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Abstract

Recently, Higham and Waldén, Karlson, and Sun have provided formulas for comput-
ing the smallest backward perturbation bounds for the linear least squares problems. In
this paper we provide several backward perturbation bounds that are easier to compute
and optimal up to a factor of about 1.6. We also show that any least squares algorithm
that is stable in the sense of Stewart is necessarily a backward stable algorithm.
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1 Introduction

Given a non-singular matrix M € R™*" with m > n and a vector b € R™, the linear least
squares problem is
min |M -z - hll,, (1.1)

which has a unique solution
-1
av = (MT M) M7

Let A be an algorithm for solving (1.1) and let #); € R™ be the numerical solution
computed by A. We say that 4 is numerically stable if for any such M and b, there exist
small perturbation matrices and vectors 6M € R™ ™ §b € R™ and 63y € R™ such
that (see Stewart [6, pages 75-76))

(M +8M) - (&1 + 8da0) = (h+ 8h)|, = min [|(M + 6M) -z = (h+ 6h)ll2 . (1.2)

It is well-known that if M is ill-conditioned, then &y, can be very different from the exact
solution zps (see Higham [4, Chapter 19]). We will call Z5s a stable solution to (1.1) if it
satisfies (1.2) for small perturbations § M, 6b and 63 ;.

The standard method for solving (1.1) via the QR-factorization of M produces a nu-
merical solution &ps which satisfies (1.2) with éb = 0 and é%p; = 0 (see, for example, [4,
Chapter 19]). However, if M is a structured matrix such as the Toeplitz matrix, then there
are fast algorithms that produce a numerical solution #ps which satisfies (1.2) with non-zero
6b and 82 (see, for example, Gu [2]).

In this paper, we consider the following problem: Given a vector #p; € R", find out
whether it is a stable solution to (1.1). We will solve this problem by finding out whether
there exist small perturbations M, 6b and 63y, for which #ps + 63 satisfies (1.2). For
simplicity, we assume throughout this paper that M # 0 and h # 0.

1.1 Backward Perturbation Bounds

As a special case, we first consider the problem of whether there exists a small perturbation
§M € R™*" for which

(M +832) - 201 ~ |, = min||(M + 83) - = — h|> (1.3)

We will call 257 a backward stable solution to (1.1) if it satisfies (1.3) for a small perturbation
§M. A backward stable solution is a stable solution. As mentioned above, the standard
method for solving (1.1) via the QR-factorization of M produces a & that satisfies (1.3).

In general, the matrix 6M in (1.3) is not uniquely defined. Recently, Waldén, Karlson,
and Sun [7] and Higham [4, Chapter 19] [7] have provided a formula for computing the
smallest ||5/A\4”F among all the possible matrices M that satisfy (1.3).



Theorem 1.1 Let r = h — M - &pr and assume that £pr # 0 and v # 0. Then the optimal

norm-wise backward error in F-norm is

E(zZp) = min{“é/]\\JHp, where §M is a solution to (1.3).}
= min {77, Ulllill([M 7 C'])} ’

where

. P
I R
lwllz T

and owin (M n- C)) is the smallest singular value of [M  n-C].

n

It is obvious that £(#a) = 0 if » = 0. Waldén, Karlson, and Sun [7] also show that

_||MT R,
¢0 ="

According to Theorem 1.1, &5 is a backward stable solution (and hence a stable solu-
tion) if £ (2ps) is small. However, Theorem 1.1 does not say whether 2y is a stable solution
if £ (&) is not small. Although Waldén, Karlson, and Sun [7] have also considered pertur-
bations in b, their results do not completely solve the problem of determining whether
is a stable solution.

Another problem with Theorem 1.1 is that while & (#7) is optimal, it is not very straight-
forward to compute for large m. Since 1 can be very large for #ps = 0, there could be some

numerical difficulty in computing & (&pr) accurately as well.

1.2 Main Results

We provide an alternative F-norm bound on §M that is easier to compute and that differs
from & (£ar) by at most a factor of about 1.6. Using this bound, we further show that a
stable solution in the sense of (1.2) is necessarily a backward stable solution in the sense
of (1.3). Hence any stable least squares algorithm is necessarily backward stable. And a
numerical solution #ps is a stable solution in the sense of (1.2) if and only if £ (Zp7) is small.

In this paper we only discuss real least squares problems. Our results can be easily

extended to the complex case.

