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Abstract

We make use of a momentum-space bosonization of a generalized Nambu —Jona-Lasinio
model to calculate the contribution of rho and omega exchange to the one-boson-exchange (OBE)
model of the nucleon-nucleon interaction. Momentum-dependent meson-quark coupling
constants are obtained in the bosonization scheme. A vector-meson-dominance (VMD) model
is used to obtain information concerning the momentum dependence of the meson-nucleon
vertex, other than that which arises from the momentum dependence of the meson-quark
coupling constants. We find good agreement with the magnitude of the force at q2 =0 for both
rho and omega exchange. The momentum dependence of the interaction in the region
-0.2 GeV? < g2 < 0 was calculated. We only obtain about two-thirds of the strength of the
OBE interaction at g2 = -0.2 GeV?, suggesting the importance of interactions of shorter range
than that considered here. (We note that, for -0.2 GeV? < g2 < 0, we span the range of

g% of significance for nuclear structure studies.)




I. Introduction

The parametrization of the nucleon-nucleon potential as given by the one-boson-exchange
(OBE) model [1] is extremely useful for nuclear structure studies and provides the basis for the
calculation of the properties of nuclear matter in relativistic-Brueckner-Hartree-Fock theory [2].
However, the relation of the OBE model to more fundamental models of the strong interaction
has not been understood. We have undertaken a program to study the OBE model, making use
of a bosonized version of an extended Nambu —Jona-Lasinio (NJL) model [3,4]. (Itis necessary
to extend the NJL model to include a description of confinement in order to calculate the
properties of the rho and omega mesons. Such a generalization of the NJL model has been
given in our earlier work [5,6].)

In our work we make use of a Lagrangian describing the interaction of up and down

quarks,

- Geor _ o
L) = gD -m2)qE) + — [(q@)* + (qivs 79)°
9 2
(1.1)
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where £, +x) refers to our treatment of confinement. We will here concentrate on the rho and
omega mesons and will write G, rather than Gy in the following. The treatment of
confinement in our model has been discussed extensively elsewhere [5-7]. However, we will
include a few comments relevant to our model of confinement in the next section.

The organization of our work is as follows. In Section II we will define some tensors
that play an important role in the bosonization scheme and present two basic bosonization

relations used to introduce the rho and omega mesons in the formalism. In Section III we
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review the phenomenological representation of isoscalar and isovector electromagnetic form
factors of the nucleon. In Section IV we go on to provide a vector-meson-dominance (VMD)
model of the nucleon electromagnetic form factors. Our model envisions a valence-quark "core"
that is strongly coupled to various meson fields. In the VMD model, a photon couples to the
rho and omega fields in the vicinity of the nucleon. The dipole form for the electromagnetic
form factors then emerges from an interplay of the meson propagator, the core form factor and
the momentum dependence of the meson-quark coupling constant. In Section IV we specify
those core form factors that allow us to fit the isoscalar and isovector electromagnetic form
factors of the nucleon using our VMD model. In Section V we make use of the core form
factors to calculate the nucleon-nucleon interaction that arises from rho and omega exchange.
(We point out that, although our results are generally satisfactory, there are a large number of
diagrams that we have not considered. We believe these diagrams will give interactions of
shorter range than the interactions we consider here. Therefore, we do not expect our model
to work well for large values of -¢2.) Finally, in Section VI, we include some further

discussion and conclusions.




II. Momentum-Space Bosonization of the NJL. Model
In this section we review procedures used in the momentum-space bosonization of an
extended NJL model for the quark-antiquark channels with the quantum numbers of the rho and

omega mesons [7]. We will begin our discussion by defining the tensors
i@ = -2 @I,ed @.1)

@ = -2 @l 6> . (2.2)
with gk¥(g) = g*” - q*q*/q>. Here the J#¥(g) represent quark-antiquark loop integrals
obtained when evaluating the diagrams shown in Fig. 1 [7]. The carets over the symbols in Eqgs.
(2.1) and (2.2) indicate that we have included vertex functions in the calculation of J#¥(q) that
sum a ladder of confining interactions [6]. These vertex functions are represented by filled

triangular areas in Fig. 1.

