EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - Hee CERN LIBRARIES, GENEVA

B L Rt
| LCRB Status Report/RD13

B00005934 1 August 1995

Status Report of

A SCALABLE DATA TAKING SYSTEM
- AT A TEST BEAM FOR LHC

C.P. Bee! R Jones, 8. Esggm ,S.K 1os C. Maidantchik?, L Mapelli’,
G. Mormacchi®, M. Niculescu™, A. Patel D. Pngent R. Splwoks I. Soloviev*
CERN Geneva Switzerland

M. Caprinig, P.Y. Duval, F. Etienne, D. Ferrato, A. Le Van Suu, Z. Qian,
S. Tisserant, F. Touchard
Centre de Physique des Particules de Marseille, IN2P3, France

1. Gaponenko, Y. Merzliakov
Budker Institute of Nuclear Physics, Novosibirsk, Russia

F. Harris, S. Hunt
Nuclear Physics Laboratory, Oxford University, Oxford, United Kingdom

G. Ambrosinim, R. Ferrari, G. Fumagalli, G. Polesello
Dipartimento di Fisica dell'Universita' e Sezione INFN di Pavia, Ialy

. Now at University of Zurich, Switzerland.
. Now at University of Utrecht, The Netherlands.
. On leave from the Petersburg Nuclear Physics Institue, St. Petersburg, Russia
. Also with Federal University of Rio de Janeiro, Brazil.
. Spokesperson.
. Contact Person.
. On leave from School of Computing and Information Systems, University of Sunderland, UK.
. Also at the University of Dortmund, Germany.
. On leave from the Institute of Atomic Physics, Bucharest, Romania.
10. Now at University of Bern, Switzerland.

P
O 0N A WD e

NIRINYY

1 Introduction

Approved originally in April 1991 for the study of an LHC oriented data taking system [1], the RD13
project has now completed the fourth phase of its development according to the plan proposed and
approved in June 1994 [3]. We recall the main objectives of the project:

The construction of a Data Acquisition (DAQ) framework which satisfies requirements of scalabil-
ity, modularity and openness and serving as an ideal environment for:

R&D studies of full architecture solutions (modelling) and of their building blocks, such as event
building and processing systems for high level triggering.

The use of real-time Unix operating systems as one such building block, especially when coupled
to RISC technology.

The study of integrating commercial software products as cost effective solutions for the develop-
ment of big complex systems.

The exploitation of software engineering techniques to establish their suitability for DAQ software
design and developments.

Such investigations are more effective if performed in a realistic environment. It is, therefore, a fun-
damental requirement of RD13 that a fully operational DAQ system, based on the elements outlined
above, be developed in versions of increasing performance and functionality and used as a data taking
system of LHC detector prototypes.

This report consists of two parts:

Part I gives an account of the activities performed and the results obtained. It is structured in 4
main chapters:

. The RD13 DAQ system: where we give an overview of the evolution and the use of the RD13

DAQ in test beam runs.

. Laboratory developments: it describes the major activities studying DAQ hardware and software

components.

. Architecture Studies: a combination of modelling and prototyping work has been performed in the

context of the event builder, level-2, level-3 sub-farm and a generic architecture for the DAQ of an
LHC-like experiment.

. Object Oriented Software Development: the evaluation of software technology has mainly been

focused on object oriented systems. Both on the development side, methodologies and associated
CASE tools, and in the area of data bases.

Part II presents an assessment of the RD13 project achievements and ideas on how the results
could be carried over to and exploited in an LHC experiment.

PART I
Activities and results

2 The RD13 DAQ system

2.1 Working Principles

In order to put into context the following sections, we briefly remind the basic working principles of
the RD13 DAQ system [3]:

» The system is organised in terms of a front-end component, dealing with the read-out and data
flow, and a back-end component, responsible for development, data bases, user interface, monitor-
ing and controls.

+ Data bases describe the hardware, the software and the read-out configurations of the system.

* The data flow is driven by a flexible protocol covering both the main (from detector to recording
medium) and the analysis (sampling for monitoring purposes) data streams.

» The main data flow can be configured either to directly read-out a detector (single detector mode)
or to merge data produced by detector specific DAQ systems (multi-detector mode). Multi-detector
mode is supported by an interface (hardware plus portable software) and by an optional RD13
local DAQ skeleton.

* A hierarchical control system supports, via data base descriptions, various configurations.

* A number of ancillary sub-systems, €.g. message distribution and browsing, status display etc.
complete the DAQ.

2.2 DAQ Evolution

The RD13 DAQ system has evolved to cope with the demanding requirements of a configurable
malti-detector setup. This has happened through a number of test beam runs with different detector
R&D’s in summer 94, culminating with a combined run of several ATLAS sub-detector prototypes in
September 94. This version of the RD13 DAQ system was left in the H8 test beam area and it is cur-
rently used by ATLAS sub-detectors during 1995. Further DAQ developments are introduced in the
test beam system when ready for production and when the need arises.

2.2.1 New Features

Since June 1994, a number of functions have been completed and new features have been added,
namely:

 The support for scaling in the number of detectors (data sources) has been completed to include:
merging of data coming from local detector acquisitions (event building), configuration description
in terms of data bases, support for the control of multiple acquisition systems by the run control
module.

PART | 4

* The system, as mentioned above, is configurable via data bases and supports (both in the pure
acquisition and in the run control) stand-alone (one detector only taking data without a data merg-
ing stage) and multi-detector setups.

* The Fast Data Link (FDL) hardware system [4] from CES was integrated, as an optional alterna-
tive to the VIC8251 [5] based data merging.

* The recording sub-system was enhanced by two new features:

. support for labelled tapes (when recording data locally in the test beam area), and

. integration of the central data recording system (recording events directly to the CERN computer

centre) developed by the CN division [6].

* The run control system has been enhanced, in addition to the developments required by the multi-
detector setup, by a centralised user interface system and a process control package.

* Object oriented technology has been extensively used in the area of data bases:

1. Two new data bases, the first to manage status and error messages [TN137] and the second to
maintain run bookkeeping information [TN141], have been developed based on the OMW [45]
CASE tool.

2. Editors for existing data bases, e.g. the hardware description data base [TN155], have also been
developed using OMW.

3. The data bases originally implemented with QUID [16], [3] were re-implemented with the
ITASCA OODBMS [47].

* New graphical products [7] were used to improve the status display and the event dump programs.

BN —

2.2.2 Test Beam Runs

The RD13 DAQ system has been in continuous use, since June 1994, by ATLAS detector prototypes
for their runs in the H8 area. The setups have included different configurations both in single and
multi-detector mode.

* The ATLAS hadron calorimeter (Tile calorimeter) [9] in June 1994

* The ATLAS transition radiation tracker (TRT) [8], silicon detector [10] and second level trigger
prototype [11] in June-July 94.

* The Tile calorimeter in July-August 94.

* The TRT in August- September 94.

* The combined ATLAS run, including the Tile calorimeter, Liquid Argon (Lar) calorimeter, TRT
and micro-strip gas chamber (MSGC) detectors, in September 1994,

* The Tile calorimeter in May-July 1995.

* The TRT in July-August 1995.

The first series of test beam runs (in the period June-July 1994) was used, by RD13, to validate in real
life the multi-detector system built and tested in the laboratory as wall as a means to produce perform-
ance figures in real-life conditions. Of course this was done without disturbance to the detector data
taking.

We will not go into any details of the different detector setups. Figure 1 shows, as an example, a
sketch of the 1994 ATLAS combined test beam run. We wish nevertheless to highlight a few general
points on the system. The system was ready on schedule, fully functional and behaved reliably. The
performance was more than adequate, in certain cases was even an order of magnitude higher than
required. The process of integrating into the multi-detector configuration different (and fully func-

Activities and results 5

tional) DAQ systems, such as those of the LAr calorimeter and the MSGC detector, proved to be sim-
ple and smooth.

Figure 1 Example Multi-detector configuration

To RD3, MSGC and Level 2 Crates I
To RD6

A v
| L C I
C DDl O N
C Al R T
E 8 AQ] B E
2 L O R
S T 5 F
y ! 1
SUN §; -
c pare I% | | | To trigeer Lagic
E I
b To RD34
V
I | C 1
C DD| O N
C Al R T
8 Lol B E
2 L o R
5 F
1
1 | To trigger L ogic

Tatrigeer Laogic

owwon []

Mo —cw

3 Laboratory developments

3.1 Platform Independence

The activities in the area of platform independence and real-time operating systems have continued in
a number of directions: the completion of the DAQ porting to platforms running LynxOS, the port to
the Solaris operating system and the use of VME boards running workstation-like operating systems.

The RAID 8235 [13] card with EP/LX [22] is a stable product, no new releases of EP/LX have been
installed. It is routinely used for production in the test beam, we foresee it can remain one of our main
production platforms for the next 2 to 3 years.

The full RD13 DAQ port to LynxOS [23] for the Motorola 680x0 CES boards has been completed.
The FIC8234 [26] and the VCC2117 [28] boards, the first is a generic VME based processor board
and the second combines CAMAC and VIC interfaces, can today be used as local detector DAQ
processors. The FIC8234 may also be used to run the full RD13 DAQ. This exercise included the port
of all the commercial software products which are used by the RD13 DAQ, including ISIS, QUID

Adtivities and results 6

and the ITASCA client component. Simple recompilation was not enough and some substantial effort
was needed, thus reinforcing our initial impression that the UNIX compatibility of LynxOS is not at
the same level as that of EP/LX. On the pure real-time aspects of the system, the opinions expressed
in [3] still hold.

In spite of the above reservations and given the very unlikely availability of EP/LX on platforms dif-
ferent from the RAID 8235, the porting exercise to LynxOS is a basic step in the direction of upgrad-
ing the system to use modern processor hardware (such as boards based on the PowerPC chip [29]).

The porting to the Solaris [30] operating systems was performed, thus widening the spectrum of plat-
forms usable for the RD13 DAQ. The conversion of the basic RD13 DAQ software was done with
minimal work, the temporary unavailability of some of the commercial products prevented us from
running some of the DAQ components in native mode (but they can still run in SUNOS 4.x emulation
mode).

VME boards based on processors running “standard” workstation UNIX systems, such as HP-UX or
Solaris, are of interest for two main reasons:

1. Economy: they combine workstation functionality and VME interface more cost effectively than a
full workstation with a VME interface. They are a convenient alternative as back-end “worksta-
tions”.

2. Real-Time aspects: commercial software products are increasingly pervasive in the DAQ. They are
readily available to the UNIX workstation market, but the same is not necessarily true for niche
market operating systems such as LynxOS or real-time kernels. Hence the need for substantial (and
expensive) porting efforts. The possibility of using for many of the front-end functions a worksta-
tion-compatible VME board would greatly reduce DAQ maintenance and porting costs.

We have explored in these directions by means of two VME boards: the HP743rt [31] (running HP-
UX) and the Themis SPARC MP [32] (running Solaris).

Their integration as back-end workstations with VME access was simple since our system already
runs on both HP-UX and Solaris; the only development involved was the implementation of our
VME access library for the Themis card.

The real-time aspect is more complex, and it depends on a re-assessment of both the real-time
requirements for a next generation of DAQ systems and medium term futire for commercial and
standard operating systems. Some initial exploration is being done based on the combination of a
Themis card with the Solaris operating system. This latter promises to have real-time capability.

RD13 has been working in the area of real-time, UNIX-like, operating systems throughout its entire
life-time. Bearing in mind the objectives and the time scale of the project, we can draw the following
conclusions:

* The initial decision of using a real-time UNIX system was important to the success of the project.
We could benefit from the best of two worlds: few microseconds to few 10s of microseconds for
the most important system operations (such as interrupt response, context switching, synchronisa-
tion, etc.) while maintaining a very high degree of compatibility with workstation operating sys-
tems.

Activities and results 7

» The choice of LynxOS, first in its EP/LX incarnation and than in its “pure” form, showed to be the
correct one. When we started the real-time UNIX market was in its infancy, today LynxOS has
emerged as the most widespread product.

 In a production context, such as a test beam environment, an approach based on LynxOS will
maintain its validity in the medium term (2-4 years).

* Inthe long term, in particular with respect to the LHC time scale, a POSIX-like interface [24], [25]
seems today the best effort towards standardisation. Nevertheless we should keep an open mind.
Consideration should be given to other operating system environments. Such as WindowsNT
whose penetration might grow beyond the personal computer application, and operating systems
based on micro-kernel technology, which possess an attractive technical potential.

3.2 Fast Data Link

The Fast Data Link (FDL) 8050 [4] hardware system was, following some initial evaluation work
[TN138], integrated as an optional alternative to the VIC8251 based data merging. Performance
measurements were made in order to assess the potential of the FDL system to provide high speed
transfers in the DAQ environment.

