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Discrete time portfolio management with transaction costs

Irving' and T Dewson?

Abstract

The majority of portfolio management strategies are based on continuous-time processes
that are assumed to be the solution of stochastic differential equations. Stochastic
differential equations are usually based on the first order truncations of the Taylor series
expansion with the inclusion of selected second order terms using Ito's lemma. If there is a
solution to the Taylor series expansion then, formally at least, it will be the Volterra

functional expansion.

In this work a new approach to practical portfolio management is presented that is based on
estimating the Volterra function values with novel time series analysis techniques. The
approach is concerned with predicting the discrete time future behaviour of risky assets. A
knowledge of the future value of the risky assets enables an optimal choice for portfolio
selection to be made at each moment of time. The decision for any given portfolio selection
can be made with the inclusion of transaction costs for the trades. In this work the
transaction costs are assumed to be proportional to the value of the risky asset traded.
However, the method presented can include the effect of the actual trading costs
encountered in practice. The relationship between the risky assets and their temporal
derivatives of a given portfolio is described as a set of coupled ordinary differential
equations. The solution of the coupled equations is considered to be an evolutionary
Volterra functional expansion. The values of the kernel, or response, functions are
estimated using the moment hierarchy method. The estimated response function values are
then used to predict the out of sample future behaviour of each risky asset. The two
examples presented indicate that out of sample predictions obtained can consistently
describe the behaviour of each of 100 common stock names to an accuracy of within the
empirical volatility of each name. The out of sample predicted price values were used as the
basis of decisions for trading the common stocks each day including the effects of

transaction costs on the percentage return.
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Introduction

The continuous-time behaviour of a portfolio composed of risky assets is usually described
by geometrical motion models, such as that popularised by Merton [1]. In continuous-time
models, the portfolio to be managed is considered to contain n independent risky assets
whose prices fluctuates according to, for example, an Ito process with jumps. Ito processes
are generated by nonlinear diffusion equations, which themselves are obtained by
truncating the Taylor series expansion to first order and including selective second order
terms using Ito’s lemma [2,1,3,4]. In Merton’s model, transactions are costless, and the
continuously arriving information can be used to identify optimal trading strategies. Recent
research on continuous-time portfolio management has concentrated on the effect of
transaction costs [5-14]. However, the models developed involve infinitesimal continuous
trading or alternatively fixed fraction trading that are less than optimal [14].

In practice, investors trade discrete quantities of risky assets in discrete time. The trading
process incurs costs which have both fixed and variable components that can be time

dependent.

The purpose of this paper is to present a novel discrete time method that can be used to
predict the future behaviour of a set of risky assets. Given the predicted behaviour of the
portfolio the time dependent optimal strategy for portfolio selection can be made whenever
it is required. In this work the incurred cost for each transaction is a fixed fraction of the
current price of the underlying asset. However, it is straightforward to include the actual
costings that are used in practice. The complex nature of the time series sequences of risky
assets renders quantitative analysis extremely difficult in general. This is partially because
the mapping between adjacent members of each time series sequence is nonlinear and also

because the multivariate relationships are functions of many stochastic or chaotic variables.

The truncated Taylor series expansion is usually used to describe the relationship between
financial sequences [4]. If there is a solution to the Taylor series then, formally at least, it is
the Volterra functional expansion [15]. The behaviour of the price sequences contained in
the portfolio are considered to be determined by a set of ascending order evolutionary
coupled nonlinear differential equations and that the solution of these equations can be
represented either as a Taylor or Volterra series expansion. The Volterra functional values
extracted from the data are used to characterise the behaviour of common stock prices and

their evolution into the future.



In this work the behaviour of the vector valued financial process is represented as a set of
coupled ordinary differential equations of the form
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The coupled first order ordinary differential equation representation has been used to
associate topological structures with experimental time series [16,17]. For example many
physical laws are expressed in infinitesimal form with the corresponding differential
equations being defined as a vector field. A vector field in this case is interpreted as the
right hand side of the coupled ordinary differential equations given by equation (1) which
are satisfied by the integral curves denoted by the time series trajectories {x(t)}. The form
of equation (1) facilitates the ‘reconstruction’ of a set of differential equations in phase
space which mimic some aspects of the phenomena. There have been a number of previous
attempts to extract from time series data coupled differential equations which replicate
aspects of the observed behaviour [18-25].