For the case of the rho, it is particularly important to include the effects of coupling to

the two-pion continuum. Thus, we define the tensor [7]

RE@) = -3"" @R, @D . 2.3)

[See Fig. 1.] For q% > 4m: , Ii'(p)(q?') has an imaginary part that gives rise to the rho width.

Note that, because we have included a model of confinement, these various tensors have no

quark-antiquark cuts in the complex g2 plane. (The confining interaction prevents the quark
and antiquark from going on mass shell simultaneously.)

Bosonization may be achieved by considering a string of quark-antiquark interactions.

For example, consider a scattering amplitude for a quark-antiquark pair with the quantum




number of the rho meson. If we suppress reference to Dirac matrices and isospin matrices, we

have

2 Gp
T (@) = - — - . (2.4)
1‘Gp[f(p)(‘1 )+ Ky q )]

We may then write

8pad@®
Toy(@%) = - ———3% > @.5)
q°-m, +im, T (q°)

where

2 A
m,T,(@%) = g,,,(g) MR, (g? . 2.6)
For this work we only consider the region g2 < 0. Therefore, Iz(p)(qz) will be real in our

study. Values for g, (¢%) are obtained when equating the T,,(@%) of Egs. (2.4) and (2.5).

In an analogous fashion, we may define

2
8 44'@D)

q2 - mj + imwl‘w(qz)

Tw Y = - 2.7

For a Lagrangian with G, =7.12 GeV™? and G, =17.86 GeV ™2, we have calculated
8o qq(qz) and g, qq(qz) in an earlier work [8]. Values of & qq(qz) and g P 2y obtained there
are presented in Table 1. For that analysis we put m,=0.77 GeV and m, =0.783 GeV. A
confining field was used of the form Vc(r) =xre ™ where x =0.22 GeVZ. (The parameter
p was introduced to soften the momentum-space singularities of the potential so as to facilitate

the numerical analysis. We chose u = 0.050 GeV.) The value of 8, qq(ms) obtained in Ref.

-6 -




[8] was used to calculate the rho-pion coupling constant, gp"(mj), and a good value was
obtained (gp"(mpz) =5.90). The coupling constants g, qq(mi) and g qq(mj) were used in the
calculation of the matrix element that describes rho-omega mixing 0(m02) ) = <w |Hgp |p0> [9].
We found a quite satisfactory value for G(mj) in Ref. [9]. These results lead us to believe that
the momentum-space bosonization scheme is working well, with respect to the calculation of the

meson-quark coupling constants.

I1I. Electromagnetic Form Factors of the Nucleon
In this section we review a number of well known relations, with the aim of providing
a phenomenological representation of the isoscalar and isovector form factors of the nucleon.

We recall that proton and neutron form factors may be defined, with e > 0,

(p'. 5", 7 = 121|10,©@ P, 5, 7 = 112)

(3.1)

Tt ! jo"” -

= eu(p ,s){yupf(qz)+; quz”(qZ)]u(p, 5
My

(p', 5", 7 = ~12174,©@ P, 5, 7 = - 112)

(3.2)
= eu(p',s") ‘:'y”Fl"(qZ) + ;"n: quz"(qz)} u(p, s) .
N

Here p' =p+q.

One further defines electric and magnetic form factors




2
GEa™ = Fl @+ L-F@» (3.3)
dmy
Ghg® = Fl(gH + FLgH (3.4)
B2 n, 2 q2 n, 2
Gp(g") = FL @)+ =5F @) (3.5)
4mN
and
Gy(@) = F'(¢?) +Fy@) . 3.6)
We also put
FP@?) = FX @) +F @D , 3.7)
Ff@?) = F@) +F @D (3.8)
FlgY = FJ@) -F @ (3.9)
and
F@) = Fg) -F @) . (3.10)