2 Alternative Backward Perturbation Bounds

In this section, we express our results in terms of the singular value decomposition (SVD)
of M. While it is possible to rewrite these results directly in terms of M, the resulting

expressions tend to be more complicated.

Let M = Q@ - ( ]3 ) - WT be the SVD of M, where Q € R™*™ and W € R™"*™ are

orthogonal; and D € R™*" is non-negative diagonal. Rewrite

h:Q hl and /:/l—M{i‘}\l:Q Tl ,
/lg Ty



where hy and 7, = hy — D - (WT . 2p7) € R*; and hy = rp. It is well-known that v :=
iralle = |lh = M -zprll2, R1 = D - (WT - 2p), and that ry = 0 if #p7 = 2.

Theorem 2.1 Define

o=

7D (D24 )7
v+ 2o T (D24 )70

and! & (&pr) = min (1,). Then

Eim)  Vo+1

1<
“5(§2M)_ 2

Proof. Theorem 2.1 obviously holds for #p; = 0. Hence in the following we assume that

iy # 0. By definition, o, ([M 7 - C]) is the smallest non-negative o such that
flo)=det (M n-C)-(IM 7-C)T - a*l) = 0.

Replacing M by its singular value decomposition and simplifying,

flo)

P
det (M - MT 47 C* = 0*I) = det <M.MT+(7;2-(72).I—772-TF—|’F>
2

= (- (5 )0 - g (7) 67 )
= <n2 - az)m_n -det (D2 +(n* =) I)

2 .2 2

n - 7 T 2 2 2 -1

(1- LT (D (-1 )
< I7l1Z-(n2~a2) I3} ( )

Hence ouin ((M 7 - C)) is the smallest non-negative o < 7 such that

2 .2 2
Nty 7 T 2 2 2 -1
1- - - (DP (= a")- 1 ry=0. (2.4)
2 (n2—a?) Qi3 ! ( )

This equation can be rewritten as

2 2 2 ‘ ) -1
(- 1 -'r-lT-(D2+7/2~I) -7

Hell3-n2 lrll3
2. .2 22 2 ) -1
n° -y U Ui T 2 2 2
= - + =~ (D +(n*—0")-1 Ty
Irl2-(n2 =02 Qrll3-n? " el ( )
2 _
n T

-(D2+7]2-I> STy

T

1We also define

1l T}
({‘(()) = lim & (#) = 1D -rillz M7 R |

3=0 el Al




Since ||7]|3 = [I1]13 + 77, the above equation can be simplified, after some algebra, into

: D (D4 2D 1,
g = .
7/ = o) 0t o] (DT (2= o) (DR A ) oy

(2.5)

We note that the expression on the right hand side is 52 if ¢ = 0. Since ¥2/n? < v/ (n?~0a?)
and
rflr- <D2 + 7721)—2 ‘r1 < 'rlT . (D2 + (n? - 02)1)_1 . (D2 + 772])—1 -7
for o < 7, equation (2.5) implies that o, (M 7- C]) € 4. It follows that £(&p) <
£ (Z).
We now assume that & > 7. In this case we have £ (#3) = . We claim that

Vi-1

Omin((M 7n-C))>B-1 where g = 5

(2.6)

We show this by contradiction. Assume that this was false, so that oy (M n-Cl)< B-n.
We note that v2/n% > (1 - 8%)-7?/(n? — 02) and that

Tf'(D2+7)2I)—2-7'1 > (1-g%)-4T. (D2+(’l)2-0’2)])_1.(D2+7721)_1.7'1

for ¢ < B-7n. Equation (2.5) now implies that

- Umin([M ’76']) ﬁ’? —_
g < l-—[)’Q <l—,62_,7’

which is a contradiction. Hence relation (2.6) is indeed valid and we have
B-n< &) <n.

So Theorem 2.1 holds in this case.

We further consider the case where & < 4. In this case we have & (Zp) = & and

B:=0omin([M n-C])/d < 1. Similar to above we have

Umiu([]w 77'(/']) < -4
1_ﬁ2 - l—[)’Q ’

&<

which simplifies to
V5 -1

1-82<B8 or B2 TR

It follows that
VE-1
2

So Theorem 2.1 holds in this case as well. |

< E(Em) <G

Hence f(:rM) differs from the smallest possible backward perturbation £ (Zp) by a

=4 l -
V5 £ ~ 1.6. To compute & (Fpr), we only need to compute D (the

factor of at most
singular values of M) and QT - r; neither Q nor W need be explicitly computed. This

computation can be done, for example, by using the subroutines xGESVD in LAPACK [1].