Particular emphasis is placed on characterising complex behaviour in the context of
coupled differential equations. A new method for extracting coupled mixed order linear-
nonlinear differential equations from time series data in the presence of noise is used [26].
The method employs the hierarchy moment formalism to characterise the mapping between
time series values [27]. The coefficients of the coupled differential equations are estimated
with the hierarchy moment method. The coefficients for the reversed time series sequence
are then calculated and used to estimate the initial conditions of the problem being studied.
The uncertainty of the coefficients and initial conditions are estimated and discussed in

terms of the accuracy of the method and reproducibility in any given experimental situation.

The hope and expectation is that empirical forecasts can be used to provide realistic
predictions of expected behaviour of financial processes. Not only will this increase the
practical limit for out of sample predictions, but they may further the understanding of the
fundamental mechanisms which produce the observed behaviour. The coupled trajectories
of the common stock prices in the portfolio are considered to be a function of each price, its
rate of change, acceleration and rate of acceleration. The common stock prices are coupled
through self and cross forcing terms and the portfolio is driven by transactions which
amend each individual price. The kernel, or response, functions which characterise the
observed behaviour are estimated using the moment hierarchy method [26-30] and the

future behaviour of the common stock prices in the portfolio are predicted.



The out of sample forecasts of the future behaviour of the risky assets provide a sound basis
for optimal portfolio selection for trading. Results from an ongoing, in depth, empirical
study are presented indicating the accuracy of the predictions up to one month into the
future. The accuracy of approximately 20000 individual predictions is presented together

with the daily and cumulative percentage return on two example portfolios.
A functional representation of an evolutionary financial portfolio

Financial processes are evolutionary phenomena. Although evolutionary financial processes
display auto-regressive attributes, the evolution will normally cease when the external
stimuli, i.e. the trading processes stop. Under typical trading conditions it is assumed that
the evolutionary processes of the risky assets can be represented as a set of coupled
differential equations. For example, a portfolio of common stock prices I(t) containing =
individual names, can be considered to be a set of coupled nonlinear differential equations,
one equation for each individual stock name. Consider the set of coupled simultaneous

differential equations given by equation (2)
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where it is assumed that the vector sequence has temporal derivatives that exist up to order

T . Assume that the coupled equations have an inverse solution which determines the
relationship between the stock price values {Pk(t)} contained in the portfolio II(t), this

solution can be defined as a multidimensional functional of the form
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where {Ek(t)} is a stochastic function to take account of external processes and 'noise’.

Generally speaking, when a financial observable {Pk (t)} is evolutionary, and when it is not

dependent on any other financial variables, then the temporal development can be written as

a Taylor series expansion truncated to order M, of the form
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This is effectively an auto-regressive scheme, which will persist indefinitely and never

forget any event in its history and is not dependent on external stimuli.



Equally, the evolution of the financial observables can be described by an expansion of
functionals which characterises the behaviour as a mapping between functional spaces.

If there is a unique solution to the Taylor series expansion then, formally at least, it is the
inverse mapping. The emphasis of the inverse problem approach is to identify the form of
relationship between the risky assets and hence establish the laws governing the process.
In the absence of noise, a discrete form of the multidimensional Volterra expansion for a
time invariant mapping is defined as [27]
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where [t is equal to one for the differential equation approach [30].

The effects of 'noise’ on the mapping can be considered by decomposing the price {Pk( t)}

into a stochastic component {Ek (t)} and a deterministic component {pk(t)}, which are

assumed to be statistically independent of each other.

Under this assumption each data value {Pk (t)} in the sequence can be represented as

[26-27]
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In effect the mapping is theoretical decomposed into a deterministic component and a

stochastic component.