3.2.1 Event Builder Application

The event builder merges the different pieces of data corresponding to the various detectors (sub-
events) and stores them in a memory buffer. The detector raw data are initially stored in memory
modules of different VME crates (local DAQ buffers), supervised by a standard buffer manager. An
FDL 8050 module is associated to each local DAQ and it is chained to another FDL 8050 module
playing the role of the data merging hardware.

For each event to be built, the event builder module collects information of where the sub-events are,
issues an FDL transfer request per sub-event and then waits for the interrupts signalling the comple-

tion of the transfers. The above functions are supported by a software library [TN142] built on top of
the CES provided firmware.

The FDL system supports a rich set of transfer modes [4], the VME block mode! is the one which
suits our application. Parametrisation, in terms of VME transfer mode (D32 or D64, block size? from
4 to 1024 bytes) and flow control on the FDL line, is possible. The selection of the parameters
depends on the hardware being used (VME modules may or may not support D64) and on the size of
the sub-events; results from measurements (see section 3.2.2) can be used to select appropriate values
for the above parameters.

1. This is the simplest type of transfer mode: the FDL system is required to copy a block of VME memory from a VME
crate to another piece of memory.

2. The VME block size defines the maximum size (in bytes) for an atomic transfer on VME, the larger the block size, the
faster (potentially) is the transfer on VME.

Activities and results 8

3.2.2 FDL Performance Measurements

The performance of the FDL 8050 system has been studied with the objective of understanding both
its general behaviour and its use in the context of the DAQ event builder application.

The results from the analysis of the basic FDL behaviour are reported in [TN138]. Performance in an
event builder-like environment has been studied both by means of a skeleton data transfer program,
reproducing the data merging functionality of the event builder, and by using the full DAQ system
configured to run with the FDL. In both cases the VME block transfer mode is used.

Figure 2 shows results obtained with the skeleton program running on a RAID 8235 and moving data
either between RAID 8235 memories (for the D32 transfer mode) or between FIC 8234 memories
(for the D64 transfer mode). We have measured the time between issuing a transfer request and its
completion; this time includes both the actual FDL transfer time and the entire overhead involved by
requesting a transfer and receiving the completion confirmation. Measurements were made with dif-
ferent values for the transfer parameters: D32 or D64 mode, various VME block sizes, enabling or
disabling flow control on FDL! and of course with different “event” (amount of data to be transferred
by the FDL system) sizes. In Figure 2 we show three parameter settings with the largest allowed
block size (1024 bytes), using D32 or D64 mode and with or without flow control. We also show a
performance curve for D32 mode, block size of 64 and flow control; a realistic parameter setting for
the DAQ system and the one used by default with the full RD13 DAQ. Figure 2 suggests a number of
observations:

* For small messages (up to a few Kbytes) transfer rates of a few Mbytes/second are obtained, with-
out any dramatic effect when varying parameters (e.g. when comparing D32 and D64 we do not
get an improvement close to a factor of two until messages of over a few 10s Kbytes are trans-
ferred). This indicates that a substantial overhead is involved: part of it is software related (the pro-
gram is going through a library and needs to initialise a number of FDL registers) but a sizeable
fraction is due to the hardware. As a confirmation of the above, when we measure the transfer of 4
bytes, in either D32 or D64 mode, we get a transfer time (which we estimate to nearly all over-
head) of about 500 microseconds.

* While flow control has little effect for messages up to 10Kbytes, it does influence performance for
larger message sizes. A difference close to 50% in favour of the case without flow control is seen
for messages larger than 100Kbytes. Disabling flow control seems to be the means to reach high
speeds, however this may lead to reliability problems.

1. Flow control is related to when an FDL module decides to transmit the next packet towards a destination; with flow
control enabled the source FDL module waits for an acknowledge on the previously sent packet. When flow control is dis-
abled, the acknowledging mechanism is not used. This latter option leads to the highest transfer rates, in particular in D64
mode, but its use is discouraged by the manufacturer which suggests reserving its use for broadcast operations only.

Activities and results 9

» The VME block size also has an effect on the transfer speed, we show in the following table the
transfer rates for different block sizes in D32 and D64 modes without flow control. While D32

Table 1: Mbytes/sec as a function of VME block size for D32 and D64 transfers.

VME Block Size D32 D64
64 17.5 233

128 17.8 303

512 20.6 34.7

1024 21.9 39.2

mode is not too sensitive to block sizes, the opposite is true for D64. The choice of the block size is
therefore another important parameter to be tuned to the application’s needs.

As a final remark, the maximum performance is obtained for messages of several 100’s Kbytes, in

D64 mode, with a 1024 VME block size and without flow control. In these conditions we measure a
speed in excess of 39 Mbytes/second.

D32, Flow Cartrol; BLKE4-

D32, No Flow Controk, BIK1024;
D64, Flow Control; BUK1024 -
D64, No Flow Céntrok, BLK1024:

Tronsfer Rate (MB/s)

- : :
o"hiil idoa il 10 i iiiiak Lodiiiiial

1 10 10% 10°
Event Size (KByte)

Figure 2 FDL Performance Tests

Activities and results 10

Laboratory measurements for transfers using the full DAQ system are shown in Figure 3 where the
DAAQ is configured to read out one sub-detector using the FDL system.

For the lowest curve, the detector memory resides in a RAID 8235 (sub-detector memory) and the
event is built in the memory of another RAID processor. The results shown refer to a selection of the
parameters corresponding to D32 mode, flow control enabled and VME block size of 64 bytes (as for
the set of measurements marked with a square in Figure 2). As far as the handling of the FDL transfer
is concerned, the main difference with respect to the case of Figure 2, is the fact that now the DAQ
event builder receives interrupts signalling the end of a transfer (as opposed to polling a status bit).
The use of the interrupt is justified by the fact that the RAID processor is shared by the event builder
with other activities (e.g. recording). At large message sizes we find the same results as with the skel-
eton program, the same is not true for small message sizes (up to about 10Kbytes). The additional
overhead experienced, because of the DAQ inter-process synchronisation and the interrupt handling,
is responsible for this discrepancy.

The two other curves refer to setups potentially providing the maximum performance, but whose reli-
ability in the context of the full DAQ system has yet to be studied. They are related to the use of FIC
8234 as memory modules, without flow control and with a VME block size of 1024: one refers to a
D32 transfer mode, the other to the D64 case.

FDL Performnancs Tests (Evant Bullder Application)

Transfer Rate (MB/s)

R
10° 10
Event Size (KByte)

0 Ciiil L dadiail i il

1 10

Figure 3 FDL performance (RD13 Event Builder Application)

Performance wise the use of the FDL system is not cost-effective in the case of small sub-events (few
Kbytes) and low rates (few hundreds of events per burst) typical of today’s test beam applications.
The basic overheads involved are relatively important. The global overhead in excess of 500 micro-

Activities and results : 11

seconds we have measured can be probably improved by some optimization in software. However
tests made by ECP/ESS group [33] also show the existence of a substantial overhead in the FDL sys-
tem itself and they reach similar conclusions.

The FDL system, however, is an interesting option and justifies further investigation for a number of
reasons.

* When several sub-detectors are being read-out it provides an aggregate bandwidth higher than the
VIC, multiple event transfers could be initiated concurrently and of course the FDL option is a val-
uable solution for large sub-events. For these reasons we will provide optional FDL support in the
current DAQ system, with the possibility of optimising the choice of parameters as a function of
the detector configuration.

* We have replaced the data transfer algorithm with FDL driven transfers. However the migration of
more “event builder” functionality into the FDL can be envisaged. The separation in the FDL
firmware between the protocol handling and the data transfer handling makes possible to imple-
ment the whole data merging algorithm directly in the FDL firmware.

* The FDL system has potential use elsewhere in a DAQ system; for example as a data distributor in
a sub-farm.

3.3 Run Control and DAQ User Interface

Progress in he control and run time management of the RD13 DAQ was achieved in several areas: an
improved control scheme, to cope with multi-detector DAQ requirements, a generic DAQ user inter-
face and a distributed process management package.

3.3.1 Run Control Library and Scheme Evolution

The step to support scalability in terms of detectors and the heavy use of the system in the test beam
lead to additional requirements for the run control system. This resulted in the addition of new fea-
tures to both the basic run control (RCL) library [TN94] and the control scheme.

Detector selection, The possibility to dynamically (i.e. at start of run) select/remove detectors in/from
the event builder read-out had to be complemented by a similar function related to detector control
modules.

Detector Control, The integration of several detector DAQ systems, some of which were developed
independently from the RD13 DAQ), resulted in the extension of the run control scheme and features.
The notion of a local, detector specific, control module was introduced as an integral part of the hier-
archical control tree [TN94]. Additional control task types (e.g. processes to be activated at start or
end of run) were introduced to cope with specific detector actions to be executed upon the occurrence
of a control event (e.g. an end of run).

Integration methods. The integration of new services (e.g. DMW, tape labelling) and features (local
controllers) resulted in a further assessment of integration problems. This lead to a useful review of
the internal organisation of the run control system.

Activities and results 12

Coherency Maintengnce. The introduction of problem diagnosis and recovery in the run control sys-
tem is still too ambitious a step for the current system. Nevertheless some degree of “coherency main-
tenance” was introduced (e.g. to recover from the situation where a detector control sub-system
makes a state change inconsistent with the state of other detectors.)

Special Messages. Some new functions were added to the run control library to enable control mod-
ules to send each other application defined messages and use private (one-to-one or one-to-many)
information exchange protocols. This facility is used for instance by the run control to inform the
DAQ main window (DMW) of local acquisition process creation or death.

Debugging Facilities. The need was felt for a facility to exercise the run control system in stand alone
mode (i.e. without the presence of the whole DAQ). Such a tool was developed and used for debug-

ging purposes.
3.3.2 Run Control User Interface

The issue of a generic, non-expert oriented, user interface to the control of the RD13 DAQ was tack-
led with the primary objectives of:

* unifying the access to the interactive interfaces of different DAQ components (e.g. data bases),

* running the DAQ system from a simple (e.g. hiding the complex, distributed nature of the system),
yet fully functional, interactive program and

* providing a dynamic, synthetic view of the status of the DAQ

The DAQ Main Window (DMW) component [TN152] was thus defined and developed. It is cur-
rently in use in the RD13 laboratory to provide:

* selection of system configurations (data bases),

* initial DAQ startup, DAQ state change (e.g. run) push-buttons (Figure 4.),

* run state information (updated dynamically, Figure 5.) and

* access to all DAQ utilities (e.g. status display, monitoring tasks, etc.) via pull-down menus.

Activities and results 13

Figure 4. DMW main window

Cantrol Statw Pwums Display Tesks Datadrases Message Browser Monitors Servies Help

DAQ Configuration: TILES

State: RUNNING

Command Next State
Run Number: 144 Pause .] PAUSED
Run Mode: Triggers Al | SETUP
Recording: Disable Stop | CONFIGURED
Max Events: 20 00000000 -

“1 RUNNING
RUNNING

Number of Bursts: 0
Number of Events: 0

~ et etet v

DMW integrates several commercial packages including Motif graphics, ISIS and data bases. This
resulted in a number of integration problems since different tools promote different styles for steering
and organising programs. In the end a compromise was found limiting the use of a tool’s functionality
to that which can coexist with other products.

Figure 5. Run Status window

Higs Status

ING.

DMW is driven by the various DAQ data bases, so as to cope with all possible DAQ system configu-
rations. Given its slow real-time requirements (i.e. it should respond before the user becomes impa-

Adtivities and results 14

tient) such a module would greatly benefit from maintaining the DAQ status in a distributed data base
management system.

3.3.3 Distributed Process Management

Process management is a major issue in a distributed, heterogeneous system such as the RD13 DAQ.
While the possibility to create processes on remote machines is the minimal requirement, application
flexibility needs more control on spawned processes such as the capability to delete created proc-
esses, to be (asynchronously) notified when they terminate and possibly to deliver UNIX signals.
That is to say the major functions provided by an operating system such as UNIX.

Our initial process management was based on the UNIX remote shell (rsh) facility to create processes
on remote machines. This was simple to implement but does not fulfil all of the requirements and
leads to additional drawbacks in terms of performance and system resources (two additional proc-
esses are created by the rsh facility for each process created).

An application program interface (API) was therefore defined [TN128]:

1. To fulfil the process management requirements outlined above.

2. To interface to our “software description” data base [3] to identify programs by name, to retrieve
static information (e.g. the machine where the process should run) and to store dynamic informa-
tion (e.g. process id, state, etc.) if a truly distributed DBMS were available.

3. To support a user interface to monitor and control processes interactively.

A first prototype was implemented using the ISIS resource manager facility [3]. The batch oriented
nature of the ISIS Resource Manager lead to an implementation suffering from a number of draw-
backs, in particular performance and status information.

A second prototype was implemented based on the basic ISIS [15] toolkit. It consists of server proc-
esses, running on each of the DAQ machines and responsible for the process management on that
machine. Commands and messages are exchanged between servers and client programs requesting
their services. This implementation has acceptable performance and is being integrated in the RD13
DAQ.

