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muons in the b-jet context we do not consider information from electromag-

netic calorimeter (EMC) nor from any track detectors, thus entirely relying on
hadron calorimeter response data.
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Figure 1: Distributions of deposited energies in sections of preshower detec-
tor (psy1, psy), EM calorimeter (emy — em3), Hadron calorimeter (hay — hay)
for muons and pions at n = 0.3 and pr values uniformly distributed within

(3 - 5) GeV interval



1 Introduction

Artificial Neural Networks (ANN) have already found many applications in
High Energy Physics [1]. Due to their inherent parallelism, robustness and good
statistical properties the ANN are used both in off-line and on-line analysis.

The main goal of the present ariicle is to show advantages of ANN approach
in handling data from highly granulated hadron calorimeter (HC) in comparison
with other techniques. To demonstrate the potential of ANN approach the task
of isolated low pp 7/p separation was chosen. In solving the task we can get
an insight into what are the most relevant inputs to an effective neural network
classifier (discriminator) and what are its performance limits.

Having its own value, the effective solution of isolated low pr w/u sep-
aration task may be considered as an auxiliary step towards tackling a more
difficult problem - tagging b-jets with low pr muons using HC information.
Muons in the range 3 < pr < 5 GeV have a significant probability to be ab-
sorbed in the calorimeter and therefore they cannot be reliably registered by
the muon detector. In [2] it was shown that identification of b-jets with muon’s
pr > 3 GeV might increase the statistics of the observed events by a factor of
2.5 in searching for and measurement of CP viclation in BY — J/$K] channel
with J/¢ — ptpu~ decay - the problem mentioned in the ATLAS Technical
Proposal [3].

In our investigation we restricted ourselves to testing discrimination power
of two types of discriminators: linear threshold discriminators (LTD) as used in
[2] and neural net discriminators (NND) built using the package JETNET [4].
The present work is based on simulated data; two HC designs were considered
~ with 4 and 3 longitudinal samples. Distributions of deposited energies in each
section of ATLAS calorimeter are shown in Fig.1.

2 Neural networks application scheme and
simulation data

In what follows the muon events (calorimeter response to muons) will be refered
to as signal events, and the pion events - as background events respectively.

Neural net discriminators being nonlinear nonparametric extensions of con-
ventional classifiers exploit knowledge of joint probability distribution of dif-
ferent features of registered events. Approximation of joint probability distri-
bution is attained through a procedure called neural net training on the basis
of a training set of events (simulated or real). Under certain conditions neural
net classifiers realize asymptotically optimal, Bayasian decision (5] [6].

To formulate the problem under study closer to identification of low pr



3 Discriminators and their performance
in low pr 7/ separation

In this paper results for four models of 7/ discriminators are presented in the
order of their increasing discrimination power.

¢ LTD - linear threshold discriminator that checks the deposited energy
E4 in the last HC sample against the threshold value.

¢ NNDy; - neural net discriminator operating on the energies E;, i = 1,4 ,
deposited in four HC sections (i.e. on all longitudinal samples).

o NND;s; - neural net discriminator operating on values of event features
estimated as functions of arguments E;.

® NND3y — neural net discriminator operating on 3-dimensional pattern of
energy deposition in HC (i.e. on energy deposition in cells).

Three-layered perceptrons with n input neurons (nodes) in the first layer,
np neurons in a hidden layer and one output neuron in the third layer were
selected for constructing neural net discriminators. Adjacent layers of the per-
ceptrons are fully interconnected. A formula (n, ny, 1) will be used to depict
the structure of such perceptrons.

Inputs to the first layer of NND may be thought as components of
n-dimensional vector that represents an event in n-dimensional feature space.
Dimension n and ordering of input components are fixed for a particular NND.
For neurons in the hidden and output layers the nonlinear neuron activation
function g(a) = (1 + exp(—2a))~! was chosen; hence the perceptrons perform
nonlinear mappings of n-dimensional space into (0, 1) interval. During training
phase the target value of the output neuron was put 1o 1 for muons and 0 for
pions. Training procedure iteratively adjusts weigths of connections between
neurons in order to minimize mean fit error MFE, i.e. mean squared deviation
of actual net output values Onn(p) from the target values t(p) over the whole
training set of events:

N
. I & 2
MFE = MZ:IU(P) - Onn(p) (1)

where p denotes events.