The value of the portfolio and its temporal derivatives is considered as a vector field which
is a function of the time series histories of the component common stock prices and their
temporal derivatives. The price, {P,(t)}, for each common stock name will be an
evolutionary function of the history of all the common stock prices and the external forces
of current trading which act.



The inverse form of the evolutionary Volterra functional expansion for an evolutionary

mapping of an individual price contained in the portfolio is defined by
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where the differential operator d_[.]= {1 +%+...+§ trr }[], and the delta function denotes

the fact that the terms of the auto-regressive terms are identically equal to zero. The
stochastic component values, {Ek (t)} are assumed to be drawn from Gaussian random
processes so that estimates for their variance can be obtained, for example, by regression or
maximum likelihood methods. This enables the kernel, or response, function values to be
determined from the moment hierarchies [26-30]. The response function values are then
used to predict the out of sample behaviour of the common stock close price values.

The form of equation (5) is ill posed, in the sense that there are many coefficients. In
addition, they are ill conditioned because their dependent and independent variables are
stochastic functions of time. When the data {Pk (t)} are drawn from stochastic sequences,
the form of the Volterra functional series is ill conditioned because the dependent and

independent variables are stochastic functions of time.

These problems are overcome with statistical averaging, and the resulting moment
hierarchy, is likely to be well posed and have well behaved coefficients. Operating on the
Volterra series with averaging operators [26-30] and re-arranging, the simultaneous

moment hierarchies are defined by
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Thus the multivariate Volterra functional expansion and its temporal derivatives given in
equations (5) and (6) have been transformed into a tractable linear algebra expression that
can be solved for the evolving response functions.

In equation (7) the auto-moment values denoted by MY* y (5,,...,6,) are simple

arithmetic sums of the usual absolute time series moments [30].

An approximation to equation (5) is used in the present work for the study of evolutionary
financial processes. If the financial process responds in a finite time, say W units, then the
observed behaviour can be represented as a discrete Volterra functional expansion truncated
to order N. The deterministic component can be analysed and used to predict the future
behaviour of the phenomena. Each time series values of the financial observables is
theoretical decomposed into a deterministic component and a stochastic component and this
introduces additional variables into the representation. The discrete approximation to
equation (5) used in the present is a set of coupled discrete Volterra functional expansion

truncated to order N, which are defined by the simultaneous equations
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Here the elements @, (t) are drawn from the set of common stock price values and the
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Operating on these equations with the averaging operator <H D, (t-7T,) *> the R th order
r
r=l1
absolute moment hierarchy of { P (t)} and its temporal derivatives is given by

)

The moment hierarchy form given by equation (9) can readily be solved for the unknown
response function values using , for example, regressional or maximum likelihood methods
[27,30]. That is, the application of averaging operators to the Volterra series generates a
hierarchy of tractable moment equations and this moment hierarchy is then regressed to
obtain the variance of the noise and the response function values.

Given that the choice of {Z, (t)} is not unique, it is assumed here that {24 (1)} is drawn

from a zero mean Gaussian white noise process which is statistically independent to the
deterministic components {(pu(t)}. Under this assumption, the moment hierarchy becomes

h (10)

where the cross - moment elements are given by
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the off block - diagonal auto - moment elements are given by
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the off block - diagonal auto - moment elements are given by
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where the variance of the stochastic component is denoted as 7, and the coefficients Olgp

and Prg reflect the fact that the symmetry of the equations has been used to reduce the

order of the matrix [27]. The moment hierarchy given by equation (7) can be rewritten in
the obvious matrix form C = Mg. Here M is a square matrix whose elements are the time

series moments of data. For each moment hierarchy C is a column vector whose elements
are the cross moments between the common stock prices and their temporal derivatives and

the set of variables {‘Pir (t)}. The elements of the column vector g are the unknown kernel

function values.