Equation (2.4) provides an efficient way to compute oyin ((M 7 - C]) (and hence £ (£7))
as well. In fact, equation (2.4) is similar to the secular equations solved in Gu and Eisen-
stat [3] and Li [5]); and their methods can be easily modified to compute owin ([M 7 -C]).

In the rest of this section we analyze £ (&as) for several special cases.

Corollary 2.1 Assume that ||r1]]; < «-v. Define

\/,,.? -D?-(D? + ,72])-1

! -
12 mll2
Then
L & V54 1
V9I+a? T (TM) 2
Proof. Since [|7]|3 = ||71]|2 + 72 and n? = ||/||§/||T|]§, the assurnption implies that
£ arl3 < <yt 4t ol ( + 7 ) o
14+a? ~ = !
< Vet o/t = | “
= |lémllz -
We also have
& \/72/,]2 + 20T (D2 4 n2)?
a 12 arll2
Consequently,
L _ <2y
VitaZ = =

Corollary 2.1 follows by combining the above relations with Theorem 2.1 and the fact that
61<n. 1

The least squares problem (1.1) has a small residual if ¥ = ||h — M -zp]|2 ® 0 and large
residual otherwise; and #ps = zs if and only if r; = 0. Since a good approximate solution
#ps always makes r; small, Corollary 2.1 implies that for large residual problems Zps is a
backward stable solution if and only if &, is small.

Corollary 2.2 below gives a backward perturbation bound for sinall residual problems.
Corollary 2.2 Assume that

Iralle 2 @y and 7 < Gun(M) .

V-1 202 .
5 Ty st s.

Then




Proof. Let 8 = 202/(4 + a?) be a scalar. Then

'r;‘r-DQ-(D2+7]QI)‘1 ‘1
72/,72 + 772 . ,.lT . (D2 + ,,}2[)—2 17
7-?-D2-(D2+172[)_1 -7'1—ﬂ-'yQ—ﬂ-n4-7'1T-(D2+'f721)_2"f1

YR 40t (D24 2T '

B0 = - 87

Since 7 < oyin(M) = Omin(D), we have
-1 -2
T .D?. (D2+ 1) r > ||rf3/2 and gt T (D? + 172[) -1 < Imli3/4 .

Combining these relations and simplifying,

Imall3/2 =692 = B-[In1l3/4_ | a®-9*/2-6-72-B-a®-7%/4 —0.
VP4l (D24 20T T 22 2] (D24 2D) 7

& -B-n">
It follows that 52 > - 7% and that

VB <E(Em) <.

Corollary 2.2 follows by combining this relation with Theorem 2.1. 1

3 A Stable Solution is a Backward Stable Solution

In this section we show that a stable solution in the sense of (1.2) is a backward stable

solution in the sense of (1.3).

Theorem 3.1 In (1.2) let M, 6b and §2p; be small perturbations of M, b, and %,
respectively. Then there czists a matriz §M € R™*n satisfying (1.3) with?

M , E 8hl.
[16M]] < [16M]]2 +9 (1 + l|5M|Iz> . <H5fMH2 4 l|5h|lz> /(1 5. IIz) '
1Mz = [[M]] 1M 2 iZaellz N2l dip

Proof. We prove this theorem by applying backward perturbation bounds in §2 to M +éM.

Let the SVD of M + 6M be O - ( lo) ) . WT. Define

QT'h:<;ll ) , 5iI=QT~b/L:((?/~ll ) and E}M:'VAVT-&JA:M,
2

where Ay and é6; € R™; and hy and 6hy € R It follows that ||8hl, = l16h|l2,
l6zarll2 = |16 pl]2. Write
T = h—(M+6M) iy
= ((h+6h) ~ (M +86M)-(ipr + 0pr)) + (M + M) - dpr — 6h) . (3.7)

162 mll2

: =0if §&p = 0.
{12 a2

%In the event &3 = 0, we adopt the convention that



Since £ps + 2 ps is the exact solution to the perturbed least squares problem (1.2), we have

(h+6h)—(M+5M)'(57M+5jM)=QA'(ilz-féizg ) ’

We also have
—(Silg

(M+6]‘/[)'5:5M—5/l=(?.<D"ST'M_MH) '

