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Abstract

A new method is described for extracting mixed linear-nonlinear coupled differential
equations from multivariate time series data. A tractable hierarchy of moment equations is
generated by operating on a suitably truncated Volterra functional expansion. The hierarchy
facilitates the calculation of the coefficients of the coupled differential equations. In order
to demonstrate the methods ability to accurately estimate the coefficients of the governing
differential equations the method is applied to data derived from the numerical solution of
the Lorentz equations with additive noise. The method is then used to construct a dynamic
global mid- high-magnetic latitude ionospheric model. It is shown that the estimated
inhomogeneous coupled second order differential equation model for the ionospheric fof2
peak plasmas density can accurately and consistently forecast the future behaviour of the
ionosphere for a set of ionosonde stations which encompass the earth at mid-and high
magnetic latitudes. The hierarchy method can be used to characterise the observed

behaviour of a wide class of coupled linear and mixed linear-nonlinear phenomena.



Introduction

The complex nature of the time series sequences of coupled nonlinear processes renders
their quantitative analysis extremely difficult in general. This is partially because the
mapping between adjacent members of each time series sequence is nonlinear but also
because the multivariate relationships are functions of many stochastic or chaotic variables.
The main concern of the study of physical phenomena is to establish the causal
deterministic relationships which characterise a given set of physical observables. Each
mathematical representation chosen to underpin the empirical relationship is inevitably
dependent on the experimental establishment of reproducible, accurate and consistent
coefficients which characterise the phenomena. Without these coefficients the findings of
numerical and analytical studies generally remain qualitative. There is thus a need to
develop and refine data analysis methods which can calculate coefficients suitable for
Incorporation into the mathematical representation that provides a rigorous, unambiguous
and quantitative description within a specified range of accuracy.

For many physical processes the causal relationship between the physical observables can
be represented as coupled nonlinear partial differential equations. One general way to
‘invert’ coupled single valued coupled differential equations is by using the Volterra
functional expansion [1]. The solution of the differential equations is considered to be
composed of an ascending order functional expansion. This inverse form of differential
equations can be used to analyse the time series data from a wide class of physical
phenomena and time invariant examples are presented elsewhere [2-5].

Evolutionary input-output processes are dependent on the temporal derivatives of the input
physical observables of the vector valued process which is assumed to be T th order
differentiable and the inverse form can be used [6].

In this work the behaviour of the vector valued process is represented as a set of coupled

ordinary differential equations of the form
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In dynamical system theory it is assumed that T=(K-1) and that the first degree differential

equation in its highest power can be written as
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This form can always be reduced to an equivalent set of coupled first order ordinary

differential equation form with
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The coupled first order ordinary differential equation representation has been used to
associate topological structures with experimental time series [7,8]. For example many
physical laws are expressed in infinitesimal form with the corresponding differential
equations being defined as a vector field. A vector field in this case is interpreted as the
right hand side of the coupled ordinary differential equations given by equation (3) which
are satisfied by the integral curves denoted by the time series trajectories {x(t)}. The form
of equation (3) facilitates the ‘reconstruction’ of a set of differential equations in phase
space which mimic some aspects of the phenomena. There have been a number of previous
attempts to extract from time series data coupled differential equations which replicate

aspects of the observed behaviour [9-16].

In this work, particular emphasis is placed on characterising complex behaviour in the
context of coupled differential equations. A new method for extracting coupled mixed order
linear-nonlinear differential equations from time series data in the presence of noise is
developed. The method employs the hierarchy moment formalism to characterise the
mapping between time series values [17]. The coefficients of the coupled differential

equations are estimated with the hierarchy moment method.

The method developed in this work is first applied to data derived from the numerical
solutions of the much studied Lorentz equations. This numerical example is used to
demonstrate the accuracy and appropriate use of the method. Then, as an example
application, the method is applied to the analysis of time series ionosonde measurements
collected simultaneously around the earth at mid- and high- magnetic latitudes. In
particular, an empirical mode! of the global fof2 ionospheric maximum plasma density is
developed and used to predict the rolling out of sample future behaviour. This is the first
empirical model which can accurately predict the future dynamical global behaviour of the
ionospheric fof2. The model developed is based on a set of coupled inhomogeneous second
order nonlinear differential equations.