This work has to be pursued to assess the functionality required, the integration problems and the
issues related to scaling. While the solution adopted is satisfactory, a commercially supported product
would be more suitable.

3.3.4 Run Control Open Issues
The system control area is a topic open to more study and development. A number of issues have not
been investigated or need some re-assessment.

* More” intelligence™ in the control system, to also look after incoherency that may occur as a result
of user requested actions.

Activities and results 15

* We have to define a better signalling protocol between the users and the RCL system. The system’s
reaction delays are variable and it is sometimes difficult to know if the DAQ system is definitely
stable in a given state, still trying to execute a command or engaged in an automatically triggered
transition.

* We have also to assess the option of having the coherency management distributed, as it is today,
or centralised.

* MACRO commands (a list of low level RCL command execute by operators or programs as one
command) would also be a useful feature.

* On the user interface side, a simple end user interface to monitor the whole DAQ system would be
helpful.

* A number of improvements could be envisaged to the current basic control software and to the
control model. Such as more debugging facilities and improved system coherency management.

3.4 Data Bases

The management of information has continued to be a major issue for our research. We have focused
our work on the evaluation of Object Oriented (OO) technology.

» The conversion of the existing RD13 DAQ data bases to use the ITASCA [47] Object Oriented
Data Base Management System (OODBMS) was done. This includes both the schema design and
the implementation of the data base access library [TN11]. A version of the DAQ using ITASCA
for one of the data bases runs in our laboratory. This exercise allowed us to make progress in our
understanding of how OODBMS can be used in our environment: in particular in the area of per-
formance and software integration.

* An OODBMS has a rich set of features, more than required in our application field. We considered
worthwhile to investigate the possibility of using OO techniques, such as those provided by a the
OMW CASE tool [45], to provide persistence to application programs. Thus combining run-time
performance (as given by our early QUID data base environment) with a powerful OO environ-
ment. Two new data bases, with associated utilities, were developed with the above objectives in
mind: one to manage error messages and a second to maintain run bookkeeping information.

* OMW has also been used to implement a powerful browser for the hardware description data base
[TN155]. The browser uses the access library to interface to the data base, it can therefore be used
with either the QUID or the ITASCA implementation.

The technical details related to the points above are presented in section S.

3.5 Central Data Recording

The central data recording (CDR) system, available from CN/PDP [6], was integrated into our DAQ
in collaboration with the CN/PDP group.The implementation was driven by the following require-
ments:

 Support the foreseen test beam data rate of a few MB'’s per spill, leaving the option of a high per-
formance (several MB’s per second) CDR system to the future.
* Minimise the interferences to the existing systems, that is our DAQ and the CN/PDP CDR.

Activities and results 16

* Maintain the existing local recording in our DAQ and provide the possibility of switching between
the two recording options by acting on the standard run control panel (e.g. by switching “recording
devices”).

Given the above requirements we decided to take the following steps.

1. A minimal coupling between DAQ and CDR; the DAQ writes files (named with the run number)
on a local disk (which provides a local buffer of a few GB’s). The CDR software accesses this disk
and takes in input the files produced by the DAQ. Status and error messages produced by the CDR
are routed to the RD13 error message facility via a simple program.

2. The use of ethernet as the transfer medium between the experimental area and the computer centre.
The available bandwith is at the moment satisfactory and we did not see any need to immediately
choose expensive solutions based on different protocols and media.

The CDR stages the run data files first on disk, on the computer centre side, and then copies them to
tape streams (for example the same file may go to a 1GB IBM cassette, for analysis, and to a DLT
tape for backup purposes). The CDR is configured locally (i.e. on the experimental area side) with
labels of the tapes to be used and directives on the number of output streams.

The overall system performed on schedule and reliably. The local disk buffer helps to smooth both
the peak bandwidth demand to a uniform value of a few 10s of KB per second and transient network
problems when they arise.

3.6 Labelled Tapes

We have added a tape labelling component to the RD13 DAQ system [TN145]. The tape labeller
allows the DAQ system to record data on labelled tapes according to the tape layout specified in [34].
The tape labeller accepts various types of tape (ExaByte, IBM cassette etc.), uses the DAQ’s data
bases to store and retrieve configuration information and is integrated with the run control system for
synchronization purposes. The tape labeller is implemented as two processes (communicating via
UNIX pipes) - a parent process that handles the connection with the run control system and a child
process that controls the recording device. The slowness of some blocking tape device operations
(such as rewinding) might cause time outs in the run control, hence the separation in two programs. A
suite of programs are also provided for manipulating tapes offline.

3.7 Ancillary Tasks

3.7.1 Event Dump

We have used the standard RD13 DAQ monitoring skeleton [TN46] to produce a graphical event
dump [36] that can be used online to select and view events. It performs an event dump on request
showing the structure and contents of a complete event. The user can define the event selection crite-
ria which will cause events to be dumped.

To allow for sophisticated event selection, a simple language interpreter [35] has been integrated into
the event dump that allows the user to write an expression which references the event structure and its
contents.

Activities and results 17

Monitoring tasks are built on top of the skeleton in order to receive events from the acquisition sys-
tem. The event dump is design to handle asynchronous “physics” event through the monitoring skele-
ton and also “graphical” events (e.g X protocol events) coming from the workstation X window
server. The graphical user interface was developed using X-Designer [19] and a freely available tree
widget.

Figure 6 Event dump showing event decomposition and data block contents

Tisomhob Exagt Brasgs | - -1 kK ! [EETTT st v -
Close; . Chooss an action ip perform
Markar 305410808 Stze 573 typs std svent Dlock deadince H Cortue]
Run 907 SpR 350 svert 346220 svert (spi) 44 i Dumo Eventd
srror OK i)
i Set Dump Options
User Header |- o
Event Blocks :
~ TICAL ADC #1
TICAL ADC 2]
- TICAL ADC #3
© TICAL 4DC #4]
dendface - TILES|
+ TICAL ADC #5]
- TICAL ADC #6
TICAL ADC 97
i TICAL Seam Elements

Marker 05419008 Sze S50 typa std event Block TLES , IR ————————————
Run 807 Spll 350 event 0220 event (spil) 44

3.7.2 Upgrade of Status Display

We have developed a new version of the graphical status display (Figure 7) for the DAQ system
which replaces the use of the DataViews widgets [20] with a new set of commercial widgets called
XRT from the KLG group [7]. We have replaced the widget set for a number of reasons:

» The status display is built using X-Designer which now supports the use of the XRT widgets
instead of the DataViews widgets. The X-Designer and DataViews integration is no longer directly
supported by IST and would have become our responsibility.

* Having evaluated the XRT widget set we found them more powerful than the DataViews alterna-
tives and with a programming interface that is more consistent with the standard Motif program-
ming techniques.

* XRT offers a very powerful table widget that has also been used in the DAQ’s message browser
application.

Activities and results 18

Figure 7 Graphical status display built using X-Designer and XRT widget set

. D Sl Dby -
Oraphs Signals Options i . Running Bust

»

| Fairtee Coriaer:

Mnximmﬁ [:) : Bursts = @

Bvents . s

Rim - : Laovel 2 oy
9\;\11&ntm\ by ,(}::m,‘bk
& Triggers

Record O edle ’

' W divable " Phyzical Record Size (words) 8108
Sturtof Run Tue Jus 17 14:5409 1995

B ofree O buey

EEXEREER

B amber of buffers 184
B Bulfer size 469376

4 Architecture Studies

We intend to keep our DAQ activity consistent with the study of a general LHC-like DAQ architec-
ture. We follow as our working hypothesis the generic functional model of an LHC-like data acquisi-
tion system defined in [37] and sketched in Figure 8.

Activities and results 19

Figure 8 Global scheme of an LHC-like functional architecture.

Data Storage

To understand the requirements of such an architecture and to evaluate technological solutions, we
think it is necessary to approach the problem from two complementary sides. Simulations to study
models of the architecture and laboratory tests where small-scale versions of the architecture compo-
nents, such as the event builder, are implemented as a combination of hardware and software solu-
tions and tested.

4.1 Event Building Prototype

Future experiments in high energy physics will need event building systems with a bandwidth of 1 to
10 GGB/s and able to assemble event fragments from 100 to 1000 data sources at rates of 1 to 10 kHz.
Bus based systems are inadequate, parallel event building based on high speed interconnects and
switching elements will have to be envisaged.

A first prototype based on the HiPPI standard [58] was built as a small-scale version of a parallel
event building system using commercially available technology. This prototype was used to study
parallel event building, to integrate a particular set of hardware with generic software allowing for an
evolution of the system in size as well as in different technologies, and to collect realistic parameters
for further simulations of scaled up systems.

The whole prototype is housed in one VME crate with the exception of the switch [59] itself. VME-
HiPPI interfaces based on the RIO module [60] act as either data sources (HiPPI/S module [61]) or
data destinations (HiPPI/D module [62]). A RAID processor [63] provides the functionality of data
flow processes and their control, as well as of monitoring the performance of the prototype.

Activities and results 20

Figure 9 Event Building Prototype Setup

v RIH|H|H}H|H|H
I AL T |1 111
C I11Pp{P|P|P|P [P
8 DIP{PIP|P|P (P
2 811 |1 §1 |1 |I |1
5 2

1 g SID|S|S|D|D

VME

10SC HiPPI Switch "'—RmO|

The software developed consists of two layers: the firmware and the data flow protocol. The lower
layer [TN129], [TN143] is hardware specific and runs on the RIO module, sending and receiving
event data by using the HiPPI protocol, one connection per event fragment. It communicates with the
higher layer by using VME interrupts [TN130), [TN144]. The higher level layer is hardware inde-
pendent and modular. It can be regarded as a stripped-down version of the RD13 DFP and functions
as a mini-DAQ system. It contains data flow processes for the data sources and data destinations and
provides the event building functionality of event assembly and destination assignment [TN111]. The
event assembly component could be alternatively moved to the firmware running on the HiPPI/D
module, while keeping the other modules on the RAID processor.

Simple data transfers from one source to one destination show, after optimization, a minimum latency
of 49 us. This overhead is mainly due to the firmware and the HiPPI protocol, the switch itself con-
tributes less than 1 pys. The interrupt handling could be measured to be minimally 32 ps, so that the
latency between data source process and data destination process is 81ys in total. The maximum fre-
quency for sending events was measured to be 30.3 kHz, and for receiving events to be 23.8 kHz.

Several data sources and data destinations were combined to build a parallel event building system
using a simple “push” algorithm for the destination assignment. The destinations were assigned in a
round-robin manner and the flow control in the HiPPI protocol was used for synchronization, i.e. the
transfer requests “camp on” the switch while the destination is busy. Figure 10 shows the maximum
data throughput for different event fragment sizes, it scales with the number of data destinations for
sizes above 10 kB. The lack of scalability at small fragment sizes is due to the sharing by the HiPPI
channels of a single control process. Good agreement can further be seen between the measurements
and the simulations carried out with the simulation program (see section 4.2) which uses parameters
from the one-to-one measurements and two fitted parameters to represent the two data flow proc-
esses, the common control process and the interrupt handling (all parameters having values between
30 and 220 ps).

Activities and results 21

Figure 10 Prototype Performance

6/s1
8
T

A 3Src —> 3 Dst
B3 Src —> 2 Dst

g
i

®3 Src —> 1 Dst

transfer rote (MB

/ simulation

3
T

20

1 aaasal T
10 10 1 10 o 10°
sub—event size (KBytel

The influence of varying event size was measured as shown in Figure 11. Strong variations in the
event size essentially disturb the parallelism and thus decrease the total throughput. Individual expo-
nential event fragment size distributions can be regarded as the worst case which reduces the effi-
ciency to about 76% compared to fixed event fragment sizes for a 2x2 setup. With only three source
modules available the effect of fragment size correlations could not be measured.

Figure 11 Influence of the Variation of Event Fragment Sizes

<

S0

2 2Src —> 2 Dst
o

]

- ® fixed size

$ %0

g M gaussian, 50%
= A gaussian, 100%

& - ¥ exponentigl

/ simulation

20 |-

v al |
10 10 1 10 10 10
average sub—event size [KBytel

Different schemes for the destination assignment were tested. A random assignment of the destina-
tions compares poorly with the round-robin scheme (34% less throughput for a 2x2 setup). Alterna-
tively to the “push” scheme (PUSH) two “pull” schemes were tested which send the event fragments
only after receiving a ready signal from the destination. The VME space was used for synchroniza-
tion and the two “pull” schemes differ if they wait for the HiPPI/S module to have sent the previous
event fragment (SYNC) or not, queuing the event fragments on the HiPPI/S module (PULL). No
essential differences were found in the three schemes, as seen in Figure 12b). The existence of a

Activities and results 22

unique control process dealing with a different number of VME interrupts explains the observed dis-
crepancy.

