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Abstract

We describe an unusual three parameter family of static spherically sym-
metric black hole solutions of general relativity. The solutions arise from
gravitational coupling to a one parameter non-linear generalization of the
electromagnetic field. This parameter determines how long range the matter
field is. One class of the black hole metrics ‘lies between’ the Schwarzschild
and Reissner-Nordstrom solutions, while the other class ‘lies beyond’ the lat-
ter, in the sense of radial fall off of the metric.

For vacuum general relativity, the Kerr metrics, which are parametrized by mass and
angular momentum, are the unique stationary black hole solutions. For general relativity
coupled to matter fields, black hole metrics may have additional parameters which are matter
charges, such as the electric charge.

If the matter fields associated with a black hole solution fall to zero with radial distance r
faster than 1/72, then the matter charges will not be captured by surface integrals at spatial
infinity, otherwise they will be. If the matter field is the electromagnetic field, the electric
charge on the black hole appears as a conserved surface integral at spatial infinity.

It is of interest to ask whether there are other black hole solutions in general relativity, or
in other gravitational theories derived from string theory, and what parameters characterize
them. There continues to be much work on this question. =~

In this essay we describe an unusual three parameter family of spherically symmetric
black hole solutions which carry a matter charge other than the electric charge. The matter
arises as a one parameter non-linear generalization of electromagnetism, and its charge re-
duces to the electric charge in the electromagnetic limit. Depending on the energy condition
imposed, the matter charge may be written as a conserved surface integral at spatial infinity;
This is the case for the dominant energy condition, but not for the weak one.

The coupled Einstein-Maxwell equations, without electromagnetic sources, are
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The Reissner-Nordstrom metric is the unique two parameter static spherically symmetric
solution of these equations parametrized by the mass M and electric charge @ [1].
The standard static spherically symmetric metric may be written using an advanced time
coordinate —oo < v < oo and the proper radial coordinate 0 < r < co as

ds® = gapda®dz’ = —f(r) dv? + 2 dvdr + r2dQ?, (2)

where d2? is the metric on the unit two-sphere. In these coordinates the timelike Killing
vector field is (0/0v)?, and has norm —f.
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With the electromagnetic source given by Fy, = E(r)(dvAdr)a, the Reissner-Nordstrom
solution is

Er) =" f()=1-

(3)

The stress-energy tensor for this source free Maxwell field may be rewritten in a form
resembling that of the perfect fluid, for which the stress-energy tensor is

Q 2M  Q?
2 +=
T T T

Tab = P UgUp + P (gab + Uan), (4)

where u, is timelike, and p and P have interpretations as the energy density and pressure
of the perfect fluid.

Using the two future pointing null vectors v, = (1,0,0,0) and w, = (f/2,—1,0,0)
(vgw® = —1) of the metric (2) (in the coordinates (v,r,8,#) ), the stress-energy tensor for
the Reissner-Nordstrom solution may be rewritten as

2 2
Top = S (vawy + vyw,) + Fp— (Gab + vaWp + Vpwa)- (5)
Like the perfect fluid, the coefficients Q?/87r* = E?/8m have the interpretation of electric
energy density and pressure. One can therefore view this stress-energy tensor as describing
a ‘fluid’ with the equation of state P = p. It is however not a perfect fluid because the fluid
flow lines are not timelike. The stress-energy tensor is in fact degenerate in the sense that
it has one null eigenvector and two spacelike eigenvectors. (It is a Type II stress-energy
tensor [2].) This is unlike the perfect fluid tensor which has one timelike and three spacelike
eigenvectors (Type I).
We now ask what the metric is for the source given by the stress-energy tensor

Top = p(1) (vawp + vpywy) + P(1) (gap + Vawp + VW), (6)

and with the equation of state P = kp. This tensor is a one parameter (k) generalization
of (5), which gives the Reissner-Nordstrom metric. Furthermore, the matter satisfies the
dominant energy condition, (which means positive energy density and timelike or null energy
fluxes) for 0 < k < 1, and the weak energy condition, (which means positive energy density),
for k > 1. We will restrict attention to the case k¥ > 1/2 because it will turn out that for
this range the metric is asymptotically flat at spatial infinity.