Using a trained perceptron one gets one-dimensional distributions of net
output values for muons and pions, and the subsequent part of w/u sepa-
ration task becomes similar to that of L'TD discriminator which deals with
one-dimensional distributions of E4 values (0 < Fy < o) .



We adopted the following investigation scheme which consisted of eight
distinct steps:

1. Define an interval of interest for pr value (pr working interval).
In our case it is 3.0 < pr < 5.0 GeV.

9. Form training set of events. It comprises both signal and background

events generated at pp values within the pr working interval (see below
the details).

3. Train the neural net discriminator.

4. Test the neural net discriminator. Testing 1s performed using another set
of events (test events) with pr within the working interval. Quality of
the trained discriminator (its characteristics as a classifier) is evaluated
as a function of the threshold level applied to neural net output signal.

5 Estimate discriminator quality dependence on pr (for events both within
pr working interval and outside it).

6. Execute steps 2 - 4 for different levels of photostatistics (in the range
10 - 80 photoelectrous per GeV).

7. Execute step 6 for different values of a cut applied for thresholding energy
depositions in HC cells.

8. Execute steps 2 - 4 for two HC designs: a) with four longitudinal sam-

ples and b) with three longitudinal samples (samples 2 and 3 grouped
togethger).

The standard ATLAS programs (DICE and ATRECON) were used to simu-
late calorimeter response to isolated y and 7 at 1 = 0.3 for pr values uniformly
distributed within py working interval (3.0, 5.0) GeV. In total 6000 muon
events and 6000 pion events were simulated. Actually the pp working inter-
val was subdivided into four nonoverlapping subintervals of 0.5 GeV width,
with 3000 events in ecach. To evaluate the discriminator quality outside the
pr working interval, we have prepared additional data files for muon and pion
events generated at pr = 2.0 and 10.0 GeV (4000 events in total). Noise effects
were taken into consideration in a simplified way using a cut of 0.1 GeV for
thresholding the simulated energy depositions in HC cells.

The resultant trained neural net discriminator depends on pr distribution in
the training set within both classes of events (signal and background). General
case of nonuniform pr distributions is easily simulated by proper adjustments
in a procedure that performs access to event patterns during neural net training
phase.
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Figure 3. Characteristics for LTD and NND;y as functions of discriminator’s
inlernal parameter (threshold value for energy E4 in case of LTD; threshold
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In Fig.2(a) distributions of E4 for signal (s) and background (7) events are
presented, and in Fig.2(b) — distributions of neural net output values for the
same events (the neural net is that of NNDjy).
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Figure 2: (a) Distributions of E4 for p and w events at = 0.3 and pr values
uniformly distributed within (3 - 5) GeV interval. (b) Distributions of NNDjy
neural net oulput values for the same evenls

A fixed point on z-axis (decision point or threshold) dichotomizes these dis-
tributions. Counting events on both sides of the threshold and normalizing the
results one gets accumulated probabilities for an event to be correctly classified
or misclassified. Applying variable thresholds we get estimates of inportant
characteristics of discriminators:

e £, — efficiency of signal events recognition, 1.c. the probability that a
muot event be correctly classified,

e «, - inefliciency of signal events recognition, i.e. the probabihity that a
muon event be misclassified («, =1 —¢,),

e B. - survival probability for background events, i.e the probability that
a pion event be misclassified.

These characteristics for LTD and NNDj, discriminators are presented in
Fig.3 as functions of discriminator’s internal paranieter (threshold value for
energy Fy4 in case of LTD: threshold value for neural net output signal in case

of NND).
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discriminators. All three nets being perceptrons of the formula (n, 40, 1) differ
In two respects:

1) dimension n of input vectors X,,,

2) sense of components of X,,.