Figure 12 Different Control Schemes: a) Random Destination Assignment; b) PUSH,PULL,SYNC (see text)

oo | e -
E 3 2Src = 2 Dst
= 2Src —> 20st < re s
TE § s [exponential size distribution
B ® round-rabin 5
< M random e ® PUSH
2 2
= / simulation =%r meulL
e
A SYNC
30
40
0 |-
20
10
o A I VA sl 0 N il | 1 P 41
1077 w0 1 10 it 10° 0! 10 1 10 0
sub-—event size (KBytel overoge sub—event size [KBytel

The prototype has shown that parallel event building is possible using a commercially available tech-
nology. The HiPPI technology was chosen and integrated with generic software which can be
extended to other technologies (such as FibreChannel or ATM) and integrated to other parts of a
DAQ system for test beam purposes. Measurements with the prototype have displayed realistic
parameters for the different overheads in hardware and software. With values of around 100 ps the
simulations show a good agreement with the measurements.

4.2 Modelling of Event Building Systems

Discrete-event simulations complement prototype building: prototype measurements help validating
simulation models and these latter allow the study to be extended to scaled up setups.

All simulations for parallel event building systems were carried out with a program based on MOD-
SIM II [64]. Originating from a simple version of this program [TN132] it was modified to be in
accordance with the DAQ Simulation Library (DSL) [TN119] and can now be regarded as a subset of
simplified DSL objects. It implements an event fragment generator, the data source and destination
processes and a simple switch model which parametrises the transfer speed as a linear function of the
event fragment size. This model can simulate different input event fragment size distributions, differ-
ent control schemes and is fully configurable in number of data sources and destinations, as well as
their parameters. It is appropriate for generic studies of parallel event building systems and was in
particular used to simulate HiPPI and FibreChannel class 1 based systems.

As described before (see section 4.1), the program shows good agreement with the measurements of
the prototype. Generic studies based on the parameters from the prototype show that the maximum
throughput of a switch scales with its size in number of sources and destinations, or equivalently the
full event size. The average latency at 1 kHz shows a similar scaling behaviour.

Activities and results 23

Figure 13 Scaling of an Event Building System

full event size (MBI full event size (MBI
[025 05 078 1 1.28 1.5 1.78 2] 025 05 07% 1 125 15 175 2
E _Yl'rll!llll'vv,!YVII'IIIIIYII'V"V]TTTTT - TY T T TrTrTrT TTTT TTYTTY LIRS Trrr T TYTrT
) Evzo C T I T I T T T I
8 —_
2 > input trequency: 1 kKz
5 3F < [24
H h
a 5] B
< Q00
4 B moximum (ofter 30000 events)
o
225 A
£ b @ average
E 0 A
3
E2r
E$
£
80 -~ -
1.8 -
40 .
1
Ra]
F .,-‘
05 20 +
L]
o e L 1 u-..ul.A..I;‘;.I...‘I....l...Al....!....I.
0 25 50 7% 00 125 150 175 200 0 25 50 75 100 125 150 175 200
switch size [#Src = #Dst] switch size [#Src = #Dst)

The influence of event fragment size variations could be simulated using different data models. Max-
imum throughput and average latency for different cases are shown in Figure 14a). Exponentially dis-
tributed event fragment sizes can be considered the worst case due to the long tails in the distribution.
The correlation of event fragment sizes has a similar effect as can be seen in Figure 14b).

Figure 14 Influence of Event Fragment Size: a) Variations; b) Correlations

il L
€ | E
= =
> r >
g * tial g
Sss |- axponsn Ses |-
L 2
o ¥ gouss, 100X o
& | A gouss, 50% &
Os0 | O [¥ sxponentiol
o M gouss, 10X [
> I o g 3 4 10 gauas(10X)
r " [+ 9+10ecorrelated
45 43 - 1 big + 99 gouss(10%)
b L
b ®fixed
L
L
«w | @
35 .———.:—zﬁé ¥ - "~ - - _ _—*
30 30
" Y PP Y al 1 1 . i TP ST S Y) PO |
[500 1000 1500 2000 2500 3000 [500 1000 1500 2000 2500 3000
input frequency [kHz} input frequency (kHz]

An alternative approach, smoothing out the event fragment size distribution, is to cut down the event
building system into two stages [TN132]. A simulation comparing a single 256x256 switch with a
two-stage system with 16 switches of 16x16 ports on each stage, and with an exponential event frag-
ment size distribution reveals that the efficiency of the switch usage is about 70% higher in the two-
stage case.

Activities and results 24

Figure 15 Two-Stage Event Building System: a) Throughput for First Stage; b) Buffer Size for Second Stage

300 - 10,000 -
- 9,000 -
350- 8,000 -
@ 209 { 7,000 4
< D 6,000 {
2150 g 5000
5 & 4000 1
S 100 4 3,000 4
E 50 1 2,000 1

1,000 -
o v v LJ L o
0 500 1000 1500 2000]
Load (events/sec)

The influence of different control schemes like in the prototype (i.e. PUSH, PULL and SYNC) under
realistic parameters and with realistic event fragment size distributions from a detector simulation
[65] will be investigated and studies are under way. Another field of investigation is the influence of
different control schemes at the level of the individual event fragments. These algorithms known as
“traffic shaping” for packet-oriented networks [66], could be implemented in this domain of connec-
tion-oriented networks in the following way: an event fragment is held if its destination is momentar-
ily busy while the fragment of another event is sent instead.

4.3 Modelling of the ATLAS Second Level Trigger

Members of RD13, in collaboration with RD11, RD24, RD31 have developed a package (SIMDAQ)
[40], written in MODSIM, to evaluate the performance of the proposed ATLAS second level trigger
(T2) architecture [39].

The basic structure of the SIMDAQ package is a representation of the generic building blocks of the
proposed architecture, that is the read-out buffers, switches, T2 supervisor and local and global proc-
essors. Detectors are mapped to the read-out buffers by configuration files, and input data, originated
from the GEANT/PYTHIA suite, is mapped to the buffers in the detector’s coordinate system. The
generic model may be augmented with hardware specific models. Thus evaluations have been made
with parameterized models of ATM and SCI for the switches. In the future other candidate technolo-
gies can be mapped to this architecture. Figure 16 shows results for a simulation run with ATM622
and SCI showing buffer occupancy plots for the read-out buffers. The latency of 1.8ms is dominated
by the chosen processing times for feature extraction in the modelled detectors (300 microseconds for

Activities and results 25

the e-m calorimeter, 300 microseconds for the hadron calorimeter and 700 microseconds for the TRT
detector), and the global processing time of 500 microseconds.

Buffer Occupancy

GCland ATM E22 Swiches

20.0

160 |

100

Relative frequency

o
o

0.0 e .
100.0 150.0 200.0 250.0
Number of events in buffer

Figure 16 Read-out buffer occupancy in ATM and SCI models

The work so far has confirmed the expected performance with a simple push model and a round robin
allocation by the supervisor of the local and global processors. The domination of the processing time
has put strong emphasis on developing more detailed data dependent parameterized models of the
processing, together with the generation of larger physics data sets including data for calorimeters and
TRT with the addition of the muon and other tracking detectors.

Work is continuing in several other areas, such as alternative T2supervisor models and detector
dependent models of the data arrival in the read-out buffers.

4.4 Level-3 like System

A generic view of a level-3 system [39] is that of a set of independent sub-farms, each connected to

an output of the event builder and consisting of a number of processor units (CPUs). Each sub-farm

CPU is assigned an event for full processing. A functional sketch of the sub-farm is shown in Figure
17, where the basic functional elements of the sub-farm are highlighted:

* Input segment: which receives full events from the event builder (EB), buffers them in memory
and provides feedback information to the EB data flow manager (DFM). It consists of a “proces-
sor” with a “buffer” and links to both the EB data channel and the DFM.

* LVL3 processing elements: each processing element runs an analysis task which receives full
events from the input segment. Selected events are passed to the output segment.

* Output segment: it receives selected events from analysis tasks and sends them to the permanent
storage system. It consists of a “processor” with “buffer” memory and links to the permanent stor-
age system.

Activities and resuits 26

In the above description terms such as sending and receiving, processor and buffer indicate functions,
without reference to a particular realisation.

Figure 17 Level-3 sub-farm, functional view.

The data flow view of the sub-farm is sketched in Figure 18, arrows indicating the logical flow of data
(events) from the input to analysis and eventually to the output modules. While the two above views
of a sub-farm are generic, choices have to be made in terms of architecture (how processors, memo-
ries and interconnections are organised) and size (e.g. how many CPUs are needed per sub-farm) so
as to fulfil both the performance requirements and the financial constraints.

These problems can be studied by a combination of modelling/simulation techniques and small scale
prototypes. For the latter, we remark that the work done by RD13 in the area of data flow for DAQ
systems can be re-applied to the problem of managing and distributing data in a level-3 sub-farm.
Figure 18 can be re-read as a DAQ-Unit [3] with multiple, concurrent data handling modules.

Figure 18 Level-3 sub-farm, data flow view.

Analysis
Modules

Input Output

Module P O ~ Module
O=-0—0

On the basis of the above considerations, we have initiated the study of the organisation of a stand
alone (i.e. without reference to its interface to the event builder) sub-farm system from the point of
view of its performance. Analytic modelling has been used to study some simple (bus based) archi-
tecture. We have also initiated to set up a framework prototype to run real level-3 like ATLAS pro-
grams on alternative multi-CPU architectures.

Activities and results 27

4.4.1 Analytic Modelling

Performance analysis by analytic techniques is an inexpensive complement to time consuming simu-
lation methods. While they are obviously limited by the very simplifying assumption needed to
derive the solutions, they may constitute a useful tool to prune the design space, before other methods
are applied, and to provide useful insight into the problem being studied. We have used such tech-
niques in two ways: the analysis of a generic sub-farm and the study of the performance of a shared
bus based multi-processor system.

Buffer and sub-farm sizing

The initial investigation of the requirements in terms of input buffering and number of CPUs, as a
function of the input event rate, can be done by means of simple queuing models [41] under the fol-
lowing simplifying assumptions. The event arrival and processing rates are exponential, event data
transfer and output treatment times are negligible with respect to the event processing times. If the
input buffer is assumed of infinite size, the simple exponential multi-server queue (M/M/k) can be
used to derive average queue sizes, mean response times, etc. In the case of a finite input buffer a cor-
responding queue (M/M/k/B) can be used to derive e.g. the probability for the input buffers to
become full.

hverage response tine Loss Probability

1.6 0.08
1.5 0.05
1.4 0.04
1.3 0.03
1.2 0.02
1.1 0.01
s Buffers
H 3 ? 8] 10 20 30

Figure 19 (a) M/M/k average response time (sec.) (b) M/M/k/B loss probability

Figure 19 (a) shows a graph of the M/M/k average response time (in seconds) for the case of a sub-
farm with 10 processors, average processing rate of 1 Hz and an event arrival rate varying between 5
and 9 Hz. Figure 19 (b) shows the M/M/k/B loss probability for a sub-farm with an arrival rate of 9
Hz, a processing rate of 1 Hz and 10 CPUs as a function of the number of input buffers.

Shared bus systems

An analytical calculation [42] has been performed for the simplest level-3 sub-farm architecture - a

multiprocessor system, where each processor has a CPU and local memory. The processors are tied to
a common (shared) memory via a single bus. Each processor runs the same application, i.e. the same
analysis program. Performance evaluation must be done to determine the most efficient, and therefore

Activities and results 28

cost-effective, use of the shared resource (memory). A performance index of such a system is the
average number of active processors, i.e. those which are not stalled because of contention for the
shared memory. The ratio of the number of shared memory accesses to local activity (processing and
access to local memory) is the sensitive model parameter. For e.g. a 10-processor system, results
show 20% inefficiency for an application performing 10% of its accesses to shared memory. The inef-
ficiency grows to 40% at 20% shared-memory accesses.

4.4.2 Level-3 Program Parametrisation

When applying any kind of modelling techniques to a problem such as that of the level-3 sub-farm,
the proper parametrisation of the analysis program itself is obviously a key element. Under the
assumption that one processor runs one level-3 program on one event at a time, parametrization
would require:

* average number of instructions executed per event: to obtain a coarse idea of the execution time.

* memory requirements: to size the sub-farm memory system (in particular in the case of a shared
memory system).

* cache behavior: to parameterize the use of multi-level memory systems.

* memory interconnection utilization: requirements on the processor-memory interconnection sys-
tem (e.g. a bus) are defined by the load (instructions and data) of the program execution.

The values of the above parameters, in the form of averages or statistical distributions, ought to be
measured on real programs. To this end we have investigated how a framework, where such measure-
ments can be carried out, can be setup by using both real programs and proper tools.

Our initial work [TN156] has been carried out based on an ATLAS reconstruction program, with a
well defined set of input events in raw data form. The WARTS [43] toolkit has been used to instru-
ment the program executable to obtain both dynamic instruction counts and memory traces. These
latter are then fed into WARTS cache simulators which measure both cache performance and bus
load.