The metric is most easily determined by starting with the ansatz (2), finding the stress-
energy tensor from it, (which turns out to be ezactly of the form (6)), and then imposing

the equation of state P = kp on its eigenvalues. This gives a simple equation for f(r). We
find

oM Q2 1
2 __ _(1_ 2 , 2 102 k4= 7
ds (1 . +(2k—1)r2k)dv + 2 dudr + r°dQ°, ( 752) (7)
and
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where () is now the charge associated with this ‘fluid’, and M retains its usual meaning as
the Arnowitt-Deser-Misner mass.

The metric on static three-surfaces of this spacetime may be found by making the coor-
dinate transformation t = v — r and looking at the constant ¢ three-surfaces. The metric on
such static spatial slices is
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ds® = (1 _ 2 2402,
sc=(1+ - k= Do ) dr® + r2d§2 (9)

From this we see that the metrics (7) are asymptotically flat at spatial infinity for k& > 1/2.
For k < 1/2 the metrics are cosmological because the leading order behaviour of the metric
function is slower than 1/r as 7 — oo. For k = 1/2, which must be treated separately, we
find f =1-2M/r + C Inr, (C = constant), so here also the metric is cosmological.

The asymptotically flat solutions give a three (real) parameter family (M, Q, k) of black
hole metrics that ‘fall between’ the Schwarzschild and Reissner-Nordstrom black holes in
the sense that 1 < 2k < 2 in the metric (7). The event horizons of the black holes, defined
as usual by f(r) =0, are given by the polynomial equation

(2k — 1)(r®* —2M 71 1+ Q? = 0. (10)

We would now like to ask what is the field theory for the matter that gives rise to these
black holes. By noting that the stress-energy tensor (6) is a one parameter generalization
of the Maxwell one, we see that (6) may be rewritten as

8%
Tab = - (Fachc - gachdFCd)a (11)
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where « is related to the parameter & in the equation of state P = kp by « = 2k/(k + 1).
The corresponding field equation is the one parameter non-linear generalization

FuV . F* + (1 —a) F*V F,, =0, (12)

of the vacuum Maxwell equation. The solution of this equation associated with the metric
(7) is

k+1

Q
Fab = T T‘k—+i (d’U A dT)ab, (13)

which reduces to the ordinary Maxwell one for ¥ = 1. The parameter k& (or «) is thus a
measure of how long range this matter field is.

When k > 1 in the fluid equation of state, the stress-energy tensor (6) satisfies both the
weak and strong energy conditions, (which are identical for Type II stress-energy tensors).

The charge term in the black hole metrics (7) now falls to zero faster than 1/r?, and the
charge is therefore no longer captured by a surface integral at spatial infinity. If ‘hairs’
are considered to be those parameters characterizing black holes which do not appear as
conserved surface integrals at spatial infinity, then the black hole solutions with & > 1 have
hair. Thus, for this type of (Type II) matter, when the dominant energy condition is satisfied
the black holes have no hair, whereas when only the weak (or strong) energy condition is
satisfied the black holes do have hair.

Also, for £ > 1, the matter field has a range shorter than electromagnetism, and exerts
pressures that exceed its energy density. It appears that it is these larger pressures that keep
the matter hovering above the hole, in much the same way that sufficienly high pressures
can prevent gravitational collapse in a star. This is perhaps an ‘intuitive explanation’ for
the presence of ‘hair’, and suggests that black hole solutions may always have hair for short
range matter fields for which pressures exceed the energy density.

There is recent work suggesting that hair on spherically symmetric black holes must
extend beyond a certain critical value for all matter fields satisfying the weak energy condi-
tion. This suggests a ‘no short hair’ conjecture [3]. It would be of interest to examine this
conjecture for the class of solutions presented here.



The basic spherically symmetric ansatz (2) can give a variety of black hole solutions
depending on the equation of state imposed in (6). For example, one might look for solutions
with P = kp?, and attempt to find the corresponding non-linear field theory.
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