An accurate and consistent empirical model of the ionosphere would help resolve a number
of outstanding theoretical and practical geophysical problems [18]. In addition, it would
facilitate the verification of available theoretical simulation models where agreement

presently remains qualitative in form [19,20].



The hope and expectation is that empirical forecasts can be used to provide more realistic
boundary conditions for available global theoretical ionospheric-thermospheric models.
Not only will this increase the practical limit for out of sample spatial and temporal
predictions of observed behaviour, but they may further the understanding of the physical
mechanisms which produce the observed plasma distributions in the earth’s upper
atmosphere. The application of empirical coupled differential equation models to the
verification of global ionospheric-thermoshperic simulation models will be discussed in
detail elsewhere.

A Volterra functional representation of coupled differential equations

Consider the set of coupled simultaneous differential equations given by
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where it is assumed that the vector sequence has temporal derivatives that exist up to order

T. Assume that the coupled equations have an inverse solution defined by
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and has the temporal derivatives to order T of the form
d*x; (1) dx;  dxy dTx; dTxy
K =Hi X],...,XM, serey serny T 2o T
dt dt dt dt dt (5)

Most physical processes evolve, and evolve only under the influence of external processes
and their temporal derivative. Although such processes display auto-regressive attributes,
the evolution will normally cease when the external stimuli stop. For these situations the
evolution of the physical process will be a multivariate function of a total of N independent
physical observables and their temporal derivatives. The relationship between the element
of the physical observables can be written as an ascending multivariate Taylor series
expansion.

Equally, the phenomena can be described by an expansion of functionals which

characterises the physical process as a mapping between functional spaces.



If there is a unique solution to the Taylor series expansion then, formally at least, it is the
inverse mapping. The emphasis of the inverse problem approach is to identify the form of
relationship between the observables and hence establish the laws governing the process.

If the physical processes responds in a finite time, say L units, then the nonlinear behaviour
of a physical observables and its temporal derivatives can be represented as a discrete

Volterra functional expansion truncated to order N, defined by
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where N is the order of truncation of the Volterra functional expansion, T is the highest
order of temporal derivative considered, t denotes time, the s denote time delay with

respect to the time t and the delta function denotes the fact that lower limit for each auto-
regressive sum over each index value u, start from 1, whilst all the other summations start

from O.
. Here the elementsq)uv(t) are drawn from the set of physical observables

dx dTx
fo.()}= {xu,d—t“,..., dtTu} and the elements @, () are drawn from the set of physical
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The kernel function values hy 4 ¢ (©,,....0 ) characterise the behaviour. The discrete,

n

truncated Volterra series remains ill posed in the sense that there are too many unknown
coefficients to solve for. Thus, the approximate method of discretisation used for the linear
case cannot by themselves be used to solve the Volterra series. In addition, as time series
sequences of physical observables are generally stochastic in form, the equations are also ill
conditioned.

The conditioning can be improved by statistical averaging and the use of operators allows a
set of tractable equations with average variable values to be generated. For each Volterra
series expansion, a tractable set of simultaneous equations with well behaved coefficients
can be generated by taking time series moments of a suitably truncated Volterra series

expansion.



Each separate equation is operated on with a series of averaging operators, one for each
R
permutation of delayed variables <H D, (t-7,) *>, where i, =1,...,m to give the set of
r
r=|

moment hierarchies defined by
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The moment hierarchy can be rewritten in the obvious matrix form C=Mh.Here M isa

square matrix whose elements are the ascending order auto-moments of the multivariate
time series data and their temporal derivatives. For each moment hierarchy C is a column

vector whose elements are the ascending order cross-moments of the multivariate time
series data and their temporal derivatives. The elements of the column vector h are the

unknown kernel function values. If the matrix M is non-singular then h = @)"g has a

unique solution. Given the properties of typical time series data and construction of the
moment values used in the moment hierarchy, the rows of M will be linearly independent
of each other, thus the matrix will be non-singular and have a unique solution. This will be

the casc for many mixed stochastic and deterministic processes.

The effect of noise and uncertainty in experimental data

Whilst the mathematics of models is precise the models themselves are not. Models are
only approximations to the complex behaviour observed in the real world and are based on
the empirical measurement of physical observables. Each individual empirical
measurement is limited in its precision due to stochastic fluctuations in the physical
observable and in the sensor used to measure it and the finite accuracy to which each sensor
can be calibrated. The stochastic fluctuations give rise to a replication uncertainty when the

same apparatus in the same experimental design.