4.4.3 Prototyping

Starting from the core of the RD13 DFP software [TN15], we have derived a skeleton system to dis-
tribute events in a bus based system such as that consisting of our RAID 8235 processors in VME.
The skeleton is layered to isolate the system dependent part (e.g. process synchronisation), so that, in
principle, it could be adapted to other, non bus-based, architectures.To use this software in a realistic
way, we will employ the same ATLAS program used for the work described in section 4.4.2. Work to
port such a program first to our front-end VME processors and then to integrate it with the DFP-like
skeleton is in progress.

5 Object Oriented Software Technology

Two commercial products supporting object oriented software had been selected in the previous
phase of RD13 [3]: the ITASCA [47] object oriented data base management system (OODBMS) and

Activities and results 29

the Object Management Workbench (OMW) [45] CASE tool. Both products were heavily used in
RD13 during the last year.

5.1 ITASCA

5.1.1 Applications

The activities around ITASCA have followed three major themes: data modelling (to understand how
best to exploit ITASCA's object oriented capabilities), data base conversion and their integration in
the whole DAQ system (to evaluate the use of ITASCA in an online environment and compare it with
the solution provided by a tool such as QUID) and the development of ITASCA based application
outside the current data base framework (to program directly with ITASCA without going through a
C-like, non object oriented, data access library interface).

A number of internal notes, [TN127], [TN134], [TN135}], [TN 149] and [TN151], document the
exploratory work done in the area of ITASCA.

Data Modelling

The conversion of the existing data bases provided the ground to exercise the data modelling capabil-
ities of ITASCA.

A simple data base such as the one describing the run control finite state machines was translated
directly from the QUID entity-relationship (E-R) model into ITASCA'’s object oriented (OO) model.
The DAQ software components data model was instead re-designed from scratch both to take advan-
tage of the OO model and to add additional features (such as the introduction in the data base of more
DAQ components and a better support of the process manager functions). A detailed account of this
work is documented in [TN135]. The hardware description data model was also re-designed to be
conceptually much simpler and easier to use.

Integration of ITASCA with the DAQ system

The integration of the data bases and their access libraries, implemented with the ITASCA client
application program interface (API), proved to be a challenging task. A number of integration prob-
lems arose from the synchronous message based client/server implementation in the ITASCA client
clashing with the asynchronous, programming model suggested by ISIS. This implied non trivial
modifications to the client application, in particular the run control component, to be protected for
example from race conditions in the access to the data base. The situation was further complicated by
the lack of proper debugging tools for distributed, event driven applications.

We also had to retrofit into ITASCA the programming model previously implemented with QUID,
this showed to be inefficient when dealing with a distributed data base (as opposed to a memory resi-
dent one). This resulted in poor performance, which could be improved to an acceptable level by
using the client-side caching mechanism of ITASCA.

Activities and results 30

Although one of the data bases, the one holding run control parameters and parametrising the read-
out, was successfully integrated an the resulting DAQ system run in the laboratory, the integration
problems mentioned above delayed our programme of work.

ITASCA Applications

The Message Loader and Browser [TN134] is a new application that uses ITASCA as a means of
storing a log of all the error messages generated by the DAQ. This application required the integra-
tion of the ITASCA client library with the ISIS based run control system (though a data access library
was not used as in the applications described above). A separate browser application was developed
in order to view the recorded messages. The applications were separated for the following reasons:

* Performance. It is possible to start the application on different workstations (e.g. run the Message
Loader on the same machine as the ITASCA server to reduce network traffic) or with different pri-
orities or start only the Message Loader if online browsing is not required.

* Reliability. The Message Loader application is now as simple as possible. The XDesigner tool
with the XRT table widget was used to generate the graphic user interface for the Message
Browser and installed Run Control reception filters in the Message Loader. There is also a special-
ized separate program to install the data base scheme in ITASCA.

5.1.2 Conclusions

Substantial effort went into the area of OODBMS. While we were not able to perform fully the
research programme, we have acquired concrete and valuable experience in the area of OODBMS
and in their application to typical DAQ problems.

The selected tool, ITASCA, maintained its promises of a sophisticated, state of the art OODBMS.
Client-side caching proved to be an important feature to obtain acceptable performances also in the
part of the real-time side of the system. Its inexpensive availability on our EP/LX and LynxOS based
platforms was an additional advantage.

The integration problems we experienced were not necessarily due to the tool itself, rather they were
the result of trying to combine components (the data access library, the ISIS based application pro-
gram and the client/server oriented data base) with at times contradictory and incompatible require-
ments and implementations. These problems do arise when integrating comuaercial products which
may look functionally coherent and complementary but are often incompatible implementation-wise.

ITASCA, like most other OODBMS, is a full data management system, it includes the concept of
transactions and locking for concurrent access to shared data. These features are not always neces-
sary, in some cases data are shared in read-only mode (e.g. configurations and parameters during a
DAQ run) thus making redundant most of the run-time features of the system. A careful study of
requirements for data sharing should be undertaken, and lighter, more efficient solutions might be
envisaged for data shared in read-only mode (e.g. some memory resident copy is loaded from the full
data base at initialization).

Activities and results 31

5.2 Object Management Workbench (OMW).

OMW supports the Object Oriented Information Engineering (OOIE) method [54] and provides a
number of tools to fully support the software life cycle from analysis through to code generation and
testing. It integrates model definition (via object and event diagram editors), model behaviour con-
straints (via a rules editor), user interface building, model testing and simulation (scenario manager)
and document generation (via a report browser).

The OMW tool set is built on top of the Kappa programming environment [55]. The Kappa system is
an ANSI C-based visual environment for developing and delivering distributed applications in open
systems environments. Kappa applications can also be distributed, using the Kappa CommManager,
between UNIX workstations and PCs running Windows. The CommManager provides transparent
communications among distributed objects by running over TCP/IP networks and complies to the
CORBA protocols defined by the Object Management group (OMG)[56].

The OMW/Kappa development tools run on Sun (SunOS and Solaris) and HP workstations. The
developed applications can be ported to IBM compatible PCs running Microsoft Windows.

5.2.1 OMW Applications
Error Message Definition and Translation

We have used OMW to develop a replacement for our existing tools for producing and maintaining
unique error codes within the DAQ software. Previously we have used the GENMESS facility (a
porting of the VMS MESSAGE facility to UNIX) [27] to define unique error messages. This had sev-
eral limitations including no automatic means of avoiding collisions between error codes defined in
separate files.

We have replaced this system with a data base of error messages implemented using the OMW/
Kappa internal object persistence mechanism. Figure 20 shows the object diagram for the error mes-
sage data base. Two application programs work on the data base - the EmfEditor and EmfTrans.

Activities and results 32

Figure 20 OMW Object Diagram for Emf error message data base

i ! Edit Instrument Workspace
Object Diagram: EMFObjModel in Domain EMF

r

LA

.
ErrMsgDefDB [0 5 EerMsgFocility -

rrMsgDetTIB io dehmed in g = sg By i‘
MsgSeverity
-
sers_sewudny_of belonygs_m
k4 : N,
has_seventy | ErrMsglet b detues

The Emf Editor program allows the user to interactively modify the definitions of error messages
used by the RD13 DAQ system. The user can modify existing error message definitions, define new
messages or delete obsolete ones. A C include file containing all the definitions can be generated. The
definitions are loaded and stored to disk files and are also used by the EmfTrans application.

EmfTrans is part of the EMF error message facility. It is a server process that performs the translation
from error code to textual error message. Application programs exchange messages with EmfTrans
just before they report error messages, or when they simply want to retrieve the text associated with
error codes. EmfTrans is implemented as an OMW/Kappa application that loads the data base of error
message definitions and connects to the distributed run control system based on the ISIS communica-
tion package. When it receives a translation request from DAQ processes it looks up the given error
code in the data base and returns the associated textual message.

Online Volume Bookkeeping

The Online Volume Bookkeeping (OVBK) system is designed to provide an automatic log of the data
recording by the DAQ system. The OVBK retrieves information from different DAQ modules and
data bases to complete the log. The data describing the run configuration, run date, archive file infor-
mation and run quality are maintained in a data base. The OVBK system also provides a graphical
user interface to interactively access the data base and to generate reports. This application required
the integration with run control system, the run parameters data base and the error message facility. It

Activities and results 33

is implemented as a process that runs on a workstation while the DAQ is taking data and writes the
details of the current run to a data base on disk using the OMW persistent objects facilities. The
graphical user interface is run as a separate process off-line.

Hardware Data Base Editor

The hardware data base editor (hwdbEditor) [TN155] program allows the user to edit the contents of
the hardware data base used by the RD13 DAQ system. The user can modify the existing configura-
tion, define new hardware modules or delete obsolete ones. The aim of this application is to replace
the standard QUID editor which requires a knowledge of how the data base was implemented in
terms of the entity-relationship (E-R) schema.

The hwdbEditor application uses the Object Diagrammer to make an OO equivalent of the QUID E-R
model. The actual contents of the hardware data base are loaded at run-time from QUID, using the
data access library, and instances of corresponding the object types are created. The user can then
manipulate these instances via a graphical user interface(Figure 21). Finally the modified contents are
written back to QUID onto disk via the access library.

Figure 21 OMW based hardware data base editor

HN? dh Editor

VME Slave Ldit

VME_module
VME_slave
Hippl_module

vIC_2
canl
CORBO1
rd131e06
rd13fea7
nd13te05
vic_a
vIC_S
ni131e08

Base Address({in hex)

cBD2

Activities and results M4

OMW/ITASCA interface

As an evaluation, we have developed a prototype application that provides a link between the OMW
CASE tool and the ITASCA OO data base. The motivation for this prototype was to see if an alterna-
tive technique for object persistency could be used with OMW and also to provide a graphical schema
editor for ITASCA. The prototype is implemented as an OMW application that uses the Kappa
library to access meta-data about object diagrams and ITASCA’s C client library to access corre-
sponding definitions in data base. The prototype can define classes with attributes and relationships
including inheritance and cardinality constraint then store OMW object instances in ITASCA and
reload the instances from ITASCA to OMW. The prototype highlighted a number of differences
between the respective object models of the Kappa environment and the ITASCA data base. A limita-
tion with such a technique is that the OMW object methods could not be easily stored in the ITASCA
server because they are not written in LISP. But there is one important advantage of using ITASCA
over OMW/Kappa internal object persistence - the objects from ITASCA can be saved and restored
on demand. With Kappa’s object persistence all the objects of a domain are either stored or retrieved
in block.

We have shown that it is possible to provide such a link between the CASE tool and the data base and
that such a technique could possibly be used as a means of CASE tool independence or migration
(e.g. store applications developed with OMW in ITASCA then read it back out by another CASE
tool).

5.2.2 Assessment of OMW

We have found the OOIE method clear yet sophisticated with sufficient support for static object defi-
nition. There are sufficient constructs in the event diagrams to represent synchronization and parallel-
ism. Through our prototype interface between OMW and ITASCA, we found that the QOIE object
model as supported by OMW and Kappa is very rich and that many features could not be imple-
mented in ITASCA (e.g. user-definable Object Identifiers, monitors and slot formulae).

OMW does not fully implement the method, for example finite-state diagrams as an alternative to
event diagrams to represent object behaviour are not supported. Some other features of the method
are only partially supported by the CASE tool, for example event diagrams are not re-entrant (hence
they cannot be used recursively).

The incremental development cycle support by OMW is very practical and one of the best features of
the tool. One of the most important advantages of using OMW is the clarity of the diagrams produced
(i.e event and object diagrams). The impression of how an application is structured can be gained by
a simple inspection of the diagrams. The diagrams are guaranteed to be up to date and complete since
the run-time code is generated from them.

Also, the principle of object domains allows the developer to modularise the application into groups
of closely related object classes. OMW is a very open tool as shown by the number of third party soft-
ware packages that we have been able to integrate with our applications.

The built-in simulator allows applications to be tested before generating a run-time (i.e. the resulting
application executed outside of the development environment), so that the most obvious bugs can be

Activities and resuits 35

removed without leaving the tool. In general we have found that those bugs which persist past this
stage of testing are usually related to integration with third party software (e.g. ISIS or other DAQ
components) and effects of speed and space differences between interpreted and compiled code (the
simulator interprets the application code).

The underlying Kappa programming environment is very rich and sophisticated. It implements a pro-
prietary language (ProTalk) which can be mixed with C in methods. While C is essential to e.g.
access operating system features, ProTalk is very powerful to deal with the object model and to per-
form rule based programming.

Kappa integrates a graphical user interface builder which offers similar facilities to X-Designer but
has one important advantage - the possibility to link application objects to graphical objects without
programming. The relation between the application and graphical objects is maintained so that, for
example, if a new instance of an object class is created it can be made to appear automatically in a list
widget. To provide a similar behaviour with X-Designer the developer would be required to write
many callback routines to move the values from the screen and back to the application objects again.
However, we have found that we cannot integrate third party widgets so easily as one can with X-
Designer.