Components of X, vector are usually called event features. Features are
functions of raw data items (cell energies of HC response in our case). It is
worth noting that F; samples are also features: each E; is a weighted sum of
all energies deposited in separate cells of i-th section of HC, all weights being
set to 1}. Evaluation of feature values is an operation called preprocessing of
measurement data (or source data). Note that opcration of reordering features
in input vector X, is another example of preprocessing if this operation is event
dependent.

o |
140
- B
] . ) s
120 ' e
L Sh
e e X
B A
100 + o %
- ;‘;\:
- g
80 -
E a2 —A_,
; (” ™ A‘\
60 ] ) Q} ‘\\‘
I * Q, \
N w Q
40 A Q A
I A 1 i i 1 1 1 1 1 ] 1 1 4 1 1 1 'l L i l
0.8 0.85 0.9 095 1
€/~L

Figure 5: Q vs ¢, for discriminators: Qg - LTD, Q1 - NND;y, Q3 - NNDys,
Q3 - NND3y



Two other characteristics are defined as follows:

e R, =1/3, - rejection factor for background events,
e Q=c, Ry - enrichment factor.

Enrichment factor Q indicates the change in the ratio

(number of signal events)

(number of background events)

after applying the discriminator to a mixture of signal and background events.
Two lower plots in Fig.3 present Q-factors for LTD and NNDys as functions of
variable threshold values.

Different types of discriminators may differ in sense and range of their in-
ternal parameters which control performance of a discriminator. That is why
we prefer to use parameter independent function Q(e,) for comparing function-
al behaviour of different discriminators [7), (8], [9]. In Fig.4 Q(e4) function
is presented for LTD and NNDy, discriminators (values of these functions are
derived from plots in Fig.3).
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Figure 4: Q vs e, for LTD and NNDj

Before presenting and commenting functional behavior of the four discrimi-
nators we shall look at what is the difference between neural nets of three NND
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It is well known that definition of a feature space is the most critical stage
in pattern classification process. Various features of the events were evaluated
and many sessions of neural net training and testing were carried ont in search
for the most effective subsets of features used as mmputs to neural nets.

The neural net of NND;; discriminator is a (-, 40. 1) - perceptron which
uses four longitudinal samples £, 1 = T4 . as components of input vector
X,4. The order of samples E| in the vector N4 is fixed: i-th component of Xn
is assigned E; value. In Figh the line labeled by Q) presents Q(g,) curve
for NND;; discriminator. It follows from the figure that for muon registration
efficiencies ¢, = 0.80 —0.97 the enrichment factor (O is in the range 100 - 105.
Q1(g,) is a decreasing funcnion for larger <, values, and at £, = 0.99 it drops
to ~ 95.

NND;, discriminator is also based on the (4. 40, 1) - perceptron and also
uses four longitudinal samples £;. i = 1.4, In contrast to NNDy;. assignment
of a particular £} to a component of X4 is dependent on the event itself. Here
components of X4 are an ordered set of longitudinal samples ordered by their
values in descending way. Q(e,) curve for NNDy» Jiscriminator is presented in
Fig.5 by the line labeled Q. For muon registration efficiencies €, = 0.80-0.97
the enrichment factor (- is in the range 120 125. At efficiency £, = 0.99
QQ; drops to ~ 95.

For conveniency of comparison we present in Fig.6 ratios g;; of the functions
Q(e,) for different pairs of discriminators at efficiencies ¢, = 0.88 — 0.99:

(e — EJ_’(EI‘) — R{(E“)
(Iu(wn) Qj(fu) —-1fj(€,‘) .

where R;(g,), Rj(ey) denote corresponding values of pion rejection factor Ry.

One can see that in comparison with L'TD all neural net discriminators have
twice as high enrichment factor value Q at the highest efficiency ¢, = 0.99. At
lower efficiencies (g, < 0.96) different models of neural net discriminators hold
Q factors 40 - 80 % higher compared to LTD discriminator.

In search for effective NNDgs, discrumimator we tried a number a ways to
extract additional important features by preprocessing clusters of cells in each
HC section. A cluster is defined as the 3 x 3 cells window where the maximum
summed energy is deposited. The central cell (1., o) of a cluster is that with
maximum cell energy.

9



compared to NND;;, but is relatively small (less then 10 units) compared to
NND;3. In comparison with all other three discriminators the relative increase
in Q for NNDgy is presented in Fig.6 by q3;(£,) curves, j = 0, 1, 2.