We then solve for the isoscalar and isovector form factors




GE(g?) + GR(g - (g14m}y) (GLy (gD + Gy @)

FS(@ - ) , (3.11)
2(1 - ¢%/4my)
2 n, 2 2 n, 2
PS5 - LOH@) * Oula )]-[6E@h ~6iad] 412
2(1 - g2/4m})
2 ne 2 2 2 2 n, 2
FY (g = [Gé’(q ) -Gglq )]—(q /4m~)[G{}(q ) - Gulq )] , (3.13)

2(1 - q2/4m§,)
and

R = [654a% - Giad) -[68@D - G@®] 616
2(1 - g/ 4m2)

We remark that F(0) = 0.5, F5(0) = -0.06, F,'(0) =0.5 and F, (0) = 1.85. For the

range of momentum of interest to us, we may use the dipole forms (with q2 in GeV? units),

1

GP 2y - ’
£ [ 2]2 (3.15)
1-9
0.711
Gn@? = 1,GE@D (3.16)
Gy@? = 1,GE(g?H . (3.17)

Here, p, =2.79, p, = -1.91 and G,:-' (g?) = 0. Use of Egs. (3.15)-(3.17) in Egs. (3.11)-(3.14)
provides a phenomenological representation of the isoscalar and isovector form factors. We will

describe a procedure for obtaining theoretical values for FIS (g% and sz (¢?) in the next section.
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IV. The Vector-Meson-Dominance Model for the Nucleon Electromagnetic Form Factors

It is well known that hadron electromagnetic form factors may be calculated in some
form of the vector-meson-dominance (VMD) model. (Indeed, the VMD model provides a
remarkably accurate representation of the pion form factor for both timelike and spacelike values
of q2 [10].) Here, we will develop a version of the VMD model for the nucleon
electromagnetic form factors that will provide some information needed in the calculation of rho
and omega exchange in our study of the nucleon-nucleon interaction.

We will not use the bag model in our analysis; however, we do have in mind a picture
of the nucleon as a valence-quark "core" strongly coupled to surrounding meson fields. From
this point of view, we may consider the processes shown in Fig. 2. There the wavy line denotes
a photon, the single lines are quarks and the cross-hatched area represents the "valence-quark
core”. In Fig. 2a the photon is absorbed by a quark in the core. The process shown in Fig. 2a

gives rise to an isoscalar amplitude

Ak, py = Lu(p,s) v S g) + 19 g f5 (qz)] (D, 5) @.1)
2 |

i

2my
where fls(qz) and fzs(qz) are form factors of the core. In Figs. 2a and 2b, we see the photon
being absorbed,with subsequent rescattering of the quark-antiquark pair. (Note that we do not
show the confinement vertex in these figures to avoid excessive complexity in the figure.)
Inclusion of the full series of gq "bubbles", as shown in Figs. 2a, 2b, 2c¢, etc., yields the

amplitude in the omega channel J=17,1=0)
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BP' (pl p) -
(w) ’ " -
L= GlJo @) + Ry @)

u(@,s") [wff(qz) LAy TS ’-)] u(p, 5)

e i
2 2my

4.2)
From this form we may identify the VMD result by using our bosonization relations. (See Egs.

(2.4), (2.5) and (2.7).) We find

2 2 .y
8wgg@) -, io*’q, -
B p) = & L B g oy [y f @+ D LS @) | us . 43
2 G, m2_q2 2my
(5]

This may be put in a somewhat more familiar form by defining a meson decay constantg“(q 2y

[10}:
2
my . 8ugd@) (4.4)
g“q®» G,
Thus,
oy = e| e | @HF 5 | @) + 2 q,56D | u @)
Biy(p',p) = e 8ugg @) WP, s’ (@) + a,/,(@q") | u(p,s
“ lg“’(qz) mi-q> 2y
4.5)
Thus, we may identify isoscalar form factors of the nucleon
2 2
Fi(g) = 1@ — (4.6)
6G, ’"5 _ qz Z,

where we have included a factor of Z(; ! to insure the correct normalization for Fls (0). For
definiteness, we can define fIS(O) =3 and require that fZS(O) =-0.12. (Since fzs(()) is quite
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2
| Saad®?) s f2 @) L @.7)

