2 1 /‘) = eﬂ_z z yp(pl, P2; q)z]
2q 2q—i =0 =0 2q—i=j+1 i+l i+l (69)
=% L L [ s () W) wn(pi=m) |
1=0 j=0

where N, iy the same as that in (68). The regularized integral expression for Fig.3b can be obtained

from (69) by interchanging (4, p1) and (v, p3) with each other.

3. The regularized integral expressions for VVA diagrams in non-Abelian gauge theory as shown
in Fig.4:
The regularized integral expression for Fig.4a is just that for Fig.2a, i.e., cq.(68), multiplied

by a color factor Tr(T%TYTY): Tr(T% '{,T",)T‘f‘p(m, P2 i 1), And the regnlarized integral
expression for Fig.dh is Tr(T8TE ) ,,'m(pg, I O R :

Lo The cegnlarized integral expressious for AAA diagrams in non-Abelian gaage theory as shown
in Fig.5:

The regularized integral expression for Fig.5a is just that for Fig.3a, e, cq(69), multiplicd
by a eolor factor Tr(T4THTS): Tr(TY T"lT"‘)I""ffp(pl, P2 o i), And the regularized integral

rxpression for Fig.5h is Tr(TﬁTf‘.T‘Jﬂﬁ,(m. U T m).

5. The regularized integral expressions for VVVA diagrams in non-Abelian gauge theory as shown
in Fig.6:

19

For Fig.6a, we have

. TT(T'\l/T?/ ) ;wpq(plv P2, Py oq /‘)
29 2q—-12q—i-j

=TrTYTYTL TSRS Y. 3 TR (o1, p2, 23 i

=0 j=0 =0
2q 2q—i2q-i-j (70)

= STHTPTL T TS S S /WTrH”‘V ,,_,,,)'“v‘.(A,_—‘,[—_—,;)P'l
. =0 3=0 (=0

g—f—j—1] 1+1
n 1 : 1
%% gty 7"(F7--;'TVFR) h
N\
where Ny = g+ 1){g+2)(g+3). The regularized integral expressions for Fig.6b-f can be obtained

from (70) by permuting (4, a,p1), (v,b.p2), and (p, ¢, p3)} in all possible ways.

6. The regularized integral expressions for VAAA diagrams in non-Abelian gauge theory as shown
in Fig.7:

For Fig.7a, we have

Tr(TyTY TS T, 00 (P11 P2, Py @ 1)
29 2q-i2q—i-j

THTYTY TS TS S 5 TR (o, p2, 23 i
i=0 j=0 (=0 71
2% 29—i2q~i-j NES | ( )

24 J+1
STr{TPTATY TG Y. 3. 3 /m—zTrhm _,) W(B—#H)

i=0 j=0 (=0

)ZQ—l—J l+17p75( — ;_”—m)ﬂ-l]l

0

i}

1
Sgdt=m"=r

where Ny is the same as that in (70). The regularized integral expressions for Fig.6b-f can be

obtained from (71) by permuting (i, a,p1), (v,b.p3), and (p, c.ps) in all possible ways.

7. The regnlarized integral expression for VVVVA diagram in non-Abelian gauge theory as shown

in Fig.8a:

TT(T’:/T?/T‘(./ ) uvpfa(ply D2, P2y PAS O l‘)
| W~i2p—i-3 2g~1—j-1

=THTPTLTYTL TS S S 3 TR, (py P2 23, PG Digts
1=0 =0 (=0 y=(} ( )
2q 2q—i2q—1~j 2q—-i—j—t

STATHTTTNY Y 3 L @ Trhen(ss) " w ()

i=0 j=0 (=0

t(ptam) o)

2q-l-]—f—s+l

w(rrmim=s) b

where Ny = (¢ + 1){q +2)(g + 3) (g + 4).

20




8. The regulacized integreal expression for AAAAA diagram in non-Abelian Eange theory as shown

i Fig.8b:

[""Tf\Tf'\T.'\T'.'lTf‘\)T'.ﬁ,,m(l'lv Pnopn P 4 ge)
dg 2q-12q~i-) 2q~-i~j-1{
4 1o 1 d i
Ir(T4 T T, T T )‘TZ > o5 Z Trtors (Pt D20 P31 P43 Digts
=0 j=0 =0 ey
_' 2y g x-q t—j gty S e G (73}
- b e e - ¢
=TATYTO T T TS5 Y 3 /WT"‘W‘? =) (i)
e S S var
2g—t-j—l—9+1
)

; ' 231
<7"75(F—m—v1-m) 7"75(7-;'1—9’1—#3—"1

. | 1+l
() b

where IV, is the same as that in (72).

). The regularized integral expression for VVAAA diagram in non-Abelian gauge theory as shown

in Fig.8c:

T"(T@TQ/Tf\TﬁT:‘\ T”vafa(plv D2, P3, P 04 /‘)
2 2q-i29—-i~j2q—i—j~

= Tr(rrﬂ T‘/:\TQT )%zlz Z Z Z uvp'rﬂ(plv P2y P3y P4 q)i;'h

i=0 j=0 (=0 =0

2 29 2q—229=1-3 2p—~1~j— J41 41 (74)
=Tr(T% T T4 TS T )%—Zo E Z E /WTr['y,'yg,(y—) 7“(7—7:—-7)
=0 3=0 (=0 =

+1 2,,-. J=l=ss1

x7v(17-71~|7'—7t) "Ya’Ys(y:;rq,—,;-,;) 71'75(Fw_ﬂ__w):+|]‘

where NV, is the same as that in (72).
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Figure 2: The VVA triangle diagrams in Abelian gauge theory needed for calculation of the anomaly.
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Figure 3: The AAA triangle diagrams in Abelian gauge theory needed for calculation of the
anomaly.
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Figure 4: The VVA triangle diagrams in non-Abeliau zauge theory needed for calculation of the 3 ~Pt 2+ pa) P3 ~(rtp2tm)
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Figure 5: The AAA triangle diagrams in non-Abelian gauge theory needed for calculation of the
non-Abelian gauge anomaly.
Figure 6: The VVVA box diagrams in non-Abelian gauge theory needed for calculation of the

non-Abelian gauge anomaly.
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Figure 7: The VAAA box diagrams in non-Abelian gauge theory needed for calculation of the

non-Abelian gange anomaly.
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Fig.8a VVVVA diagrams

—{p1 4+ p2 +pa +pa)

+ all possible permutations of

TAYu7s {(app), (bvp), (cppa), (eTpa)}

Fig.8b AAAAA diagrams

—(p1 +p2 +p3 + ps)

+ all possible permutations of
{(a Hn pl)v (b v p2)7 (C 4 p-"’)v (6 T p'l)}
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Figure 8: The pentagon diagrams in non-Abelian gauge theory needed for calculation of the non-

Abelian gauge anomaly.
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