The calibration uncertainty is partially due to the ability to maintain the physical condition
of fixed point values, for example the melting point of a solid, and partially due to the
interpolation of the sensors nonlinear response between fixed calibration points. The
calibration uncertainty is usually much larger than the stochastic uncertainty and it is
important to consider both when comparing the findings of different observations of the

same phenomena.



Generally speaking, empirical measurements are made in order to confirm or to disprove a
hypothesis or theory. The physical quantities which underpin the theory, such as parameters
or fundamental constants, are not directly measurable in themselves, but must be derived
from the observational data. If the uncertainty aspects of the problem are neglected then
theoretical considerations provide a framework for the manipulation of the data in order to
obtain the values of the desired quantities. Having established the value of the parameters
of the theoretical representation it is necessary to consider their uncertainty. This is
achieved through the theory of propagation of uncertainty which can either be applied
during the parameter estimation process or independently of it.

dx, d"x,
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The observed physical values {§,(t)}= {x } are considered to be composed

of an additive component of stochastic noise and a deterministic component. The stochastic
component of the uncertainty which is often thought of as ‘noise’ on the observation
values. The deterministic component can be analysed and used to predict the future
behaviour of the phenomena. Each time series value of the physical observables is
theoretical decomposed into a deterministic component and a stochastic component and this

introduces additional variables into the representation.
Each element of the sequence of data {q)u(t)} can be written as
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In the present work {Ek (t)} are assumed to be drawn from Gaussian random processes so

that estimates for their variance can be obtained, for example, by regression or maximum
likelihood methods. This enables the kernel function values to be determined from the
moment hierarchies [2-6]. The kernel, or response, function values are then used to predict
the out of sample behaviour of the phenomena being studied.

Obviously, the estimated response function values, or mappings, hy o, .0, (©,,....0,) are

dependent on the choice of {Z (t)} . This is also true for other representations that

decompose the data into separate deterministic and stochastic components.
Such representations, in general, are non-unique characterisations of the data and are not

likely to yield detailed quantitative insight into the physics underlying the process.
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Operating on the Volterra series with the averaging operator <H D, (t-T,) *> the R th
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order absolute moment equation is, after re-arrangement [17], by definition
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The moment hierarchy form given by equation (9) can readily be solved for the unknown
noise coefficients {Ek (t)} using , for example, regression or maximum likelihood methods

[17].

The application of averaging operators to the Volterra series has transformed the vector
nonlinear polynomial expansion into a simple algebraic form by generating a hierarchy of
tractable moment equations with well behaved coefficients. This moment hierarchy is then

regressed to obtain the variance of the noise and the unknown response function values.
Given that the choice of {Z) (t)} is not unique, it is assumed here that {5 (t)} is drawn

from a zero mean Gaussian white noise process which is statistically independent to the
deterministic components {p,(t)}.

The moment hierarchy has the obvious linear algebraic form

y =Yh (10)

where the cross - moment elements are given by
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the off block - diagonal auto - moment elements are given by
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The variance of the stochastic component is denoted as %, and the coefficients o rn and

Brr reflect the fact that the symmetry of the equations has been used to reduce the order of

the matrix [17].

Now consider the effect of the uncertainty on the experimental measurements. In
accordance with standard uncertainty analysis of experimental data, assume that it is
possible for the analysis procedure to yield a unique set of empirical coefficients, that are
physically meaningful, and where each coefficient has an uncertainty value associated with
it.

Including the uncertainty terms the moment hierarchy retains a linear algebraic form with

(W £Ay) = (¥ £ A¥)(h + Ah) (11)

Using the theory of the propagation of errors the fractional error on the estimated mixed

order linear-nonlinear response function values will be given by
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These uncertainty values can be used to estimate the standard error, and multiples thereof,

of the forecasted physical observables.

Thus the moment hierarchy method provides not only the a values for the future behaviour
of each of the coupled physical observable but also it provides a probability distribution

associated with each forecast.



