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In the present paper we propose a new technique for the numerical solu-

tion of the Schrédinger cquation with the enough common type nonlinecarity

i 4 e+ S(1Y1)Y = 0. (1)

where in the term of f we immply the polynomial of the I-th degree:

N
f=1P) = Zﬂ'cll/’lw = ag + e[ + ool 4+ anpN (2)
=0

Depending on the number of the scrics members and also on the coef-
ficients of (2) (we suppose that ag,a;,- - are, in gencral, arbitrary), eq.(1)
arises in various branches of physics. For example, in the case of N = 0
and ap = U = U(z), eq.(1) describes the motion of quantum particles (elec-
trons, protons and so on) in the external field U (1926, E. Schrodinger).
The eq.(1) for N = 1 is the Schrédinger equation with the cubic nonlinear-
ity (the so called ¥* — NLSE). Corresponding to the sign of ay = const
(o0 = 0), the *> — NLSE has a wide application in physics. For a; > 0,
it describes the nonideal Bose gas of the attracting particles {1], the prop-
agation of light beams in a nonlinear dispcrsive media [2] (the propagation
of "bright solitons”), and it also arises in the study of ‘some problems of
the theory of magnetism and molecular crystals. The Y3 — NLSE with the
a; = const < 0 serves as a phenomenogical model of superfluidity for the
inhomogeneous and nonstationary order parameter % [3], it describes the
propagation of "dark solitons” in nonlinear optics [4], the nonideal Bose gas

of the repulsive particles(5] ctc.



The addition of the following members in (2), apart from the pure mathe-
matical variety, leads to the description of the more complicated phenomena.
For N = 2 one has the ¢3 - »* — NLSE, which were applied to the nuclear
hydrodynamics with Skyrma forces[6], to the Bose gas with two- particle at-
tractive and three- particle repulsive - function-like interaction potential [7]
and so on. In view of such a rich application in physics and other sciences,
the development of the numerical methods for solving the NLSE is still a
challenging task. A good library of the various finite difference, spectral, it-
erative and other numerical methods can be found in the remarkable work of
Taha and Ablowitz [8]. Recently [9], a modification of the multigrid methods
for the parallel numerical simulation of the ¥® — NLSE was proposed.

Nevertheless, many methods applied to numerical analysis of the NLSE,
will works when the initial condition or some information about the initial
configuration is known. In the case of the absence of such an information we
propose the following scheme to solve the NLSE. Using the idea of ”contin-
uation on parameter” [10], we introduce a parametric dependence on T for

f(#]?) the following way:

f(T) =Tf(1%), (3)-
Further, by carrying out the discretization of (1), taking into account the
(3), we will have:

gy | (S (PR 00 + L) _
A T 2(Az)? +T ) =0




Here in (4) we introduce the following notation for the space differences and

nonlinear term approximation:

(89, = gy — 200 +¥my,  (W¥m) = FUDR 10 (5)-
It should be noted that the first order time differencing in (4), as well as the
approximations introduced in (5) are not unique and we imply, of course,
the existence of the other approximations here. The main idea of the de-
veloped scheme is that the numerical solution of the all ¥#*+! — NLSE can
be carried out on the basis of the solution of the linear problem. Starting
from the same initial condition at T = 0, we will, depending on the type of
nonlinearity in (1), come to the various results at T = 1. Thus, the solution
of ¥ = Y(mAz,nll) = Y(z,t) will be a function of T for every value of
the parameter T € [0,1]. Obviously, for T = 1 we have the original system
of equations (1)-(2), and for T = 0 we obtain a more simple linear problem.
We introduce a discretization on T : Tj55 = 0,1,--- ,M(To = 0,Tm = 1).
In order to find a solution of the problem (1)-(2) in the point Tj4+1, having
the ¥7 (T;), one can use Newton’s method. We suppose that the difference
|T;41 — Tj| is enough small and we have the good initiél approximation for
Newton’s method:

F'(P, z)vx = —F(—I_;,zk).,
p={T, 9, 0,1, 7}, 2k = (e,

and

Zk+1:Zk+Uk, k=0.1,---.



It is important that the proposed approach can easily be generalized for
investigation of multidimensional nonlinear Schrodinger systems. The more
detailed practical analysis of the described above numerical scheme is in
progress. The some realization of the similar method has been done in [11],
to carry out the numerical analysis of three- dimensional polaron equations.
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Xonmyponos X.T., Myssinnn U.B., Caupuos 10.C. ES5-95-441
O HOBOM 1101X0j1e K YHCIEHHOMY aHAIH3Y HECTALHONAPHOIO YPAaBHEN NI
Lpeaunrepa ¢ HOMMHOMHAIBHON HEJIHHEHNOCTBIO

B nannoi paGote n3noken HOBbUL HHOAXOL K HHCACHHOMY @HAIH3Y HECTALHonap-
Horo ypashenus Lpetinrepa ¢ nonunoMuansioil nensneiinoctsio. Heno:bsys nueio
«TIPOLOJIKENHS 1O HapaMeTpy» wis ypasenns LW pegnurepa:

iy +y + Tyl =0,

S
e f( | \yl ) — HOJHIOM [-iT CTeHenH, BBOAHTCS 11APAMETPHUECK A 3uBHCHMOCTB 0T T.

OcnoHas vuest leClUlO)KClIHO“ CXEMbl 3AKJIKYACTCH B TOM, UTO YHCICHHOE peLUCHHE

2 s . ae
BCEX \V“’+ ' HYLL moxer Gbits 1IPOBEUCHO HA OCHOBE eAHHOIT JIHEHNON 3a1a4n.

CTapTyﬂ C OUHOIO H TOTO KE HAYUIBHOIO YCHOBHs 11PH T=0, Mmbl HPHXOAHM,
B 32aBHCHMOCTH OT THIIA HEJIHHEHHOCTH, K PAa3IHYHbIM pE3y/IbTaTaM 11PDH T=1.

Pabora Bbinonnena 8 Ha()opa'ropun BBHIMHCHNTE IBHOH TEXHHKH N ABTOMATH3AUHH
OUAHN.
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Kholmurodov Kh.T., Puzynin [.V., Smirnov Yu.S. ES-95-441
A New Approach to Numerical Solution
of the Nonstationary Schrodinger Equation with Polynomial Nonlinearity

In the present paper we propose a new technique for the numerical solution
of the Schrodinger equation with the polynomial nonlinearity. Using the idea
of «continuation on parameter», we introduce a parametric dependence of T

2 2 .
forf(| \V‘ ) wheref(l\vl ) is the polynomial of the /-th degree of the nonstationary
Schrodinger equation:

iy, +y + Ty =0,

The main idea of the developed scheme is that the numerical solution of the all

\|121+ ! __ NLSE can be carried out on the basis of the solution of the linear problem.

Starting from the same initial condition at T=0, we will, depending on the type |
of nonlinearity, come to the various results at 7= 1.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR,
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