In our opinion, the moderate increase in Q for NNDay in comparison with
NNDj2 may be justified as follows.

Muons loose their energy mainly by ionization, and the number of active
cells in an HC section does not exceed 2. Distributions of their deposited
summed energies in each of four sections are of gaussian type, centered at
M, (E;), i = 1,4 with standard deviations 0.102 < o; < 0.125 (ref. Fig.1).
Big deviations from mean values M,(E;) in one or more HC sections are
used by well trained NND;;, NND;, discriminators as signatures of a pion.
Number of pions misclassified by NND;;, NND;5 is not greate and equals to
mg = N-Bx = N/R.. To substantially increase classification power the NNDgy
discriminator should correctly classify a part of mn, pions using information on
cell distribution of the deposited energy in HC sections. The rise in multiplici-
ty above 2 active cells is with high probability accompanied by the increase in
summed energy deposition by an ammount that is abnormal to a muon event;
meanwhile the observed multiplicity of active cells in the subset of m, mis-
classified pion events is similar to that in muon events. The little difference
in characteristics between NND3y and NND;5 shows that using information on
active cell multiplicity permits NNDsy to lower m, number only by 5%. This
result gives rise to an assumption that some of m, pions — all exhibiting deep
penetration ability with nonzero energy deposition in the last HC section -
most likely did not take part in nuclear interactions at all. Obvious contra-
diction between the actually observed fraction of misclassified pions (~ 0.01)
and the fraction of pions (< 0.0001) that could escape nuclear interactions in
ATLAS calorimeter at = 0.3 leads us to a conclusion that at least a part
of the observed m, cases of HC response is most probably not produced by
particles entering HC as pions.

Indeed, pion decay process 7* — ;¥ 4 v, tends to make HC response to a
background event () look like that to a signal event (y). The probability of the
decay is not negligible in our 7/u separation task: for pp uniformly distributed
in 3 - 5 GeV interval at 5 = 0.3 about 0.83% of pions decay prior to the first
nuclear interaction and should in average produce muon-like HC responses.
At high muon registration efficiencies and 3000 pion events in a test sample
we arrive at a limit value R, = 1‘20:}:%’8. It follows from this estimate that
longitudinal samples in HC contain enough information for NND;; and NNDy,
to approach the limit values of R, and Q. Hence the subsequent improvements
in Rx and Q attained by NNDj34 could not be high.



Some of the tested features are:

1. energy of the leading cell in a cluster,

2. summed energies in increasing square bands around the centre of a cluster,
3. summed energy of the cells outside a cluster,

4. ordered sample of cell energies in a cluster,

5. ordered sample of cell energies normalized by the total energy in a cluster,

6. m — number of cells with energy deposition above preset thresholds, i.e.
multiplicity of active cells in a cluster,

7. m, — number of active cells with 7..;; # 7. 1n a cluster,
(n - multiplicity),

8. m, — number of active cells with ¢..n # .,
(¢ - multiplicity),

Additional features of "longitudinal” type were tested in order to take into

account nonuniformity Vg of energy depositions in consequitive HC sections.
Vg is defined as following:

3 4
Ve =Y (vi- B — vig1 Bi1)* /By Erot = ) Ei (2)
i=1 1
Three sets of v; constants were used to prepare three versions of Vg feature:
a) v =1,
b) wv; = 1/d;, where d; — thickness of i-th HC section in nuclear

mteraction length units,
¢) v = I/M,(E;), where M,(E;) is the mean value of i-th longitudinal
sample in HC for muon events (see Fig.1)

During training and testing sessions we retained only those models of NND3q4
which had higher characteristics and lower dimension of feature vector X,,. The
final version of NND34 is based on the (8, 40, 1) - perceptron. The input fea-
tures in Xy vector are:
ordered sample of E; (four features),
mg,‘“‘), 1718*), k = 1,2 (four features},

j1, j» — are indeces of those two HC longitudinal sections
where the greatest summed energies were deposited for an event.