We have shown that it is possible to integrate OMW with third party archive systems such as CVS
[49]. The need for a run-time library restricts the platforms on which we can run our generated appli-
cations. This means that we cannot use OMW to develop applications which must run on our front-
end processors (e.g. RAID boards running EP/LX or LynxOS). The availability of VME boards run-
ning workstation-like operating systems (such as HP-UX or Solaris) may provide a solution to this
problem.

The internal object persistence is very useful and has been used as the basis of the Emf and online
bookkeeping data bases. The object diagram editor plays the role of a data base schema editor. The
system also has the advantage of providing limited schema evolution - that is to say that objects can
be saved to disk, the schema changed and the data base re-read into memory. The facilities of the
object persistence cannot be compared to a real data base (e.g. there is no notion of transaction sup-
port) but it is more akin to an OO version of QUID.

We have performed limited tests with the CommManager package for distributed applications but do
not currently use it in any of our applications. It appears to work satisfactorily on a network of SUN
workstations but we have yet to test it in a heterogeneous (HP and SUN) environment. The program-
ming overhead of distributing an application over several processes is minimal. We are particularly
interested in combining the CommManager with the object persistence and object monitors in order
to provide a distributed, reactive data store.

There are a number of problems and bugs in the CASE tool that have slowed down the development
of the applications. In general we have found that the interpreter is the source of many problems. The
tool requires a lot of resources in terms of memory and swap space which restricts its use to the more
powerful workstation configurations and means the startup-time for the tool is quite long.

Activities and results 36

L~

6 Commercial Software Products

One of the main objectives of RD13 is the study of the integration of commercial software products.
We have incorporated many commercial products in the development of the DAQ system. Table 2

lists all of the products currently in use or under evaluation by RD13.

Table 2 Commercial products

product status
ISIS: A toolkit for distributed and fault-tolerant programming in use
Artifex: A CASE environment for the production of event-driven systems evaluated
Quid: A simple single-user data base system based on Entity-Relationship approach for use with C pro- | in use
grams
ITASCA: Object-oriented data base management system under
evaluation
GemStone: Object-oriented data base management system evaluated
StP (Software Through Pictures): A set of CASE tools supporting various form of SA/SD methodolo- | in use
gies and limited code production
FrameMaker: A WYSIWYG text processor with hypertext capabilities in use
Purify: A package for the detection of run-time memory leaks inside programs in use
Motif: A graphical user interface toolkit based on the X Window System in use
X-Designer: A graphical user interface builder that allows the user to construct MOTIF interfaces to in use
applications
DataViews Widgets: A collection of graph widgets to display the data incorporated with X-Designer evaluated
XRT Widgers: A collection of graph widgets to display the data incorporated with X-Designer in use
LabVIEW (Laboratory Virtual Instrument Workbench): Software package to simplify computa- in use
tion, process control, and test and measurement applications
MODSIM II: Simulation language with support for object-oriented programming and discrete event in use
simulation
Logiscope: A software analysis tool to understand the structure of a program and assess the quality in use
using metrics
ObjectCentre: Programming environment for C++ (editor, debugger, compiler, interpreter and code in use
structure info.)
Object Management Workbench: Object-oriented methodology and CASE tool in use
XRunner: A tool for testing graphical user interfaces evaluated
T: A tool for generating test cases evaluated
Process Weaver: Process management tool evaluated

Activities and results

37

PART II
RD13 Project Assessment

7 Assessment of the RD13 DAQ

RD13 has produced a line of prototype DAQ systems, of increasing complexity and functionality to
match the requirements of the detector setups, which have been used in test beam runs.

The prototype to be used in the test beam is only one of the RD13 objectives, yet it provides the
ground where the technical issues explored and the results achieved by RD13 may be assessed. To
this end we consider the DAQ system according to a number of “quality” criteria.

Functionali

The capability to scale with requirements is the key characteristic of the system. This function is
designed into the system at two levels: at the level of a single component (detector, full event process-
ing unit, etc.) where processing power may scale according to requirements and at the global system
level where the number of data sources may scale according to the setup. Scalability is supported by a
number of design concepts and system features. The data flow and control components were designed
with scalability as the primary requirement, the data base driven configurability makes changes in
configuration transparent to the DAQ software. Scalable commercial software tools, such as ISIS [15]
and the real-time UNIX system([22], are essential and the underlying data transfer hardware is inher-
ently scalable. This latter determines the overall performance of the system, yet the design allows to
scale in performance by changing the data transport hardware (for example switching from the VIC to
the FDL system).

A second function which is related to scaling is the possibility of splitting the system into sub-systems
of different size, with equal functionality and capable of running concurrently (partitioning). RD13
did not fully explore such an issue, although the fact that data bases describe the system externally
and the data transport hardware and the distributed programming environment (ISIS) are partitionable
makes partitioning possible. Indeed some very crude form of partitioning was used in September
1994 when both a combined run and a single detector run could take place concurrently.

Technology Independence

Understanding the issues related to the design and production of a system which may stand changes
in hardware (e.g. processors, data transfer links) and software (e.g. operating systems) is compulsory
for systems such as an LHC-like DAQ. Modularity and adherence to hardware and software stand-
ards are pre-requisites for success, yet the system has also to be designed with technology independ-
ence in mind. We consider that the RD13 DAQ system fulfils the objectives defined in [1]; software
standards have been used where available (e.g. UNIX, Motif), the software has been produced with

PART II : 38

(UNIX-like) platform independence in mind, hardware peculiarities have been hidden by layered
libraries.

Flexibili

The adaptability to changing requirements is a another key point of the system.

The system can be configured to run in a single detector (with or without an event builder stage) or in
multi-detector mode; for test purposes a basic skeleton is provided to users to fit their specific read-
out code. The system can be easily adapted to setups of different size and requirements.

The clean separation of the detector read-out from the general data acquisition logic has allowed run-
ning with detectors using very different front-end electronics. New components, in particular detector
DAQ systems, have been integrated with little effort.

Data base modification is the main activity required to re-configure the system. The data base system
currently in use, QUID, automatically produces editors, which use the schema as the basis of their
user interface. This makes the use of the editor both complex (the schema is designed with data mod-
elling and efficient navigation in mind) and requires detailed knowledge on the data base internals.
Powerful, user oriented graphical editors are needed to support flexibility. We have experimented in
this direction with the OMW [45] object oriented programming environment (see section 5.2.3).

Reliabili

Despite the fact that we have produced prototypes from laboratory R&D work, therefore not engi-
neered with reliability as a primary requirement, the detectors using our systems have experienced
very few problems on the DAQ side. Hardware failures (e.g. disk crash) have been the main source of
inefficiency.

Berformance

The performance of the RD13 DAQ can be discussed in terms of basic overheads, to determine the
cost of the system features, and of its capability when taking data in a test beam run, to verify its real
life behaviour.

The data flow protocol (DFP) basic performance was reported in [2]. We just remind that in a config-
uration with two DAQ modules (a dummyl read-out, and a dummy recorder) the system can run, in
continuous mode, in excess of 3000 events/second, with a measured overhead of less than 300 micro-
seconds for the execution of the DFP in the read-out module.

We have performed laboratory measurements with the current software event builder (EB) in a con-
figuration including one local DAQ producing dummy events (i.e. events consisting of only the main
header, 52 bytes) and a central DAQ with 3 DAQ modules (the event builder, an event distributor for
sampling, and a dummy recorder). That is the basic configuration used when taking data in the test

1. The term dummy in this paragraph refers to a DAQ module which is functionally complete but performs the minimum
possible data transfer. For example the read-out deals with only the event format but no real data, the recorder skips the
actual writing to data storage.

RD13 Project Assessment 39

beam in multi-detector mode. It is set such that all the (detector independent) overhead is taken into
account (both on the local detector DAQ and on the EB side). Figure 22 (a) shows the number of
events per spill (2.4 seconds long) treated by this DAQ configuration as a function of the available
triggers per spilll; a saturation value of about 6800 events/spill is achieved.

Figure 22 (b) is instead related to the data transfer capability of the system. The DAQ is configured as
for Figure 22 (a) but now the local detector DAQ produces events of different length at a fixed trigger
rate. Events are read out with either the VIC based EB (using program controlled transfers) or the
FDL based EB.

Figure 22 RD13 DAQ rates with 1 local detector. (a) triggers (b) data transfer

b) Event Bullder Tronster Peformancs

_ 3) DAQ RATE ve CLOCK —~
Frooo | 3 g
§7(“0 - s
- .
6000 |- g
: 3
r -
4000 |-
C 6 i R :
2000 |- 5 S
b 4} s M
1000 [e _/ -
[2 e P P ; i FUREN
F : : [o— @ RO : o B
) C FENTTTY B U T PRI T | o Liiii iiiddiiil i i idiisiil
10° 10° 10* 10° 10° 1 10 107 10°
triggers/spill Event Size (KByte)

Figure 23 refers to measurements with real beam taken by RD13 in June 1994 during the TRT run
(see [3] for a description of the setupz). The DAQ was configured in single detector mode (i.e. with-
out the EB stage) with two DAQ modules: a “read-out”, reading two TRT sectors (136 data words per
sector), and a recorder. The graph shows the number of events taken per spill as a function of the
available trigger rate (varied by acting on the beam collimators). The system saturates at about 4800
events/spill. Whei: running with a two-processor system (i.e. we re-distribute the DAQ-unit over two
RAID 8235 cards) we could reach more than 5000 events per spill; at that point we were limited by
the buffer space in the VME/HiPPI modules.

During the same beam period the TRT collaboration ran routinely (one TRT sector, plus 200 words of
beam chambers data read on an event by event basis) reporting read-out rates of about 4000 events
per spill. The CAMAC read-out time was here the limiting factor.

1. When running in real conditions (i.e. with detector data in addition to the header), the detector buffer size might be a
limiting factor.

2. We remind that the TRT uses VME to HiPPI “intelligent” interfaces with firmware providing high performance TRT
sector acquisition during the spill.

RD13 Project Assessment 40

Figure 23 TRT test beam read-out rates

DAQ RATE ve TRIGGER RATE (TRT)

(daq evts)éspill
g

g
T

P S . |

800C 10000 12000
triggers /spill

0>...1...|1..|.
0 2000 4000 6000

From the above we conclude that, when considering the basic DAQ overhead, the system performs
very well, also taking into account that some of the elements, such as the RAID 8235 processor, are
by now almost 5 years old. The major contributions to the performance come from the quality of
underlying the real-time UNIX system and from software design trade offs. For example the decision
to use an existing threading system (derived from [27]) instead of the one provided by ISIS was vital.
It allowed to control thread scheduling with minimal disturbance to the data flow, at the cost of some
additional complication in the integration with the (ISIS based) control system.

On the side of the data transfer, program controlled read-out via the VIC has obvious performance
limitations, yet it is a simple solution which has shown to be more than adequate for the test beam
requirements where a few hundreds of relatively small (2-4 Kbytes) events are read-out. Performance
can be improved by using DMA transfers (instead of program controlled ones) over the VIC [TN 96].
The FDL based event builder (discussed in section 3.2) is an option providing a potentially large per-
formance improvement. It could serve the requirements of the test beam in the medium (2-3 years)
term future. The RD13 DAQ supports a range of data transfer options (which, if required, can be
mixed in the same configuration), the cost-effective one can be selected on the basis of the detector
setup requirements. We also remark that a further degree of flexibility is given by the possibility to
configure without the event builder stage in the case of a single detector (as for the TRT run discussed
above).

8 Project Assessment and Future Directions

The RD 13 project has been a test and learning ground in a number of areas:

* Data flow: the focus for the study and the evaluation of real-time UNIX, multiprocessor systems,
shared memory systems, the application of software engineering to real-time applications.

RD13 Project Assessment 41

» Control-like functions: the application of distributed computing concepts to message passing,
finite state machines, hierarchical control, process management.

* Data bases: the use of commercial DBMS(-like) products as a framework for describing and para-
metrising the DAQ system.

* Ancillary modules: a practical ground to evaluate and apply commercial software products in sev-
eral arcas such as graphical user interfaces, DBMS, software development environments.

» System integration: to manage source code, to build multi-platform elements and system proto-
types, to test components and full DAQ prototypes.

* Architecture studies: to project the results of RD13 into the context of an LHC-like experiment
advanced components (e.g. a switch based event builder) and system level DAQ models have been
produced.

This has resulted in experience with hardware and software technology and products, prototypes of
advanced DAQ components and a line of complete systems, of increasing complexity and functional-
ity, used in real life test beam runs.

The use of commercial software products (as opposed to in house developments) has always been
emphasised by RD13. We think that such products will be more and more pervasive in the future.
This is an important change of culture which will have to be spread to the users community: experi-
ments will have to budget for software components as well as hardware.

