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1 Introduction

In order to identify b-quarks in an event (h-tagging), two different
methods which don’t exclude each other are used. One method cou-
sists 1n b-hadrons™ decay vertices determination with inner detector
and then imposing cuts in the impact parameter.

A second method is to search for charged leptons (e, p) from
semileptonic decays of b-hadrons, either directly b — [y X, or by
cascade b — ¢+ ..(¢ = [ X). The pr distributions of leptons from
b-quark decays indicate a significant fraction in the pr < 5GeV
region. Efforts are made to increase b-tagging capability by lower-
ing as much as possible the threshold of efficient lepton detection
down in the low-py region. In both cases, either for electrons or
for muons, one relies on the information provided by calorimeters.
This task presents additional complications because the leptons are
non-isolated and one has to detect their presence inside jets.

Muons and electrons have a different behaviour in calorimeter.

Electrons generate electromagnetic showers and the problem is
to detect the presence of such a shower inside the jet.

Muons lose their energy mainly by ionisation. They penetrate
behind the hadron calorimeter and are detected with a high ef-
ficiency by muon detector. But low pr muons (in the ATLAS
case pr < 5 GeV) have a significant probability to be absorbed
in the calorimeter. Nevertheless they can penetrate deep inside
the hadron calorimeter, while the hadrons from the jet are ab-
sorbed. The b-jets contain high multiplicity low-pr hadrons. The
mner depths of hadron calorimeter will act as a filter for these
hadrons. The idea is to look at the signal in the last depths of
hadron calorimeter which has to be much smaller for jets with-
out muons(light quark jets, gluon jets) than for jets which contain
muons [1].

Questions which arise are:

e is the muon signal in the calorimeter strong enough (i.e. well
separated from electronic noise and not affected by photoelec-
tron statistics)?



e what is the lower limit for pr of the muons where one can sep-
arate between the two kinds of jets and what is the contribu-
tion of this soft pr region to the total number of semileptonic
b-decay events?

o what is the rejection factor for light quark (or gluon) jets
against the efficiency of b-quark jet identification?

A solution is possible due to ATLAS calorimeter good perfor-
mances and fine segmentation [1] and some preliminary simulations
have provided encouraging results [2]. Results of an investigation
of tagging with low-pr electrons from b decays with Atlas electro-
magnetic calorimeter have also heen reported [3].

In this paper, results obtained studying the possibility to use the
Tile Calorimeter to detect low-pr muons inside b-jets are presented.
It 1s shown that for muon py in the range 2 < pr < 5 GeV one can
identify effectively b-jets through b muonic decays.

2 Low pp muons inside b-jets: particle
level results

In  [2] we investigated the possibility to tag the channel BY) —
JIPKS with J/op — ptpm. It was shown that, for b-jets with
pr = 20 GeV at 7 = (1.3, if one relies only on detection possibilities
of the muon detector, i.e. requiring both muons to have pr > 5
GeV, only 13% of events will be registered. Now suppose that we
are able to identify one of the muons in the event with lower pr,
using the calorimetric information. If this limit is pr > 3 GeV, then
the fraction increases to 34% and if the limit is lowered to pr > 2
GeV, one attains 48%.

Soft muons are also important for other processes to be studied
at LHC, containing b-jets at higher py. One can mention the search
for Higgs in the intermediate mass region through the decay channel
H — bb , wliere the typical transverse momentum of the jet is
pr = 40 GeV. Also b-jets with pp around 70 GeV could serve to
tag t-quarks through the decay t — Wb.
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In order to illustrate the importance of the soft region 2 <
pr < 5 GeV, b-jets with pr = 20, 40 and 70 GeV and || < 0.6
were generated with JETSET, imposing the semileptonic (muonic)
decay of b-quark directly, or in cascade. The pr spectrum of these
muons is presented in Fig. 1. For the soft regions indicated by the
hatched areas, the percentages of the total number of events which
they represent in each case, are indicated also on the figure: 32.2%
at pr = 20 GeV, 27.9% at pr = 40 GeV and 21.9% at 70 GeV. The
corresponding percentages for hard muons (i.e. with pr > 5 GeV),
are 21%, 45.7% and 64.8%. One can observe that as pp of the jet
increases, the relative weight of the soft region over the hard region
is decreasing, but it remains important for all processes.

3 Isolated 7/ separation

[t was found useful to simulate firstly isolated particles: pions and
muons at different values of pr and 7. From this study one can
obtain some indications about which are the rejection factors for
hadrons at different values of py and which is the efficiency we can
expect for muon identification in Tile Calorimeter as a function of
pseudorapidity. Combining these two, one can have an indication
about the pp range for soft muon tagging in ATLAS.

In DICE were generated single muons and pions with pr = 2,
3,5 and 10 GeV at 7 = 0.3 and 0.9.

For simulation, the Technical Proposal layout was used, where
the Tile Calorimeter consisted of four longitudinal depths (on r axis
in cilindrical coordinates). The reconstruction of deposited energy
in each depth at the cell level was performed. In fact it was used
only the energy that particles deposit in the last depth, refered as
Depth4 and, because of decision to bring together the previous two
depths, the sum of of the deposited energies in this combined depth,
refered as Depth2+3.