Numerical example of the Lorentz coupled nonlinear differential equations

In this section the results from a numerical experiment are presented where the properties
of the nonlinear system are known. A numerical experiment is used in which the accuracy
and range of appropriate use for the method in estimating the nonlinear response values and

the ability to predictive the future behaviour are assessed.

The example chosen is the widely used Lorentz equations, which are a set of low order
coupled nonlinear differential equations which describe the dynamical behaviour of

convective motion in the atmosphere, with

d
. —Px, +Px,
dt
dx,
dt~ =—X,X; + Rx, —x,
dx
d—t3 =X,X, — Dx,

where x1(t) is a coefficient of the stream function of the fluid, x2(t) is a mixed horizontal
and vertical component of the temperature gradient, x3(t) is a vertical component of the
temperature gradient in the fluid, P is the Prandtl number, R is the Reynolds number of the
fluid and D is a measure of the energy dissipation within the fluid. For P>D+1 the
convective motion is unstable when R>24.74. For values of Reynolds number satisfying
this inequality the coupled ordinary differential equations exhibit a strange attractor with
two steady states between which the trajectory oscillates. The values used in this numerical
example are P=10.0, R=100.8 and D=8/3.

The data sequences were generated using the above equation and some 50000 points of data
in each sequence were generated. However, only 500 of the data points in each sequence
were then used to estimate the nonlinear response values. The remaining values were used
for out of sample statistical testing of the quality of the characterisation of the differential
equations. That is, the accuracy with which the estimated response function values can
describe the behaviour of the process was determined by the normalised root mean square

(nrms) difference between the actual data sequences {x(t)} and the out of sample forecast

{x(D}is

1 & (x(o-xf(t))z
nrms = ——z _—
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where A denotes the sample length, and where f denotes the out of sample forecast in this
case.

The solution of the Lorentz equations was assumed to be of the form

+

Ou, () =Ey(t

v

with N=2, p=1 and M=3.

The coefficients estimated using the moment hierarchy method for the case where the
addative noise with a variance of 0.001, which is typical of the value used in the recent

literature, are shown in Table 1.

Table 1: Estimated coefficients of the differential equations from the noisy data

dx dx; dx, dx, dx; dx;
e | @ @ & |Ta & |

actual estimated actual estimated actual estimated
x1 -10.0 -9.99970 100.80 | 100.797 0.0 -0.656x107
x2 10.0 9.99995 -1.00 -1.00045 0.0 -0.114x10*
X3 0.0 -0.164x10* | 0.0 0.273x10* -2.67 -2.66639
xlxl 0.0 0.1777x10°  [0.0 0.197x10* 0.0 0.0
x1x2 0.0 0.0 0.0 0.0 0.0 0.0
x1x3 0.0 0.0 0.0 0.0 0.0 0.0
x2x1 (0.0 0.904x10°° 0.0 -0.686x107 1.0 0.99998
x2x2 0.0 0.444x10° 0.0 0.152x10* 0.0 0.154x10™*
x2x3 0.0 0.0 0.0 0.0 0.0 0.0
x3x1 0.0 -0.298x10° | -1.00 -0.99978 0.0 0.411x107
x3x2 0.0 0.851x10® 0.0 0.232x10° 0.0 0.975x10°°
x3x3 0.0 0.284x10° 0.0 -0.164x107 0.0 -0.320x10°°




Ignoring the effect of terms with coefficients with values less than the value of the variance
of the noise estimated using equation (10), and rounding to three decimal places, the

reconstructed differential equations are

=-10.000x, +10.000x,

adl
dt
dX2
—— = —X(X3+ 100797)(1 — X2
dt
dX3
—= = XXy —2.666X
dt 122 3
As can be seen the moment hierarchy has correctly and accurately reconstructed the coupled
ordinary differential equations in the presence of noise. It should be emphasised that all of

the nonlinear response values are simultaneously determined in the analysis.

Figure 1 shows the effect of additive Gaussian random noise on the estimated coefficient
values. As can be seen the estimated coefficient values remain robust, accurate and

consistent up to significant contributions from additive noise.