Functional behavior of NND3q4 is presented by @s(¢,) curve in Fig.5. One
can see that an increase in Q - factor value is sensible enough (about 25 units)

11



number, mean fit error MFE (1) in the current epoch, muon and pion recog-
nition efficiency in training and test sets of events, four values of enrichment
factor Q at efficiencies £, = 0.99,0.95, 0.90, 0.85.

As an example of a training session we present in Fig.7 the dynamics of
enrichment factor Q (at ¢, = 0.99) and mean fit error MFE as functions of the
current epoch number in the session.
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Figure 7: Dynamics of enrichment factor Q (ate, = 0.99) and mean fit error
MFE tn a training session for NNDy

As the next step in our investigation scheme we estimated the dependence ¢
discriminator characteristics on pr values of events being tested. We evaluat:d
characteristics of different discriminators at four pr values inside the workiuyg
interval (3.0 , 5.0) GeV and at pr = 2 and 10 GeV outside it. It shoul'
be noted that results for pr outside the working interval are highly sensir - -
to singularities of NND versions and to the tl eshold values applied -
neural net output signal. Efficiency £, and piou rejection factor R, insi

14



Simulated events (12000 in total) have been split into two equal parts: one
part used for training neural net and another part - for testing its generaliza-
tion ability. With 3000 + 3000 events in the test sample and high values of
background rejection factors R attained by discriminators (Ry ~ 100) the sta-
tistical errors in estimation of Q can not be low: o(Q) ~ 15— 20. Nevertheless,
the difference in characteristics of any two discriminators may be estimated
with higher precision because the common test sample of events is used for
evaluating these characteristics which consequently become correlated.

Let D;, D; be two discriminators tuned to operate at the given fixed efhi-
ciency €, = £o, and R;. Q:, Rj, Q5 - their background rejection factors and
enrichment factors at £, = £. Assume without loss of generality that R; > R;.
It can be shown that maximum likelihood estimation of variance of the ratio
g = Qi/Qj = R;/R; may be reduced to the following expression:

. R; , I .
var(qs;) = qij - N ((IiJ +1 - ZE) (3)
or
. Qi Qi €ij
var(qi;) = qij - —= -\ +1*2*—'-‘) 4
(1]) {ij Eo]\/ (IJ (2,,] €0 ( )
where

N — the number of background events (pions) in the test sample,

Rij, Qij, €ij - background rejection factor, enrichment factor and muon
registration efficiency of the compound discrimminator Dy; based on Dy, Dj that
are operating in parallel (each at €, = £9) and whose output logical signals 0/1
(classification signals) are processed by "AND” logical function to form output
signal of the compound discriminator.

Note that in general case the next inequalities hold:

R,’j Z R;‘ 2 R]' gy

1) S El)

Error bars in Fig.6 correspond to estimates according to (3, (4).

Neural nets were thoroughly trained using up to 7 - 10 thousands epochs
in a training session. To reach lower event classification error we tested neural
net versions with different forms of neuron activation function, used fixed and
variable learning rates in a training session, used back-propagation and Rprop
training procedures [4] and varied starting values of weigts and thresholds of
the neural net when initializing a training sesion.

Output of a short summary after each epoch proved very useful for super-
vising the process of neural network training. The summary contains: epoch

13
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working interval are constant within statistical errors for all discriminators. At
pr = 10 GeV ¢, remains as high whereas at pr = 2 GeV ¢, drops to the
values 0.2 — 0.8 depending on the version of a discriminator.

Due to poor statistics at pr = 2 and 10 GeV (1000 pion events at each pr
value) only qualitative conclusions can be drawn from the set of estimates of
Ry for different discriminators at \hiese two pr values. The least degradation
in R, and €, outside the working interval is shown by discriminators of NNDay
family, the biggest degradation — by LTD. To reach good performance at pr
= 2 GeV one should include events sirnulated at 2 < pr < 3 GeV into the
training set of events.