The distribution of the energy deposited by pr = 2, 3, 5 and 10
GeV muons and pions in Depthd is presented in Fig. 2 for n = 0.3
and in Fig. 3 forn = 0.9. At = 0.3 one can observe that for pr > 3
GeV the muon signal is well separated from that of pions. For pr =
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2 GeV an appreciable fraction of muons (16%) don’t reach Depth4.
As 7 increases one have still a good separation from pions, but
already at pr = 3 GeV there is a loss of muon registration efficiency
due to absorbtion in Depth2+3, which at n = 0.9 is about 4%. At
pr = 2 this fraction is 50%. In the Fig. 4, the rejection factors for
pions and efficiency for muon registration are given in function of
the cut we imposed in the deposited energy in Depth4. The energy
cut is converted in the number of photoelectrons using a conversion
factor of 30 pe/GeV. From the new measurements, the light yield
in Tile Calorimeter is 50 pe/GeV and this figure is expected to
be further improved. We see no influence of photostatistics even
for 30 pe/GeV. In order to lower the pr limit and to increase the
efficiency of muon registration at higher values of 7, one has to
look at the deposited energy in Depth2+3. In Fig. 5 are shown the
distributions for deposited energies of py = 2 GeV muons and pions
at 7 = 0.3, in Depthd and Depth2+3. One can see that the muon
and pion signals are well separated in Depth243. The usefulness
of looking at Depth2+3 can be ohserved in Fig. 6 were the same
distributions are presented for = 0.9.

One can conclude that a good separation was obtained for 2 <
pr < 5 GeV isolated muons and pions in the barrel region, looking
at their energy deposition in Depthd4 and Depth2+3. The muon
signal is well above the electronic noise. The separation 1s not
affected by photostatistics. Due to the relative high multiplicity of
hadrons that enter in the componence of jets, they are less energetic
and thus the results obtained for isolated particles are expected to
be preseved in the case of jets.

4 Results on soft ;i b-tagging

For our study, two event samples were generated. The b sample
consisted of b-jets and the background sample, of gluon jets. In
fact, choosing the light quark jets as a background process one
can obtain similar results. We generated single jets in DICE with
pr = 20 and 40 GeV, uniformly in 5 in the central region || < 0.6.
In each case 500 events were generated. lor h-jets some conditions
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were imposed at particle level in the moment of generation, the
number of events given above represented events which passed these
conditions:

e only events containing one muon (accompanied by its own
neutrino).

e transverse momentum of the muon in the soft region 2 < pr <
5 GeV.

For simmlation, the Technical Proposal layout was used and as
for isolated particle case we looked at deposited energies in Depthd
and Depth243.

In Fig. 7 is plotted the energy deposited per depth by b jets and
gluon jets with pr = 20 GeV and in Fig. 8 the same, for pr = 40
GeV. The separation between b-jets and glion jets was performed
by imposing a cut in the deposited energy in Depthd and Depth2+3.
For a given value of this cut one can define the eficiency ¢, for b-
jets and the rejection factor R,p.,, for glnon jets. The dependence
Rytuon versus e, is shown in Mg, 9. One can notice that the rejection
factor decreases as the pp ol the jet is increasing.  This is due
to the fact that in higher pyp gluon jets there are more energetic
hadrons which cannot deposit their whole energy in the inner depths
of Tile Calorimeter. As expected, the largest contribution to the
rejection comes from Depthd. In order to improve the separation,
the information at the cell level has to be used. One idea was to
corelate the deposited energies in cells from different depths and
to take advantage that the muon signal will be distributed in a
few cells, in general one or two. One considers the cell with the
highest energy deposition in Depthl and determines its position
(s @ ). Then one looks in a3 x 3 window in Depth243, centerd
on (M, O ), for two adjacent cells with highest energy deposition.
The sum of deposited energies in these two cells from Depth2+43 is
plotted in Fig. 10. For b-jets one observes a peak which corresponds
to what is expected for the energy which is deposited by a single
muon, while for the gluon jets, this distribution is flat. Tor the
comparison, we simulated the response to single muons, under the
following requirements:



e uniformly in 5 in the range [y} < 0.6
e pr in the range 2 <pr < 5 GeV

The 7 distribution of muons from b-quark decays in h-jets sim-
ulated previonsly, 1s not exactly uniform, but for comparison pur-
poses, this is a good approximation. The reconstructed deposited
energy in Depth2+3 for the single muons 1s shown in the Fig. 11,
together with deposited energies in Depth2+43 of the two cells fron
b-jets, as decribed previously. On the basis of similarity of these
two kinds of distributions one can say that correlating cells form
Depth4 and Depth2+3 one can icolate muons in b-jets. Applying
some cuts to the deposited energies from Fig. 10, one can impose
an additional rejection factor of the order of 3 — 4 for glion jets, for
a loss of about 10% in the efficiency of h-jet identification. There-
fore, combining the rejection conditions one can expect to obtain
rejection factors for gluon jets in the range of 50 — 100.

This technique could also provide useful in rejecting some fake
muons registrated by muon detector. if one considers the 3 % 3
window in Depth2+3, centered on (1), ¢} coordinate given by the
muon detector.

5 Conclusions

In this paper, Tile Calorimeter capability to identify low pr muons
inside the b-jets is investigated. Applying cuts in jet deposited
energy in last depths it was found possible to separate h-jets with
a muon with pr in the range 2 < pr < 5 GeV. By a Monte Carlo
simulation of single b-jets in the central region |n| < 0.6 it was
shown that they represent a significant fraction of semileptonic b-
decay events. If the ‘wformation at the cell level is used 1t was found
that one can increase the rejection factor against the background
(light quark, gluon) jets.

With the muon detector for high pr muons (pr > 5 GeV and
with Tile Calorimeter for 2 < pr < 5 GieV, one can expect an overall
efficiency €, = 10% for b-jet tagging through muon semileptonic b-
decays.



To enhance the b-tagging efficiency one has to use the informa-
tion provided by the inner tracker in conjunction with the analy-
sis based on correlating cells from Depth4 and Depth2+3 in Tile

Calorimeter.
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