

Instituto de Física Teórica Universidade Estadual Paulista

March/96

IFT-P.009/96

Addendum: Pion to upsilon from κ - deformed Poincaré phenomenology* Phys. Lett. B 365 (1996) 157.

Jishnu Dey^{1,2}, Mira Dey¹, Paulo Leal Ferreira¹ and Lauro Tomio¹

¹ Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona 145 01405-900 - São Paulo, S.P. Brazil

² Departamento de Física Instituto Tecnológico da Aeronáutica-CTA 12228-900 - São José dos Campos, S.P. Brazil

SW9620

^{*}To appear in Phys. Letters B (1996)

Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405-900 - São Paulo, S.P. Brazil

Telephone: 55 (11) 251.5155 Telefax: 55 (11) 288.8224 Telex: 55 (11) 31870 UJMFBR

 $Electronic\ Address:\ LIBRARY@AXP.IFT.UNESP.BR$

47857::LIBRARY

It has been pointed out to us that in our paper we have talked about the L = 1 states for the ρ meson without quoting the actual numbers. Indeed the fit is quite impressive. As S = J = 1 excitation of the pion we had the ρ and the ω degenerate at 774.9. All numbers are in MeV. The L = 1 states and their experimental assignments are as follows: 3P_0 1296 is compared to $f_0(1370)$, $a_0(1450)$, 3P_1 1362 is compared to $f_1(1285)$, $a_1(1260)$ and 3P_2 1424 is compared to $f_2(1430)$, $a_2(1320)$.

We give the other experimentally identifyable states also: for L = 2 there is only 3D_1 1714 to compare with $\omega(1600)$, $\rho(1700)$ and 3D_3 1799 with $\omega_3(1670)$, $\rho_3(1690)$. For L = 3 we have 3F_4 2072 to compare with $f_4(2050)$, $a_4(2040)$ and 3F_3 2041 to compare with $a_3(2050)$. For L = 4 we have 3G_3 2237 and 3G_5 2289 to compare with $\rho_3(2250)$, $\rho_5(2350)$ and for L = 5 the 3H_6 2468 fits remarkably well with $a_6(2450)$ $f_6(2510)$.

For radial excitations we have 1473 (n = 1) to compare with $\omega(1420)$, $\rho(1450)$, 2148 (n = 3) to compare with $\rho(2150)$ and 2371 (n = 4) with $\rho(2210)$.

For states which are not observed, our calculation agrees with other theoretical calculations.