If the matrix M is non-singular then g = (g)‘lg has a unique solution. If however M s
singular, then M is rank deficient and some of its rows will be linearly dependent on the
others. If the same relationship holds between the corresponding elements of the column
vector C, the solution will not be unique and an infinity of solutions will exist. If this is not
the case then the matrix expression is not consistent and there will not be any solution.
Thus, in general, there may be a unique solution, an infinite number of solutions or no
solution. However, given the construction of the moment values used in the moment

hierarchy, the rows of M will be linearly independent of each other, thus the matrix will

usually be non-singular and have a unique solution.

Now consider the effect of the uncertainty on the experimental measurments. In accordance
with standard uncertainty analysis of experimental data, assume that it is possible for the
analysis proceedure to yeild a unique set of empirical coefficients, that are physically
meaningful, and where each coefficient has an uncertainty value associated with it.

Including the uncertainty terms the moment hierarchy retains a linear algebraic form with

(W £Ay) = (¥ + A¥)(h + Ah) (11

Using the theory of the proparation of errors, then the fractional error on the estimated

mixed order linear-nonlinear response function values will be given by
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where |l |l denotes the norm and the conditioning number is defined as
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These uncertainty values can be used to estimate the standard error, and multiples thereof,
of the forecasted stock price values. Thus providing a value for the future behaviour of each

stock name together with a probability distribution associated with it.

Results from an empirical study of Japanese high-volume common stock prices

The results from two example analyses are considered in this section. Firstly, on a daily
basis, the time histories of a portfolio containing three hundred Japanese common stock
prices are statistically analysed over a thirty day period. This portfolio was split into ten
roughly equal baskets, with the names in each basket being drawn from the same area of the
market. Secondly, the historical close price values of a single basket, containing thirty
names, were statistically analysed over a period of four hundred days.

The time series moments of each basket were used to estimated those response functions
which give the best out of sample predictions for that basket. In addition the names of
common stocks which could be accurately predicted on a consistent basis were identified.
The response function estimates were then used predict the future behaviour of the close

price for each name up to fifty trading days ahead.

The predicted future behaviour of each common stock within the portfolio was then
statistically compared with the actual prices that occurred. In a preliminary study it was
found that 30% of the names used were predicted with an accuracy that captured
approximately 98% of the actual movement each day. These names were then used as the
basis for trading in the following examples. In each example some ten thousand
predictions are analysed so that the accuracy and consistency of the results obtained are
likely to be statistically significant. The predictions were also used as the basis of a simple
trading strategy and the percentage return values of the common stock prices that result
from the use of the simple strategy are presented.



The simple strategy being, that if a prediction indicated a likely change in a common stock
price of greater than 3 %, for a name whose predictions are consistently accurate, then a
trade in that name would be initiated on that day and completed within a sixteen day period
after the initiation.

The effect of transaction costs were also considered. However, it is not possible to
determine exact transition costs for every case. Institutional investors typically have
brokerage charges amounting to approximately 0.06% of each stock value traded. Given
that the typical commissions are usually negligible the transaction costs usually are likely to
be in the range of 0.1 % to 0.15% of the stock price. In the examples presented below the
effect of 0.0 %, 0.1%, 0.15% and 0.2% transaction charges are shown.

Because the future values of the external forces, trades in each name, cannot be known a
priori; only the equilibrium behaviour can be accurately predicted. The predictions when
these response function values are used are representative of the local equilibrium

behaviour.

The ascending order time series moments of the data are estimated and the value of the
variance of each stochastic component is determined so that the values of the response
functions provide the best out of sample predictor. The self and cross coupling forces are

assumed to have a finite memory up to a duration of u days in the present examples.

The discrete approximation to the multidimensional convolution expansions given by
equation (9) given by the discrete Volterra functional expansion truncated to order N,

defined by the simultaneous equations
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for k=1,2,3,4. That is, the moment hierarchy is operated on with a series of averaging
operators and the resulting moment hierarchies are solved for the unknown response

function values.

The estimated response function values are then used to predict the future behaviour of
each member of the portfolio. Figure 1, shows samples of common stock name price
histories together with the predictions made each day. The accuracy of the predictions were
determined by considering the percentage difference between the prediction and the actual

common stock price value divided by the percentage volatility of that name.