6G, 2 _ g2 Z,

Fyq? =

small, we will neglect it at this point.) To find the value of Z, we may use G, = 7.86 GeV~2,
m, =0.783 GeV, and gwqq(O) =3.86, as obtained in Ref. [8]. Putting FIS(O) =0.5, we find
zZ, !20.323. To understand this value, we may think of the photon in Fig. 2d as being
absorbed on an omega meson that is a part of the nucleon wave function that (in a Fock-space)
may be described as a nucleon "core" coupled to the omega meson. Therefore, this analysis

suggests that the core-omega system represents about 10 percent of the wave function of the

"dressed" nucleon.

For the isovector form factors, entirely similar considerations allow us to write,

I 8@ v

V@) = — — 4.8

Fi (g% 2Gpm2qf()p’ (4.8)
P

Voo 1 gpqq(Q) v, 2 1 4.9

Fy (@9 .2_C7pm2—q 5 (q )—Z—p . (4.9)

Here, we require f, (0) =1 and f,(0)=3.70, so that F,(0) =0.5 and F,(0)=1.85, if
Zp_1 =0.315. That value for Z p"l is quite close to the value of Z ! found for the omega. (See
Egs. (4.6) and (4.7).) Again, our analysis suggests that the core-rho system represents about
10 percent of the wave function of the "dressed" nucleon.

The choice of fZS(O) =-0.12 and f2V (0) = 3.70 may seem somewhat arbitrary. However,
we have seen in past work that, if one uses a relativistic version of the SU(6) quark-model wave

functions of the nucleon, it is quite easy to fit these values in what may be considered to be a
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pure "core" model [11]. That is, in Ref. [11], we did not use the VMD model, nor did we
consider the contribution of the "meson cloud"”. The success of that analysis was based on the
fact that, if one calculates the matrix element of the isoscalar current,
jg‘ (x) = gx)y* q(x),, between nucleon states, the resulting value of fZS (0) is quite small. On the
other hand, if one calculates the matrix element of the isovector current, j{;(x) = q @)y 13q(x),
a large value of fzV (0) is obtained. Indeed, the moments of the neutron and proton were very
well fitted by the simple "core” model of Ref. [11]. However, in the present work we have
used a VMD model and a nucleon "core" to facilitate our study of the nucleon-nucleon force due
to vector-meson exchange.

The purpose of the foregoing analysis was to find some information concerning the core

form factors. To that end, we put

@ = % : (4.10)
5@ = 3'70(7;%\52\]‘);'5 , (4.11)
£@d = s(x—l(t-f-);; , (¢.12)
£qYH = -0.12 i 4.13)
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At this point, we may find values of the various A\’s by using the phenomenological
values of FIS, FZS, F 1V and sz given in Section III. We will concentrate on Fls(qz) and
F2V (qz), since these form factors appear in the most important components of the nucleon-
nucleon interaction that arise from vector-meson exchange. In Fig. 3 we show a fit toFIS(qZ)
obtained with )\f=0.745 GeV and in Fig. 4 we show a fit to FZV (q2) obtained with
)\;/ =0.70 GeV. (If we convert these values of \ to a "core radius" by using the formula
R= \/ES_ /N, we find R, = 0.69 fm and R, = 0.65 fm. (These values represent about 80

percent of the value of the electromagnetic radius of the nucleon.)