To investigate the influence of photostatistics on discriminator’s perfor-
mance we repeated steps 2 - 4 of our investigation scheme (see page 3) for
seven different photostatistics levels (PSL) in the range 10 - 80 photoelectrons
per GeV. For the fixed muon recognition efficiency £, = 0.99 the dependence of

Q - factor upon photostatistics level is presented in Fig.8 for NNDy and LTD
discriminators.
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It is clearly seen that the neural net discriminator is a more robust classifier
which retains its selectivity within the whole range of photostatistics level and
whose discrimination power gradually decreases when photostatistics level goes
down. In contrast to NNDjs, the LTD discriminator cannot retain its selec-
tivity at efficiency €, = 0.99 within the whole range of photostatistics level
(25 photoelectrons/GeV is the critical point — ref, Fig.8).

Both characteristics shown in Fig.8 correspond to a cut of 0.10 GeV applied
for thresholding energy deposition in a separate HC cell. To examine sensitiv-
ity of the characteristics to cell energy threshold values, we have estimated
another two pairs of characteristics (for the same ¢, value) corresponding to
cell energy thresholds (CET) of 0.15 and 0.20 GeV. All six curves are pre-
sented in Fig.9 separately for NND;; and LTD discriminators. 1t is seen that
for CET = 0.20 GeV the LTD discriminator cannot reach muon registration
efficiency €, = 0.99 at any value of photostatistics level without loosing 7/u
separation ability.
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It is clearly seen that the neural net discriminator is a more robust classifier
which retains its selectivity within the whole range of photostatistics level and
whose discrimination power gradually decreases when photostatistics level goes
down. In contrast to NNDjy, the L'TD discrininator cannot retain its selec-
tivity at efliciency ¢, = 0.99 within the whole range of photostatistics level
(25 photoelectrons/GeV is the critical point  ref. Fig.8).

Both characteristics shown in Fig.8 correspond to a cut of 0.10 GeV applied
for thresholding energy deposition in a separate HC cell. To examine sensitiv-
ity of the characteristics to cell energy threshold values, we have estimated
another two pairs of characteristics (for the same ¢, value) corresponding to
cell energy thresholds (CET) of 0.15 and 0.20 GeV. All six curves are pre-
sented in Fig.9 separately for NNDjo and L'TD discriminators. It is seen that
for CET = 0.20 GeV the L'TD discriminator cannot reach muon registration
efficiency ¢, = 0.99 at any value of photostatistics level without loosing 7/u
separation ability.
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The dependence of €, on LTD’s internal parameter (threshold on E4 -
ref. Fig.3) at the fixed PSL = 40 photoelectrons/GeV is presented in Fig.10 by
the lines 2, 3, 4 for different values of CET = 0.10, 0.15, 0.20 GeV. The line 1
corresponds to HC data simulated without taking photostatistics into account
(PSL = o0).

To investigate sensitivity of LTD characteristics to cell energy thresholds,
we have additionally evaluated the maximum values of ¢, attainable by LTD
without loosing #/u separation ability for five CET values in the range 0.10 -
0.30 GeV and seven PSL values in the range 10 - 80 photoelectrons/GeV. The
results are presented in Fig.11. They allow one to foresee limitations of LTD
expected in solving 7/u separation task in a more realistic environment when
higher CET values might be needed to suppress background signals.

According to the ATLAS Technical Proposal [3] the central two sections of
hadron calorimeter will be grouped together. We designate the two HC designs
of 4 and 3 longitudinal samples as HC(1,2,3,4) and HC(1,24+3,4). A neural net
discriminator of NND;; family was trained and tested for HC(1,2+3,4). In
Fig.12 its characteristics are presented by the line labeled NNDy;(3s). The line
labeled NNDy;(4s) presents characteristics of the NND;; discriminator given
in details earlier for HC(1,2,3,4). One can see that at eﬂ‘iciencie.s €y < 0.90
the NND;;(3s) is not inferior to NNDy;(4s). At efficiencies 0.95 < €, < 0.99

the enrichment factor Q3 of NNDy;(3s) is only 10% lower in comparison with
NNDy, (4s).
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4 Conclusions

1. Neural net discriminators operating on longitudinal or 3-dimensional de-
posited energy samples and the linear threshold discriminator operating
on total deposited energy in the HC last section were applied to low pr
7/p separation at n = 0.3 using MC simulated data. Compared to the
linear threshold discriminator an increase of 80 — 100% in pion rejection
factor at muon recognition efficiency 0.95 — 0.99 was obtained in case of
neural network discriminators.