The results for the accuracy of the 20000 predictions used in the paper trading are presented
as probabilities (normalised to 1.0 for each value of time delay considered) in Table 1 and

in more detail in Figure 2a and the logarithm of the probabilities are shown in Figure 2b.

The findings from the statistical analysis of several weeks of such portfolio predictions
indicate that approximately 30% of the stock names in the basket can be consistently
predicted to within the variance, or spread, of the actual common stock price in the future.
A preliminary study of a two month period of daily predictions enabled the names which
were being accurately predicted on a consistent basis. The names identified where then used
in the above mentioned simple strategy although no changes were made to the composition

of the baskets used in the analysis.

The daily percentage return on the investment for the two examples are shown in Figures 3
and 5, and the cumulative percentage return on the investment for each of the two examples
are shown in Figures 4 and 6. In each figure there are four curves which refer to the 0.0,
0.1, 0.15 and 0.2 % transaction costs incurred in each trade. Clearly these have a significant
impact on the return on the investment in each case. However, for each example the
cumulative return at the 0.15 % transaction cost level is approximately five times greater
than that which may be expected when compared with alternative time series forecasting
methods [32]. These results are very encouraging but are only the first of a series of studies

of forecasting financial instruments.



Table 1: Probability of prediction being within a given number of standard deviations
of the actual stock price in the future

Time in the future
number of
standard 1 day 5 days 10 days 15 days 20 days
deviations
6 0.0051 0.0051 0.0051 0.0051 0.0034
5 0.0034 0.0034 0.0051 0.0034 0.0051
4 0.0017 0.0017 0.0034 0.0034 0.0017
3 0.0068 0.0051 0.0051 0.0051 0.0068
2 0.0136 0.0153 0.0119 0.0153 0.0136
1 0.0153 0.0153 0.0153 0.0136 0.0153
0 0.9197 0.9163 0.9095 0.9044 0.9061
1 0.0221 0.0272 0.0306 0.0289 0.0272
2 0.0218 0.0204 0.0204 0.0238 0.0238
3 0.0034 0.0034 0.0034 0.0051 0.0051
4 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0




Conclusions

The results presented in this paper can be summarised as follows. A general theoretical
representation for the time dependent behaviour of a set of risky assets in terms of coupled
differential equations was developed. The representation being in terms of a suitably
truncated multivariate evolutionary Volterra functional expansion. The order of truncation
is determined by analyses of the predicted behaviour, and is limited by the ability to
numerically invert the moment hierarchy. An approximation of the general representation
was used to analyse and predict the out of sample future behaviour of a number of
portfolios composed of common stock price sequences. Ascending order time series
moments of the data were estimated and used to solve a moment hierarchy for the unknown
response function values. The response function values in this case are equal to the
coefficients of the coupled differential equations. The statistical analyses of some 20000
individual predictions indicate that the moment hierarchy can correctly predict the future
behaviour of common stock prices. It was found that approximately 30 % of the names
considered consistently have predictions that lie within the spread up to 20 days in the
future. These findings indicate that there is a useful level of forecast ability in financial

sequences.

A subset of out of sample accurately predictable common stock names were identified and
then used in the two examples. The daily percentage and cumulative return on the
investment were shown as a function of incurred transaction cost. The transaction cost has a
significant impact on the return on the investment in each case. However, for each example
the cumulative return at the 0.15 % transaction cost level is approximately five times
greater than that which may be expected if the best alternative time series forecasting

method were used.
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Figure captions

1. Four samples of the time series sequences of common stock prices with

superimposed daily predictions 30 trading days ahead.

2a. The probability of a given prediction as a function of standard deviation and time

delay for the predictions used in the paper trading.

2b. The logarithm of the probability of a given prediction as a function of standard

deviation and time delay for the predictions used in the paper trading.

3. The daily % return on the portfolio of 300 common stock names for 30 days.
4. The cumulative % return on the portfolio of 300 common stock names for 30 days.
5. The daily % return on the portfolio of 30 common stock names for 377 days.

6. The cumulative % return on the portfolio of 30 common stock names for 377 days.
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