V. Vector-Meson Exchange in the OBE Model

The one-boson-exchange model provides a particularly simple representation of the
nucleon-nucleon interaction [1]. One characteristic of the model is the inclusion of a vertex
cutoff at each meson-nucleon vertex. For the monopole form of the vertex cutoff, we have, for
meson i,

Af—m?‘

OBE i 5.1)
2

F o0 gh =

{8

A -q

1

at each vertex. For example, for omega exchange, one has an amplitude

2 2 2 2
BE, 2. _ 8unN | Ay —My, 1 (5.2)
RS vl ey e s
A -q m,-q

Here, g,y is the omega-nucleon coupling constant as defined in Ref. [1]. We have included
a factor of (1/47) in Eq. (5.2), since the value of the coupling constant is usually given by
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specifying the value of g?/4w. For example, we have ngN/41r =20.0and A =1.5 GeV as
typical values in the OBE model [1]. From these values, we have f(g)BE =17.26 GeV 2, if we
use the definition of f(gf E(qz) given in Eq. (5.2).

To calculate the corresponding amplitude in the extended NJL model, we consider the
diagrams of Fig. 5. Note that to obtain an expression similar to that of the OBE model, we may
consider the interaction of the valence quark "cores" that were introduced in the last section.

For example, we may write, for omega exchange,

- - - G
M = 5B~ 0,9) [¥6) - 2 0@ | w5y ————
I—Gw‘](w)(q)

(5.3)

X u(py +q,s7) [ mfig?) + q,.fz (qz)} u(py, $1)

We now use our basic bosonization relations to extract the amplitude proportion to [ fls (q 2) ’.

We again insert a factor of (1/4x) and write

fakad = o g"""’“”[f( f (5.4
ir 2
ms - q?
@ ()2 i S
(%) 1
) 411' tag @°) 2 [fl (0)] ’ ©-3)

)2 -q

where we have put t (q ) gwqq(qz)/ (m ) and made use of Eq. (4.12). With

>\1=O.745 GeV, gwqq(O) =38 (see Table 1) and fls(0)=3.0, we  obtain
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NJL(O) =17.4 GeV'Z, which is close to the value f OBE(O) =17.3 GeV™? calculated above.
(w) (w)

The functions f(g)JL(qz) and f(f)BE(qz) are compared in Fig. 6. We see that (w')'L(q >) falls off
more quickly than f(g)B E(qz) as -¢2 is increased.
We now turn to a consideration of rho exchange. Here we will concentrate on the tensor

component of the force. In the OBE model, we consider the amplitude

2
2
fOBE( 2) - ijN Ayj-m, 1 (5.6)
w 9 4r | 2_ 2 2’

where f, vy is related to g,y by fynn/8onn = 6.1 [1]. The coupling constants, g,y and
J,nn»> are used to parametrize the form of the meson-nucleon vertex in the OBE model. For

example, the vertex for rho-nucleon coupling is [1]

2 2
- = io*va” - , At -m
Toge = ¥(P+4,5) | gomn?" + pNN l2 T\ up,s) <t |ry|7> | 2—L | . (5.7
my Az_qZ
ol

Here, we see that, in the case of the OBE model, the same value of Ap is used in the central
and the tensor term. We have g 92 nv/4m=0.99 and A, = 1.3 GeV as typical values in the OBE
= OBE -2
model [1]. Thus, foyy/47 =36.8 and, from Eq. (5.6), we find £ F(0) =26.2 GeV 2,
The NJL amplitude is obtained by considering an expression analogous to Eq. (5.3),

In Eq. (5.8) we have not written the isospin factors, for simplicity. Thus,
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- — G
Thr = (P - 4,55) [ YA (qz) - w# q fz (42)] u(Py,53) d

1= G,J @ * K@)

B
X u(py+q,5)) [ Lfy @+ qﬁfz (qz)] u(py,sy) 58
1 vV, 2
oy @)= PRI (5.9)
- [J w4 )*K(p)(q )
2,2
- 1 gpqq(Q)fV 2
= qdH0 . (5.10)
4r mpZ _ qz [ 2 ]2
_ 1,0 \ 5.11
= = 1g) [f(O)] . .11)

(A, )2 - q

Noting that g,,(0) =3.66, f, (0) =3.70, and m, =0.77 GeV, we find £y “(0) =24.6 GeV 2

which is 94 percent of the corresponding OBE result. [See Fig. 7.]