2. Neural mnet discriminators trained inside the working interval
3 < pr £5 GeV do not show a sharp deterioration of their performance
outside the working interval at p; = 10 GeV. To keep good performance
of neural net discriminators at pr = 2 GeV one should include events
with 2 < pr < 3 GeV into the training set of events.

3. Neural net discriminators proved to be robust classifiers that at high
muon registration efficiency €, = 0.99 retain their selectivity in a wide
range of photostatistics level (10 - 80 photoelectrons/GeV) and whose
discrimination power - in contrast to the linear threshold discriminator -
gradually decreases when photostatistics level goes down.

4. There is little difference in characteristics of neural net discriminators for
two HC designs - with 4 and 3 longitudinal samples. No difference is
observed for efficiencies €, < 0.90. At efficiencies 0.95 < £, < 0.99 the
pion regection factor in case of 3 longitudinal samples is only 10% lower
compared to the case of 4 longitudinal samples.
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AcTBauarypos A.P. 1 p. E10-95-476
[TpHMenerie NCKYCCTBEHIBIX HEHPOHHBIX CCTCH U1 HOBBITICHHYA

SPHERTHBHOCTH PASICICHHS HIOTHPOBAHIBIX T-ME3OHOR 11 MIBOHOB

€ MQUIBIM HOHCPCHHBIM HMINIBCOM B wIponHonM Kautopinterpe ATLAS

[ToKa3ibl NPEHMYIICCTBI METOIHKI HCKYCCTBCHIBIN HCHTPOHIBIX CeTel s
0OpabOTKI HAHHBIX C WIPOHHOTO KUTOpHMETpa ATLLAS Ha npiMepe pelenis 3a1aduu
HO  payieineniio  H300UPOBAHHBIX  TT-ME30HOB 1 MIDOHOB ¢ MIbIM  HOUEPE HBIM
HMITYIIBCOM B iiTepiaite 3 < p < 5 B ipi neesiobeicrpore 11 = 0.3. Miwoubi upu

TAKHX ])I. HMEIOT 3UMETHYR  BCPOATHOCTD OBt OTOHICHHBIMH B BELIECTBE Ka-

JIOPHMETPA,  BCHRICTBIC Hel0 0l He MOIYT Obllh IUICAKHO 3apelHCTPHPORAHDbI
MIOOHHBIM 1eTeKTOPOM. TIpeacTasien CpaBiiTeIbibii aHal3 OCHOBHBIX XaPaK-
TEPHCTHK  PAIA HEHPOCCTERBIX  HCKPHMHITOPOB  H HIEHHONO  [IOPOrOBOI0
HHCKPHMHHATOPA, KONTPOHIPYIONICTO YHEPTORBLICIICHIC B IIOC/EIREH CCKUHY ail-
POHIOIO KaMopHMeTpa. ALuins octosan na tannex Moirre-Kapao, nonyuenipix
HPH HOMOLLI CTAILLAPTHBIX 1POIPaMs moleposattist ATLAS,

Patora seinomiena s Jlaboparopnn sieprnix npotiess OUAH.

Coobuenie OBKCBIHCHIOIO MHCTHTVTR e PHbiy beetcosanii. Qyona, 1995

Astvatsaturov A.R. ct al. E10-95-476
Improvement in Separation of Isolated Muons and Pions
at Low pyin ATLAS Hadron Calorimeter Using

Artificial Neural Networks Technique

Advantages of artitictal neural networks technique in handling data from highly
granulated ATLAS hadron calorimeter (HC) are shown in application to isolated
/U separation task in the range 3 <p, <5 GeVoat pseudorapidity 1=0.3. Such
low p. muons have a significant probability to be absorbed in the calorimeter and
therefore they cannot be rehably registered by the muon detector. The comparative
analysis of main characteristics 1 presented for several neural net discriminators and
a linear threshold discriminator operating on energy deposition in the last depth of
HC. The analysis 1s based on MC data obtained with ATLAS simulation programs.

The investigation has been performed at the Laboratory of Nuclear Problems,
JINR.
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