Integration (of hardware and software products, different modules, etc.) has been another focus for
the activity of the project. The availability of standards is the key element for success; while on the
hardware side standardisation is a common practice, the same is not yet true for software. If necessary
and possible, trade off between feature and easy (or possible) integration should be considered.

The multi-institute nature of RD13 is similar, although on a smaller scale, to that which the DAQ
teams of LHC experiments will face. Combining developments done in geographically spread loca-
tions into a coherent system which, because of technical and financial constraints, must be located in
a unique place is a challenging task. The optimization of the use of the available resources will
require such an approach for LHC too and its success will depend on the existence of a formal frame-
work to guarantee coherency and homogeneity in a geographically dispersed team with a unique inte-
gration point.

The RD13 system in its various forms (stand alone, single detector, multi-detector read-out) is now a
mature and reliable product, as its continuous use in the ATLAS test beam shows. Its technical fea-
tures of scalability, modularity and technology independence make its potential use wider. For exam-
ple the use of the RD13 DAQ system in the full ATLAS context (i.e. its standardisation for all the
ATLAS test beams) or even wider (e.g. other test beams) is mainly limited by the resources required
to support the various installations. Given a suitable engineering effort, the installation in and the sup-
port of the test beams could be sub-contracted to industry. Thus releasing the unique expertise and
know-how of the CERN personnel for the main objective, the development of an LHC experiment
DAQ.

From the above discussion, we conclude that the RD13 project has fulfilled its objectives and has
demonstrated its usefulness. It is however clear to us that we are not ready for an LHC-like DAQ sys-
tem. We do have plans to continue the work initiated in RD13 and practical reasons suggest that this

RD13 Project Assessment 42

is better done within an LHC collaboration. The time of the generic (experiment independent) DAQ
system is well behind us, the experiment will provide a better focus and a more direct evolution path,
more adequate resources will be available as well as the real working environment. This does not
mean that we reject collaboration outside the experiment’s frame. On the contrary we do encourage
common activities with other experiments on specific, technical topics of common interest; the inte-
gration into the final DAQ system remains, and cannot be otherwise, with the experiment.

We also think that the RD13 working model, where laboratory developments are complemented by
their periodic use in a real life environment, is one of the key elements of our success. The test beam
runs provide real users, hence realistic feed-back, and a stringent “time to successful development”
requirement, thus contributing to focus the activity of the project. We should, however, point out that,
as we have experienced, the lack of resources for the real-life application (e.g. the test beam) may
endanger the whole project.

Acknowledgements

We are pleased to acknowledge the fruitful collaboration with the various detector teams: RD6,
RD34, RD11, RD3, MSGC. We gratefully acknowledge the support of R. McLaren (ECP/EDU) and
E. Van der Bij (ECP/EDU) for the organisation of the HiPPI setup. We thank G. Kellner for contrib-
uting substantially to the purchase of the software products and tools selected by RD13. We grate-
fully acknowledge the professional qualities of J. Tedesco and H. Rotival (DCS company) our system
managers. We gratefully acknowledge the contribution of W. Greiman (LBL) to the event builder
simulation studies. We thank F. Gagliardi (CN/PDP) and B. Panzer-Steindel (CN/PDP) for contribut-
ing the central data recording system. We are also indebted to D. Klein (ECP/SA) for the precious
work in the organisation and support of many aspects of the RD13 life, in particular for the documen-
tation system.

RD13 Technical Notes

TN 0: Index of RD13 / D Klein

TN 1: RD13 Workplan - Phasel / L. Mapelli

TN 2: How to produce a RD13 Note / D.Klein

TN 3: RD13 Dataflow / G.Mornacchi

TN 4: RD13 Dataflow Requirements / G.Mornacchi

TN 5: Run Control for RD13 /R.Jones

TN 6: Error message Facility for RD13 / R Jones

TN 7: Basic Libraries for IDT Monitor / S.Buono

TN 8: Some basic informations on interrupt.handling within IDT / R.Ferrari
TN 9: VME Interrupt Requests from CBD 8210 / R.Ferrari

TN10: Using Motif in RD13 /R Jones et al.

TN11: RD13 Database Frame Work / G.Momacchi

TN12: Basic Libraries for SVIC/ VIC Interface / G.Ambrosini

TN13: Basic Libraries for TC/ IX Environment / G.Fumagalli, C.Rondot
TN14: RD13 Prototype Minimal DAQ /RD13 Team

‘TN15: Data Flow Protocol Prototype / G.Mornacchi

TN16: Event and Data recording formats / M.Huet

TN17: Processes Synchronization in a VIC VME System / P.Y.Duval
TN18: Directory Organization for Production Software / G.Mornacchi, F. Tamburelli
TN19: Batch processing in the RD13 Computer System / G.Mornacchi, F Tamburelli
TN20: RD13 Cluster Management Utilities / F. Tamburelli

RD13 Project Assessment 43

TN21:
TN22:
TN23:
TN24:
TN25:
TN26:
TN27:
TN28:
TN29:
TN30:
TN31:
TN32:
TN33:
TN34:
TN35:
TN36:
TN37:
TN38:
TN39:
TN40:
TN41:
TN42:
TN43:
TN44:
TN45:
TN46:
TN47:
TN48:
TN49:
TNS50:
TNSI:
TNS52:
TNS53:
TN54:
TNSS:
TNS6:
TNS7:
TNS5S:
TNS59:
TNG60O:
TN61:
TN62:
TNG63:
TN64:
TNG6S:
TNG66:
TN67:
TNG68:
TNG69:
TN70:
TN71:
TN72:
TN73:
TN74:

Real -Time Requirements / G.Momacchi

Real -Time UNIX (TC/IX) evaluation / L. Mapelli, G.Momacchi, R.Jones
Using the VME trigger module through macros / C.Rondot

SVIC 7213/ VIC 8250 / G.Ambrosini

Design of a data flow protocol with StP / A. Khodabandeh

Using ISIS and META for Run Control in RD13 / R Jones, G.Moracchi, G.Polesello
The TC/IX process priority in pictures / C.Rondot

Tools for TC/IX / C.Rondot

The RD13 tree: make it by example / C.Rondot

Read Modify Write Functions in a Raid/Vic/Vme System / P.Y.Duval
Diagnostic for the RD13 System / S.Buono, D.Prigent

Data recording / M.Huet

A proposal to organise code reviews / G.Momacchi

TCIX Systems Status / G.Momacchi

RD13 Data Base Software / F.Tamburelli

Use of QUID as Data Base Framework / G.Mornacchi

Use of RD13 Problems Data Base / F. Tamburelli

About the VMV BUS / D.Prigent

Trigger Tools / C.Rondot

Status Report of RD13 (1992) / L. Mapelli et al.

A hardware setup for the SiTP test read-out / S.Buono,A.Ferrari, D.Prigent
RCL and DFE modules integration / P.Y.Duval

db_select / A.E.Topper

The RD13 DAQ system (User’s Guide) / S.Buono

A library for the RAID ZCIO Timers / S.Buono

Event Monitoring in the RD13 Minimal System / G.Ambrosin,G.Mornacchi
How to build a Monitoring task in the RD13 System / G.Ambrosini

RD13 DFP Upgrade / L Mapelli, G.Mornacchi

Extending PDFP to a multiprocessor configuration / G.Ambrosini,G.Momacchi
Performance Study of the Artifex based DFP / A.Khodabandeh, G.Mornacchi
Users’s Guide to the Artifex DAQ in the RD13 Laboratory / A.Khodabandeh,G.Fumagalli
SYSIib - platform independent system library / G.Mornacchi

A Proposal for an Asynchronous Message Interface / R Jones,L.Mapelli,G.Mornacchi
Introduction to Petri Nets / A.Khodabandeh

Introduction to Artifex and its Petri Nets / A. Khodabandeh

RD13 System_Lab / D.Prigent

Lnown Problems in Using Artifex / A.Khodabandeh

RD13 Source Code Management / G.Fumagalli,P.Pinassseau

User’s libraries for the RIO/Hippi 8262/S module / S.Buono,] Hansen

Run Control Requirements / R.Jones et al.

Software Quality in RD13 / R.Jones

Testing the interface between Artifex and non-Artifex applications / R.Jones,E.Sanchez-Corral
Design of a Data Flow Protocol with Artifex / A.Khodabandeh

RD2 /RD13 DAQ system modelling / I.Gaponenko

OODBMS evaluation for a DAQ System / M. Skiadelli

Applicability for the OO technology on the RD13 databases / M.Skiadelli

The Hardware configuration database / M. Skiadelli

Evaluation of Histogramming Packages / P. Ganev, S.Hellman, R Jones

RD13 Run Control Parameter Setting / D. Ferrato, G. Polesello

Studies on RIO/HiPPI based Event Building / S. Buono, J. Hansen, H. van de Bij
Os4 Mod / 1. Gaponenko

Simulation code with MODSIM II / 1.Gaponenko

Asynchronous Message Interface / G.Mornacchi

Database system for PDFP and RCL / Z.Qian

RD13 Project Assessment

TN75:
TN76:
TN77:
TN78:
TN79:
TN8O0:
TNS1:
TNS82:
TN83:
TN84:
TNSS:
TNS6:
TNS87:
TN8S:
TN89:
TN90:
TN91:
TN92:
TN93:
TNO4:
TNOS:
TN96:
TN97:
TN9S:
TN99:
TN100
TN101
TN102
TN103
TN104

TN10S:
TN106:
TN107:
TN108:
TN109:
TN110:
TN111:
TN112:
TN113:
TN114:
TN115:
TN116:
TNI117:
TN118:
TN119:
TN120:
TNI121:
TN122:
TN123:
TN124:
TN125:

TN126
TN127
TN128

RD13 implementation of CERN Standard DMA Library / S. Buono

RD13 DAQ Builder / G.Fumagalli

ITASCA & O2: a comparison / M.Skiadelli

Status Report of RD13 /1993 / L.Mapelli et al.

A memory management for the RIO/HiPPI 8262/S module / S.Buono
Users’s libraries for the RIO/HiPPI 8262/D module / S.Buono

Run Parameters Data Base / G.Momacchi

Managing Multiple Interrupts in EP/LX / G.Mornacchi

Evaluation of the CES HiPPI interfaces into the RD13 system / S.Buono
RD13 Basic Libraries / G.Ambrosini, G.Mornacchi

Using Quid for the implementation of the HardWare database / M.Skiadelli
Cebrax: a recording package / M.Huet

LabView Tools Manual / C.Rondot, D.Prigent

Diagnostic with LabView / C.Rondot

Requirements of a Simulation Program for DAQ Modelling / R.Spiwoks
Proposal of a Lib. and a Skeleton Prog. for DAQ Simulations / R.Spiwoks
RD13 System_Lab / D.Prigent

Interpreteur Interactif d’expressions logiques / R.Nacasch

RD13 System_Lab Vic Bus v.2 / D.Prigent

New run control library users guide / P.Y.Duval, A.Levansuu

Proposal requirements for resource manager library / R .Jones, A.Levansuu
Memory transfer tests using DMA libraries / S.Buono, D.Prigent
Modelling of the RD6 Testbeam Setup / R.Spiwoks

XRunner Evaluation Report / R Jones

T Evaluation Report / R.Jones

: RD13 Artis Installation / G.Mornacchi, E.Sanchez-Corral

: Technical Guide of the Artifex based RD13 Run Control / E.Sanchez-Corral
: RUNCO_SYS / E.Sanchez-Corral

: Improvements in the Artifex based RD13 Run Control System / RJones, E.Sanchez Corral

: Online Help facility for RD13 DAQ/ R.Jones

Read-out module specifications for the June 1994 testbeam / S.Buono
Specifications for the RD13 hardware configurator / S.Buono

A general graphical User Interface with MODSIM 1l / K.Djidi

Object oriented database system evaluation for DAQ system / M.Skiadelli
Event Format Library / G.Ambrosini

Event Format User Interface / G.Ambrosini

Requirements of an Event Building System / R.Spiwoks

Run and Detector Parameters Data Base / G.Momacchi

Local Memory Support in the RD13 DAQ / G.Mornacchi

Browser for Run Control Error Messages / 1.Soloviev

Proposal on Modelling of ATLAS DAQ Architecture / I.Gaponenko, V.Kozlov
Modelling of local/global architecture at the LHC experiment / Z.Hajduk
Status Report of RD13 /1994 / L.Mapelli et al.

A DAQ User Interface for ATLLAS Simulation / K.Djidi

DAQ Simulation Library (DSL) -A Reference Manual / K.Djidi, M.Huet, R.Spiwoks
Functional Simulation of Read-Out Parts of a DAQ Architecture / V.Kozlov
A maintenance guide to the hardware database / S.Buono

TEST BEAM 94 / D.Prigent

Lab View with Test Beam - 94 / D Prigent

The ATLAS HS8 Test Beam Data Acquisition / C.Bee et al.