VI. Discussion

It is worth noting that, if we had calculated the magnitude of the NJL amplitude using
the values of the meson-quark coupling constants at q2 = mf, , OF q2 = mz , we would have found
only about 60 percent of the value of the OBE amplitude at g2 =0. That is, the momentum
dependence of g, qq(qz) and g, qq(qz) is quite important, since (8, 44M 3 )/ 8, qq(O) 7 and

g, qq(mj)/ £, qq(O) ]* are both equal to approximately 0.6. [See Table 1.]
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We need not expect perfect agreement when comparing OBE and NJL amplitudes, since,
for the nucleon-nucleon scattering problem, there are many diagrams (corresponding to shorter-
range forces) that we have not considered. Some such diagrams are shown in Figs. 8b-8e. The
fact that our amplitudes fall off more rapidly with g? than the OBE amplitudes may indicate that
the shorter-range processes shown in Figs. 8b-8e are important for s-channel exchange processes
with the quantum numbers of the omega and the rho mesons.

In recent years there has been some interest in studying nucleon-nucleon scattering in
models that exhibit chiral symmetry at the meson-nucleon level [12]. In an earlier work [13]
we studied various two-pion exchange diagrams that arose in a chiral model of the pion-nucleon
interaction [14]. We calculated two-nucleon-irreducible amplitudes, since our goal was to study
a potential that could be iterated in a Bethe-Salpeter equation. We also limited our
considerations to the isospin zero potentials. The two-pion exchange diagrams were classed as
two-point loop diagrams, three-point loop diagrams, box diagrams, and crossed-box diagrams.
(See Fig. 2 of Ref. [13].) The results were sensitive to a cutoff, A, that was used to make the
various two-pion-exchange diagrams finite. (Also, when calculating the irreducible amplitudes,
the result depends upon whether one uses pseudoscalar or pseudovector coupling of the pion to
the nucleon.)

In Ref. [13] we presented a tensor decomposition of the interaction. The resulting
potentials had quantum numbers that allowed for their classification as scalar, vector,
pseudovector, axialvector and tensor exchange potentials. The (isoscalar) vector-exchange
potential (that has its origin in two-pion exchange) acts in the same channel as the omega-

exchange potential considered in this work. For the irreducible interaction, with pseudovector
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pion-nucleon coupling, the contribution to the isoscalar vector interaction was very small. (See
Figs. 7 and 8 of Ref. [13].) For pseudoscalar coupling of the pion to the nucleon, the
irreducible potential corresponding to isoscalar vector exchange was repulsive. This two-pion
exchange potential corresponded to an amplitude, at g% = 0, that was about 4 to 6 percent of the
value of f(ﬁgL(O) calculated in the present work. (See Figs. S and 6 of Ref. [13].) These results
suggest that those corrections to the model for vector exchange considered in the present work,
that would arise from the implementation of chiral symmetry at the meson-nucleon level, are
small. (As noted in Ref. [13], if we calculated the two-nucleon-reducible amplitudes for two-
pion exchange, the results are the same for the pseudoscalar and the pseudovector pion-nucleon
coupling schemes.)

Some further support for the application of the NJL model in the calculation of the

nucleon-nucleon interaction comes from our study of pion exchange. In Ref. [3] we considered

the amplitude
2
(™, 2 2
RN ACK) A (6.1)
¥ (%) 2_ 2 ’

where t;;)(q 2y is the T matrix for quark-quark scattering with ¢-channel pion exchange. (Note
that h:u L(O) =1.) Here A, parametrizes the momentum-dependence of the pion-nucleon vertex.

Since té;)(qz) was fixed by the NJL model, we only had the single parameter, N_, to adjust

when fitting the corresponding OBE amplitude,
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2
O = - ZAT x (6.2)

x

where A, =1.3 GeV [1]. We found that the choice of A_=0.80 GeV put h™*(4?) and

x

OBE, 1. . . 2 2 _ 2 :
= (@°) in excellent agreement for spacelike ¢“ out to ¢“ = -2.0 GeV“. Recently, it was

h
found that N = 0.8 GeV in an application of QCD sum rules in the calculation of the
momentum dependence of the pion-nucleon vertex [15]. That result lends some further support

for the application of our extended NJL model in the calculation of the nucleon-nucleon

interaction.
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Table 1. Values of g, qq(qz) and g qq(qz) obtained in an earlier work [8] are presented.