In order to test the predictive ability of the model coefficients two sequences of data were
generated using the same initial condition, one sequence is generated using the estimated
response values and the other sequence generated using the actual response values. Figure 2
shows a sample of the forecast values {x,(t)} together with the observed sequence of data
{x(1)} for the noiseless case. The forecasts are of the 'rTunaway' type rather than the 'read-
correct' type, in that the initial conditions are selected and the forecast is continued without
knowledge of the actual data values for a reasonable duration or until ‘blow-up' occurs.
There is no observable difference between the two sequences shown in Fighre 2. In order to
see the temporal development of the divergence between {x,(t)} and {x(t)}, Figure 3

shows a plot of the common logarithm of the absolute difference between the two series,
ie. ‘x(t) -X, (t)’, is given.In Figure 3 it can be seen the divergence is exponential until the
amplitude of the differences is the same as the envelope of {x(t)} when the limit of forward
prediction has been reached. The gradient of the diverging difference is related to the
Lyapunov exponent. Thus the moment hierarchy has accurately identified the correct values
and form of the nonlinear mapping. The response values estimated from the data are able
to predict the future time series values for a duration defined by the intersection of the
Lyapunov curve with the envelope of time series sequence, and with a precision that is
dependent on the Lyapunov exponent of the initial value problem. In practice the value of
uand the order N have to be determined in the analysis and may be considered as free

parameters. The order can be identified from a plot of {x(t)} with { X, (1)} for deviations

from a straight line which can indicate the presence of higher order terms.



An empirical model of the behaviour of the fof2 ionospheric peak intensity

As the solar wind impacts the earth’s bow shock some of the particles enter the
magnetopause, the boundary between the open magnetic field of the solar wind and the
closed magnetic field of the earth. The manner in which these high energy particles enter
and interact with the earth’s upper atmosphere remains one of the outstanding problems of
space science. The ionosphere is that part of the earth’s upper atmosphere where the plasma

density is sufficiently great that it can affect the propagation of radio waves.

The plasma is produced by the daytime ionisation of molecules irradiated with
electromagnetic radiation from the sun and by the high energy particles from the solar wind
near to the magnetic poles. The peak in the ionoshperic plasma occurs between 80 km and
300km in the so called F region, the maximum plasma density of which is denoted as fof2.
Tonospheric transport is due to both non-electromagnetic forces (the atmospheric wind) and
clectromagnetic forces which, at high latitudes, produce plasma drift velocities in the range
0.2 km/sec to 2 km/sec.

The main effect of these drift velocities is to change the height and maximum particle
density of the F layer which has consequential effects on communication and
electromagnetic propagation. The lifetimes before recombination of the ions in the F region
plasma are typically a few hours, although this is variable depending on the temperature and
ion density as functions of height and time. During this time the ions can be transported for
thousands of kilometres, consequently the ions form a weak plasma that has a highly
complex spatio-temporal distribution.

There are a number of steady state empirical models which characterise the steady state
periodic behaviour of the peak intensity and altitude of the F and E ionospheric layers used
for communications. The main advantage of these models is their computational efficiency
and their main disadvantages are their spatial sparseness and they cannot describe the

dynamical behaviour observed in the lonosphere.

The empirical model developed here can accurately describe and predict the observed
dynamic behaviour of the fof2 peak density of the ionosphere during equilibrium and
nonequlibrium periods throughout the year, in both high and low sunspot activity years. The
predicted future behaviour of the ionosphere can be used to constrain the boundary

conditions of a numerical calculation procedure.



This allows the spatial and temporal behaviour of the ionosphere around the globe to be
predicted, hence forthcoming propagation effects can be corrected for and knowledge of the

physical processes studied with more realism in more detail.

In the present example analysis, the maximum frequency, its rate of change and rate of
acceleration of that electromagnetic communications can be propagated through the
ionospheric F layer at any particular time is defined by the discrete Volterra functional

expansion truncated to order N, defined by the simultaneous equations

n=t Mi=1 i si-lo,=0  6,=0 j=1 (14)

n=I| Ci=l i,=i,=10,=0 0,=0 757 T j=1 (16)

where N=2 is the order of truncation of the Volterra functional expansion, T=2 is the

highest order of temporal derivative considered, M is the number of ionosonde stations
included in the analysis and varies between 6 and 30, t denotes time and the ¢ is denote

time delay with respect to the time t. Here the elements @, (t) are drawn from the set of
i

ionosonde measurements and their temporal derivatives given by

dx dx dTx d"x
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The values for the temporal derivatives were approximated by finite differences of adjacent
points in each sequence of time series data. The ascending order auto- and cross- time
series moments of the data and temporal derivatives were calculated and substituted into
the moment hierarchy given by equation (9) with N=2 and p=1. The moment hierarchy was
then inverted to solve for the unknown response function values, which are also the
coefficients of the governing differential equations in this case. Missing data values were

replaced with the value from 72 hours previously.