Plugging these relations into (3.7) we have

hg

In the following we derive an upper bound on & (#p7) with M + 8§ M as the coefficient matrix

in the least squares problem. Define

A= . 5 =|lhalle and Fy =D -dzpr — 6hy

We first assume that 4 < ||71]|;. By Theorem 2.1,

< V3. 1D - 8z pll + 165 Lo

A - _ 7l
£(Em) < 7= < V2 ;,M“2 iZmll2

[]9«Ml|2 -

NP (,, YRLEI n«gmm) | (35)

Emlla  1Enml2

IN

Since Zpr + 627 is the exact solution to (1.2), it follows that
D-wT. (Fng + 0Fpr) = il,l + (Sil,l ,

and hence

R . . . 6z
Vs + bl < D lltas + 23l < 1Dl - aele- (1 + “Hj A’j“'“) O 39)

QT ) /L _ /:Ll - iLl -+ 5;7,1 + —fill )
ho 0 Fuy

Taking 2-norms on both sides,

On the other hand,

[IA]l2

IN

“ 711 + (‘)"/‘Ll H2 + ‘IéiLl
“/11 + 60y HZ +[16h]], + ”D g~ 513,1H2

|, + B, < o + 8], + N601L, + 171

Plugging in the 2-norm upper bound on ]|i11 + 6i11|[2 and simplifying, we get

Tels <121 <”2H)/<“2':ﬁ]”“) '




In (3.8) we have

i o W6zmlls | [18hallz Rl
E(Em S\/§-<D-”- + L
(21) WP Waalte * Tl Tamll
< A (” Dy, 18zlle  I8hlle | ihilz ) _
- lemllz — llAllz lIZ2wmll2
h
Plugging in the upper bound on ””. L|||2| and simplifying, we obtain
T2
. 61 éh||4 L
E(Em) < V2-(IM]l2 + |6M]|)2) - (H fMHz + I L||z.)/(1_2_ I l||2>
HEmllz  I7]l2 l|Al]2
3 ' ol
< 2 (1Ml + [I6M]]) - (”‘S.’M“z + ”‘5’1“2>/(1_2-———” 1“2), (3.10)
lamllz (1Rl (|2]2

where we have used the fact that
DNz = 1M + 6M|ly < |M ||z + 16M]]. .

Now we assume that 5 > {|#1{]2. By Corollary 2.1 we have & (&a) < v/2 - &1, where

gy =

\/f-lT-bz - (1‘)2+ﬁ21)'1 a

% arll2

Since 71 = D - 8ap7 — 11y, it follows that

R R )

61 < .
& all2
- “ - -1 "
\/é'th D7 (D2 2) 6l
+ -
& a2
N ~ - -1 ~
— LT 2. 2 "2 . 6h
T \/ML] D2 (D +q21) 1
S HD“? . “ - M“2 + _
& al]2 [[Zall2

Since (7|2 = 7 - |&a]]2, it follows from the above relation that

léf?M“'z ”‘Silln'z

l6E a2 N |D - 61 _
NEarllz  1Ear])2

-~ ~ |
< l) .
g1 S ” ”2 |}M|12 ||f||2

and &y < || D], -

Combining these with relation (3.9) we obtain

- A 6Zardlz 18hllz  MloRllz) |y . 16 ]l
a1 < ||D|-2 Earlls + min (l!iL1+5iL1|l2’ ”,;_“2) 1D|]2 <1+ ||1;7M“2>

o ysa §h o, (14 162
1By b Wy, (1 DTl
HEarlle  max (H/Ll + dhqfl2, H’HZ) Mz




10

Since ||#]l2 > ||h2]l2, it follows that

max ([lhy + 8halls, 172) > max (|l + o, fhell2) > 5 Vliba + 6hallf + l1hall

= 5 ](’“”hl> > = (lhlls = k]2
Consequently,
5 an - 6Emll2 V2 |6hl, win (1. IsEall
<Dl i+ R 10 (1 )

From this relation we get

E(Em) < 2(|1M1l2 + |6 M]|2) - (115?M|i2 N Hé/z||2> /(1 _ l]b‘h||2)

lEnmllz Al [172]]2
_ : Of 6/ bh
IEamllz (4]l li2ll2

which is identical to (3.10).
In both cases, there exists a matrix ml € R™*™ with ||<$/A\41||p = & (#pr) such that

(M + M +8M1) - #ar — hljy = min [|(M + 6M + M) -z — hlfy .
Now we define M = 6 M + ml. It follows that
(M + 8M)-iag — hf)s = min [|(M + §M) -z — hl,,

and that
oMz < l6Ml2 + € (%) -

The theorem follows immediately by plugging the upper bound (3.10) into this relation. 1
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