7%(GeV?) 8504@”) Bwqd@?)
0.7 2.66 2.80
0.6 2.82 2.98
0.5 2.98 3.14
0.4 3.13 3.30
0.3 3.27 3.45
0.2 3.41 3.59
0.1 3.54 3.73
0.0 3.66 3.86
0.1 3.74 3.96
-0.2 3.81 4.04
-0.3 3.88 4.11
-0.4 3.92 4.16
-0.5 3.97 4.21
-0.6 4.01 4.25
-0.7 4.04 4.29
-0.8 4.07 4.32
-0.9 4.10 4.35
-1.0 4.12 4.38
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Figure Captions

The basic quark-antiquark loop diagram of the NJL model is shown for the rho
and omega channels. The filled triangular area denotes a vertex function for the
confining interaction (a linear potential).

The equation that is solved to obtain the vertex operator for the confining

otential, VC, is shown. The driving term is *, or y*r,, for the isoscalar and
p 3

_isovector channels, respectively.

Calculation of the diagram shown yields the tensor, 13(’;; (@), that describes the
coupling of the vector-isovector channel to the two-pion continuum. For
gz > 4m3, 13(‘;;'((]) has an imaginary part that provides the width for the rho
meson. We note that m,T,(¢%) = gsqq(qz) Im K ;(q?).

Here the wavy line represents a photon of momentum q. The lines with arrows
denote quarks, while the cross-hatched area represents a nucleon "core" that is
"dressed" by various mesons (o, w, . . . ).

Here tae solid dot denotes a coupling constant of the extended NJL model (G,
or G ).

Here we represent the development of the bubble string of the extended NJL
model. The bubble string may be replaced by a meson propagator through the
use of the relation G,/{1- G, [f(p)(qz) + I?(p)(qz)]} = --gpzqq(qz)/[q2 - mpz] in
the case of the rho meson, for example.

Via bosonization, one may introduce the omega propagator, which is represented

by a double line in the figure. At the photon-meson vertex, one has a factor
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mj /g%(q%), where g“(¢?) is the momentum-dependent meson decay constant
of the omega meson.

Values of F 15 (qz) are shown. The phenomenological values are given by the
solid line, while the result of our fit using the VMD model is represented by the
dashed line. Here )\‘f =0.745 GeV. [See Eq. (4.12).]

Values of Fzs(qz) are shown. The phenomenological values are given by the
solid line, while the dashed line shows the result of the VMD model with
Ay =0.70 GeV. [See Eq. (4.11).]

Diagrams that are considered when using the extended NJL model to calculate
the meson-exchange between two nucleon core states. The solid dot represents
either G, or G,. The "bubble string” may be summed by using the relation
G, /1 —wa(w)(qz)] = -goz,qq(qz)/ q> —mi) in the case of the isoscalar
gq channel, for example.

The omega propagator is shown as a double line. The small filled dots denote

factors of g, qq(qz).

The figure shows values of f(g)BE(qz) [dashed line] and j?oN,)JL(q 2) [solid line].

(See Egs. (5.2) and (5.4).)
The figure shows values of f(gBE(qz) [dashed line] and f(gl L(q2) [sold line].
(See Eqs. (5.6) and (5.11).)

Processes that contribute to s-channel exchange with the quantum numbers of the

rho.

The model for f(g”‘(qz) used in this work is shown. Here the double line is a
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rho propagator and the small filled dotes represent rho-quark coupling constants.
(b)-(e) Various processes involving intermediate states of a delta and a nucleon (or two

deltas) that can contribute to ¢-channel exchange with the quantum numbers of

the rho.
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