The trigger for the combined ATLAS Test Beam / G.Polesello

: OS Event Buffer Support in ATLAS Testbeam DAQ / A Miotto

: New Run Parameter Database Library / .Soloviev

: Process Manager for RD13/ D.Ferrato

RD13 Project Assessment

45

TN129: The HiPPI/D firmware for the RD13 EB System Prototype / R.Spiwoks
TN130: User Library for the RD13 DstFmw / R.Spiwoks

TN131: Resource manager Library / R Jones, A.Levansuu

TN132: Design and Simulation of Fibre Channel Based Event Builders / W.Greiman
TN133: OMW / Kappa CASE tool Overview/ R.Jones

TN134: Using ITASCA for EMF messages logging and browsing/ I.Soloviev
TN135: HWdb & SWdb in ITASCA / Z.Qian

TN136: Global Architecture for the ATLAS DAQ and Trigger / L. Mapelli

TN137: EmfDB Programmers Guide / R.Jones

TN138: Fast DATA Link / S.Eshghi

TN139: XDesigner Exercise / R.Jones

TN140: OMW Exercise / R.Jones

TN141: Online Volume Bookkeeping Requirements / C. Maidantchick, R.Jones
TN142: Event Builder Application using the FDL / §.Eshghi

TN143: The RD13 HiPPI/S firmware / R.Spiwoks

TN144: User Library for the HiPPL/S module / R.Spiwoks

TN145: Tape Labelling in RD13 DAQ / R.Jones

TN146: User Dialogues in RD13 DAQ /R.Jones

TN147: Installing a new Raid 8235 / EP-LX / J. Tedesco

TN148: Event checker / M Niculescu

TN149: Databases uses in RD13 / P.Y.Duval

TN150: PDFP db performance measurement / Z.Qian

TN151: Use of ITASCA status report / P.Y.Duval, Z.Qian

TN152: Data Acquisition General Control User Interface / M. Caprini

TN153: An approach to the object description of the DAQ system / Y.Ryabov, LSoloviev
TN154: Using ITASCA for Run Control & Detector Parameters data base/ I.Soloviev
TN155: Hardware data base editor, programmer’s guide / A. Patel

TN156: Level-3 Program Parametrisation / G. Fumagalli, G. Mornacchi

RD13 Publications

R. Jones et al., Using Motif in RD-13, Proceedings of Motif*91 Conference, Washington, USA, 1991, CERN/ECP 92-11.
R. Jones et al., Using ISIS and META for Run-Control in RD13, Proc.Intern.Workshop Softw.Eng, 1992, pp. 199-202.
R. Jones et al., Using Motif in RD-13, Proc.Intern.Workshop Softw.Eng, 1992, pp. 149-156.

L. Mapelli, Software for future Data Acquisition - A Chance for Real-Time UNIX?, Proceedings of CHEP'92, 1992,
CERN92-07, pp. 60-68.

G. Mornacchi et al., The RD13 Scalable Data Acquisition System, Proceedings of CHEP’92, 1992, CERN92-07, pp. 281-
284.

R. Jones et al., Building Distributed Run-control in UNIX, Proceedings of CHEP’92, 1992, CERN92-07, pp. 289-292.

C. Rondot et al., Graphical user interfaces for a Data Acquisition System, Proceedings of CHEP’92, 1992, CERN92-07,
pp. 432-438.

A. Khodabandeh et al., Use of CASE tools in the design of a data flow protocol for the RD13 data acquisition system, Pro-
ceedings of CHEP’92, 1992, CERN92-07, pp. 583-588.

G. Fumagalli et al., Use of Real-Time UNIX in data acquisition for HEP, Proceedings of CHEP’92, 1992, CERN92-07,
pp. 632-638.

A .Topper, Simulation of High Performance DAQ System, thesis for Norwegian Institute of Technology, May 1993,

M. Aguer et al., Software Engineering Techniques and CASE Tools in RD13, Proceedings of ATHEP’93,World Scientific,
pp- 29-38.

S. Buono et al., A Hierarchical and Distributed Control Architecture for HEP Big Data Acquisition Systems, Proceedings
of ATHEP’93,World Scientific, pp. 77-82.

G. Ambrosini et al., Software Engineering Techniques and CASE Tools in RD13, Proceedings of ICALEPCS'93, North-
Holland, pp 383-386.

RD13 Project Assessment 46

G. Ambrosini et al., Real-Time UNIX in HEP Data Acquisition, Proceedings of ICALEPCS’93, North-Holland, pp 213-
216.

M. Aguer et al., The RD13 Data Acquisition system, Proceedings of CHEP’94, LBL-35822, pp 104-108.
G. Ambrosini et al., Modelling of Data Acquisition Systems, Proceedings of CHEP'94, LBL-35822, pp 109-113.
G. Ambrosini et al., OODBMS for a DAQ system, Proceedings of CHEP’94, LBL.-35822, pp 143-146.

M. Skiadelli, Object oriented database system evaluation for the DAQ system, thesis for Computing Science degree from
Patras Polytechnic School Greece, March 1994,

G. Ambrosini et al., Application of OO methodology and CASE to a DAQ system, Proceedings of CHEP*95, to be pub-
lished.

G. Ambrosini et al., Studies of switch-based event building systems in RD13, Proceedings of CHEP’95, to be published.

G. Ambrosini et al., Experience using a distributed object oriented data base for a DAQ system, Proceedings of CHEP'95,
to be published.

L. Mapelii et al., The DAQ and trigger system of the ATLAS experiment at the LHC, Proceedings of CHEP"95, to be pub-
lished.

9 References

[1] L.Mapelli et al., A Scalable Data Taking System at a Test Beam for LHC, CERN/DRD(C/90-64/P16, CERN/DRDC/
90-64/P16 Add.1, CERN/DRDC/90-64/P16 Add.2 (1990).

{2]) L.Mapelli et al., Status Report of A Scalable Data Taking System at a Test Beam for LHC, CERN/DRDC 92-13.
[3] L. Mapelli et al., Status Report of A Scalable Data Taking System at a Test Beam for LHC, CERN/DRDC 94-24.
{4] Creative Electronics Systems S.A., FDL 8050 User’s Manual, Version 1.0, DOC 8050/UM, 1995.

[5] Creative Electronics Systems S.A., VIC 8251/F User’s manual, 1993,

(6] B. Panzer-Steindel, private communication.

[71 KLC group Inc., XRT Builder Guide & Reference Manual, Ref No. BLGDE-GRAPH/M/240-07/94.

[8] B.Dolgoshein et al., Status Report of Integrated high-rate transition radiation detector and tracking chamber for the
LHC, CERN/DRDC93-46.

(9] M.Cavalli-Sforza and, M.Nessi et al., Status Report of Developments for a scintillator tile sampling hadron
calorimeter with “longitudinal” tile configuration, CERN/DRDC/92-48.

{10] . Weilhammer, G. Hall et al., Development of High Resolution Si Strip Detectors for Experiments at High
Luminosity at the LHC, CERN/DRD(C/93-30.

[11] R.K. Bock et al., Status Report of Embedded Architectures for Second-level Triggering in LHC Experiments, CERN/
DRDC/93-12 / RD-11.

[12] Creative Electronics Systems S.A., HIPPI 8262/D VME to HIIPI Destination Interface User’s Manual, 1992.
[13] Creative Electronics Systems S.A., RAID 8235 VME RISC Processor Board User’s Manual,1992.

[14] Creative Electronics Systems S.A., RCB 8047 CORBO VME Read-Out Control Board User’s Manual, 1992,
(151 K.P.Birman et al., The ISIS SYSTEM MANUAL, Version 2.1.

[16] Quid version 2.0 User Manual, Artis srl, November 1992,

[17] CentreLine Software, Inc., Cambridge Massachusetts, U.S.A, 1990.

[18] FRAME MAKER, International Version 3.0, FRAME Technology 1991.

[19] Imperial Software Technology. X-Designer User Manual.

[20] DataViews Graph Widgets Programmer’s Manual 2.0, V.I. Corp. 1993. Doc # 2.0DVGW

[21] LabVIEW 2 User Manual, National Instruments Corp., 1990.

{22] Control Data, TC/IX Users’s Guide, CDC May 1991,

{23] R.Bauer, A review of LynxOS, Unix Review, September 1990,

(24] IEEE Std POSIX 1003.1-1988

[25] IEEE Std POSIX 1003.4-1991

[26] Creative Electronics Systems S.A., FIC 8234 Dual 68040 Fast Intelligent Controller User’s manual, 1992.
[27] R.Russel, G.Mornacchi, VOS a virtual operating system, CERN July 19%0.

{28] Creative Electronics Systems S.A., VCC 2117 Intelligent CAMAC Crate Controller User’s Manual, 1992,

RD13 Project Assessment 47

[33] B. Thiercelin, FDL 8050 Evaluation, Version 1.0, ECP/ESS internal document.

[34] EM. Rimmer, J. Ogilvie, On-line Support for Labelled Magnetic Tapes, CERN, 10 March 1977 revised November 3
1981.

[35] John E. Davis, private communication.
[36] R. Jones, http://rd13doc.cern.ch/onlineHelp/eventDump.html

[37]1 L. Mapelli, The Challenge of triggering and data acquisition at supercollider experiments, Nuc. Inst. & Meth. Phys.
Research A315 (1992) 460-471.

[38] Creative Electronics Systems S.A., RIO 8260 Processor User’s Manual version 1.0, May 1992.

[39] The ATLAS collaboration, Technical Proposal for a general Purpose Experiment at the large Hadron Collider at
CERN, CERN/LHCC/94-43.

[40] S. Hunt et al., SIMDAQ - A System for Modelling DAQ/Trigger Systems, Proceedings IEEE RT95 Conference, to be
published in IEEE Trans. on Nuclear Science.

[41] L. Kleinrock, Queuing Systems, Vol. 1, Wiley, 1975.
[42] G. Mornacchi, ATLAS internal note DAQ-NQ-23, 1994,

[43] M.D. Hill et al., Wisconsin Architectural Research Tool Set, Comp. Science Department, University of Wisconsin,
1993,

{44] ARTIFEX, Artifex Environment User Guide, ARTIS 1991.
[45] Intellicorp, Inc., Object Management Workbench User’s Guide Version 1.0, Pub # OMW1.0-UG-2,19%4.

[46] P. Butterworth, A. Otis, J. Stein, The Gemstone Object Database Management System, Communications of the
ACM, October 1991, Vol.34, No. 10.

[47] ITASCA Systems, Inc., ITASCA Distributed Object Database Management System, Technical Summary R2.1,1992,
[48] VERILOG S.A., Logiscope Editor 3.3 Reference Manual, D/LEXX/RA/330/334, 1993,

[49] B. Belliner, CVS Il:parallelizing software development, Proceedings of the Winter 1990 USENIX Conference,
Washington, DC, January 1990. USENIX, 1990.

[50] T.Berners-Lee et al. World Wide Web; An Architecture for Wide-Area Hypertext. CERN, 1991.

[511 K. Bos et al., Object oriented approach to software development for LHC experiments, CERN/DRDC/94-9/P55.
[52] The PASS Collaboration, The PASS Project Architecture Model, 1994.

[53] G.Stefanini et al., Status Report of Optoelectronic analogue signal transfer for LHC detectors, CERN/DRDC/93-35.
[54] J. Martin and J.J. Odell, Object Oriented Methods A Foundation, Prentice Hall, 1995.

{55] Intellicorp, Inc., Kappa User’s Guide Version 3.0, Pub. # K3.0-UG-2, 1993.

[56] Object Management Group, The OMG Object Model, Document 91.9.1, 1993.

[57]1 M. Skiadelli, Object oriented database system evaluation for the DAQ system, thesis for Computing Science degree
from Patras Polytechnic School Greece, March 1994.

[58] HiPPI Standard, ANSI X3T79.3/91-005.

[59] Input Output Systems Corporation, IOSC HiPPI Switch, 1994.

[60] Creative Electronics Systems S.A., RIO 8260 RISC I/O Processor, User’s Manual, 1992.

[61] Creative Electronics Systems S.A., HiPPI 8262/S VME to HiPPI Source Interface, User’s Manual, 1992,

[62] Creative Electronics Systems S.A., HiPPI 8262/D VME to HiPPI Destination Interface, User’s Manual, 1992.
{63] Creative Electronics Systems S.A., RAID 8239 VME RISC Processor Board, User’s Manual, 1992

{64] CACI Products Co., MODSIM II, The Language for Object-Oriented Programming, Reference Manual, 1991.
[65] J. Baines et al., ATRIG 1.00, ATLAS Trigger Simulation User Guide, 1994.

(66] I. Mandjavidze, Review of ATM, FibreChannel and Conical Network Simulations, Proc. of Int. Conf. on DAQ
Systems, FNAL, Batavia, lllinois, USA, 1994,

RD13 Project Assessment 48