Approximately 15 days of hourly ionosnde data were used to estimate the time series
moments of the data and a grid search enabled the value of the variance of {Ek (t)} to be

estimated simultaneously with the empirical coefficients of the governing differential

equations given by equations (14), (15) and (16) for this example analysis. Figures 4 and 5



shows typical out of sample rolling coupled forecast with their associated uncertainties for
several of the ionosonde stations in the coupled analysis in the northern hemisphere during
the equinox periods of high and low sunspot years. Figures 6 shows typical out of sample
rolling coupled forecast with their associated uncertainties for six ionosonde stations used

in the coupled analysis during the equinox period of a high sunspot year.

Superimposed on each predictions is the sequence of actual ionosnde values with their
uncertainties. Clearly the agreement is good within the statistical uncertainties for each
prediction. The example of coupled analysis presented here provides good predictions for
about 99% of the 300 by 3 day out of sample predictions of fOf2 value using the moment
hierarchy defined by equations (9). A detailed exposition of an ongoing study of
ionospheric data using different N and p values in equation (9) is to be presented

elsewhere.
Conclusions

The results presented in this paper can be summarised as follows. A new method has been
presented which can extract the coefficients of mixed linear-nonlinear coupled differential
equations from multivariate time series data. The discrete time theoretical representation is
based on a truncated order Volterra functional series. The solution of the coupled
differential equations was considered to be a vector field. This field being a function of the
underlying physical observables, and for example, the ionosonde fof2 maximum frequency
for electromagnetic communications through the ionosphere. The time series data observed
from physical processes are, in almost all practical cases, discrete even though the attributes
of the data are often modelled by continuous processes. Thus in this work a discrete
approximation to the multi-dimensional Volterra functionals was used. A tractable set of
simultaneous equations with well behaved coefficients can be generated by taking time
series moments of a suitably truncated Volterra series expansion. This moment hierarchy
was solved for the unknown differential equation coefficients using linear algebra. The
kernel, or response, functions, of the Volterra functional expansion represent the dynamic
behaviour of the physical process.

Observations can only be made with a finite precision and the mathematical model used to
represent the physical process should take account of this inherent uncertainty. The effects
of noise and measurement uncertainty were included in the representation and data analysis
procedure.



Two example analyses were presented. A numerical example using the Lorentz equations
demonstrated the ability and accuracy with which the coefficients were estimated from
vector time series sequences in the presence of additive Gaussian noise. The second
example considered the global prediction of the fof2 maximum communication
transmission frequency in the ionosphere. Typical results from an in depth study were
presented and the representation was shown to provide accurate and consistent predictions
of future behaviour for a wide range of ionospheric conditions. This is the first accurate and
consistent empirical dynamic model of the jonosphere to be developed. Detailed findings
from that ongoing study will be presented elsewhere.
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Figure captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

The estimated coefficients of the Lorentz equations as a function of additive

Gaussian white noise.

An out of sample forecast of the solution of the Lorentz equations using the
values of the coefficients estimated with the moment hierarchy method.
Superimposed on the plot are the actual solution values which cannot be

resolved from the estimated values.

The absolute difference values between the forecasted and actual solution

values.

A number of out of sample forecasts of the fof2 maximum frequency for
electromagnetic communication in the ionosphere for the ionosnde stations at
Port Argiello, Slough and Novosibirsk in the northern hemisphere during a

sunspot maximum year.

A number of out of sample forecasts of the fof2 maximum frequency for
electromagnetic communication in the ionosphere for the ionosnde stations at
Port Argiello, Slough and Novosibirsk in the northern hemisphere during a

sunspot minimum year.

An out of sample forecast of the fof2 maximum frequency for electromagnetic
communication in the ionosphere for the ionosnde stations at Argentina Island,
Brisbane, Hobart, Johannesburgh, Port Stanley and Tabhiti in the southern

hemisphere during a sunspot maximum year.
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(actual-forecast) absolute difference values
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