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Abstract

Interferometric detectors of gravitational waves employ long baseline Fabry-
Perot cavities with stored power of the order of 10 kW. The mirrors have a
high reflectivity with absorption coefficient of a few parts in a million. The
laser beam therefore acts as a source of heat creating a thermal gradient in
the substrate and the consequent deformation in the mirror which in turn
modifies the intra-cavity light field. The problem is thus coupled and non-
linear. Though the effect is expected to be negligible in the case of initial
interferometers future interferometers are expected to employ much higher
powers and it is necessary to ascertain thermo-elastic deformations and their
effect on the stability of the laser field in the cavity. In this paper, which
is first in a series to study instabilities in giant high power laser cavities, we
have analytically solved the coupled problem of thermo-elastic deformations
and their effect on the laser field, perturbatively and we show that within the
realm of our (physically reasonable) assumptions there are no instabilities in

the frequency range of 1 Hz-1 kHz.



I. INTRODUCTION

Gravitational waves have-long eluded direct detection due to their weak coupling with
matter. Except in cases where the dynamics involves coherent bulk motion of masses larger
than a few solar masses and/or speeds close to that of light, the amplitude of gravitational
waves from astrophysical sources will not be high enough for Earth based antennas to detect
them. Once detected, gravitational waves can be potentially used to measure astrophysical
quantities such as the masses of compact stars in binary systems, their spins, equation of
state of dense nuclear matter, as well as to test astrophysical models of the formation and
evolution of binary systems, single pulsars, etc. Detection of gravitational waves will also
be of cosmological importance since observation of signals from inspiralling binary systems
would allow us to make an accurate estimate of the Hubble constant and measuring or
setting limits on the stochastic background of gravitational waves can constrain models of
the early Universe. Moreover, with the aid of gravitational waves it would be possible to
test general relativity and other theories of gravity in the strongly nonlinear regime thus
contributing to our knowledge of the fundamental laws of Nature. For a recent review on
gravitational waves see Thorne [1,2].

The search for gravitational waves of cosmic origin has led to the development of long
baseline optical Michelson type interferometers [3,4]. The effective baseline of these detectors
must be of the order of 150 km. The physical length of the interferometer is reduced by
using reflecting Fabry-Perot cavities of finesse F' ~ 50-a few hundreds and physical length
L = 3-4 km. The optical power is enhanced by a recycling system, and the surtension
In the cavities is presently designed at about 10 kW. The mirrors are heavy silica blocks
bearing dielectric reflective coatings. In order that the power recycling is efficient, the
cavities must be highly reflective, which means that the coatings must have very low losses.
With the current state-of-the-art, losses as low as a few ppm (107%) are planned [5,6], which
results in about 10 mW dissipated in the coatings, and thus heating the substrates. The

optical beam has a Gaussian profile and the corresponding heat source generates temperature



gradients. The temperature gradients cause a deformation of the substrate, and especially of
its internal coated face interacting with the optical field. In the case of presently developed
interferometers, the effect proves to be negligible [7,8]. However, for advanced instruments a
special study should be undertaken showing the behavior of a resonant cavity with nonlinear
effects, and especially with thermo-optical coupling.

The rest of the paper is organized as follows. In Sec.Il we give a brief description of
the problem of nonlinear effects in a resonant cavity highlighting the aim of the present
study. We recall the methodology followed in an earlier work (11] for the study of static
thermo-elastic effects in a high power laser cavity. The results of that study are extensively
used in the present paper and we refer the interested reader to Hello and Vinet [11] for
details. In Sec.III we take up the problem of thermal effects due to absorption of laser
light by the coatings of the mirror and obtain an analytic expression for the temperature
profile in the substrate of the mirror. Such an analysis is carried out for a single Fourier
component of the fluctuating intra-cavity laser power and a general solution can be built
from the solution obtained in this work. We then demonstrate that the exact analytical
solution can be approximated by a very simple expression which shows that the thermal
transfer function describing the temperature distribution in the substrate is ‘identity’ apart
from an amplitude and a constant phase factor. This implies that the temperature profile
on the mirror surface and within the substrate is identical to that of the light beam. Using
the thermal transfer function we solve for the deformation of the substrate, in particular
of the coating, in Sec.IV. Finally, in Sec.V we solve for the evolution of the phase of the
intra-cavity light field in the presence of deformations induced by random fluctuations of
the laser power. This is done by a heuristic derivation of the combined transfer function for
the static and the time-dependent case describing the effect of the fluctuating laser field on
the phase of the intra-cavity light, thus completing the full solution to the coupled thermo-
elastic problem in high power laser cavities. In Sec.VI we give a summary of the results

obtained in this study and discuss prospects for future work in this direction.



II. MOTIVATION AND BACKGROUND

In the next two Subsections we briefly discuss the relevance of the present study to
the construction of the second generation gravitational wave interferometric antennas, the
problems that have been addressed so far and how the results of previous work may be used

to advantage in addressing more complex situations.

A. The Description of the Problem

We consider a resonant Fabry-Perot cavity in which the stored optical field can be strong
enough to generate various nonlinear effects. Among these nonlinear effects, the thermo-
elastic coupling will be studied here. In order to study the stability of this type of coupling,
we shall assume that the stored power can vary in time. We shall first recall briefly the static
solution found in the case of a constant Gaussian beam weakly dissipated by an isolated
cylindrical mirror (axially symmetrical problem) because the mathematical tools employed
in that study are essentially valid for the problem under consideration. Then we consider the
case of a Gaussian beam having an oscillating power flux with a constant mean value. In all
cases, we assume that the only heat losses are due to thermal exchange between the mirror
and the surrounding vacuum vessel by radiation. In all cases we have to first address the
temperature problem by solving the Fourier equation with the relevant boundary conditions,
then the thermo-elastic problem : knowing the temperature field, find the displacement
vector field by solving the thermo-elastic equations with the relevant boundary conditions.
The distortion of the surface can be analyzed in terms of coupling of Hermite-Gauss modes.
The second part of the problem is to study the behavior of a resonant cavity with a mirror
having a time varying distortion. Finally, we shall obtain a first transfer function from the
optical dynamical field to the distortion of the mirror, and a second transfer function from
the distortion of the mirror to the optical amplitude. Combining the two transfer functions

will give us some information on the behavior of a resonant cavity. It is, however, to be



noted that in this work we have not necessarily considered all nonlinear effects that might
in principle lead to an instability. For instance, no effort is made in treating the radiation
pressure effects which will obviously be of similar magnitude as the thermo-elastic effects
and will be taken up in a future work. The main conclusion of this work is that even when
very high powers ~ 1 MWatt are stored the system does not show any instability or a
chaotic behavior. This is certainly a welcome news for groups that have plans to build giant

interferometric cavities.

B. The Static Solution

The static solution has been studied in detail by several authors (see eg. [9,10]) and more
recently in two articles by some of us [11,12]. We recall here the general method. Owing to
the cylindrical symmetry of the problem, due to the fact that we assume the light beam to
coincide with the axis of the mirror, we can expand the temperature field, and the elastic
deformations, in terms of Bessel functions as Dini series. This allows us to employ a trick
found by Cutolo et al. [9] to solve the coupled equations for the radial and longitudinal
deformations. In the static case, for large Silica mirrors, the characteristic time for the
evolution of the temperature is ~ 10’s of hours and hence the evolution of the deformation
is only quasi-static. This allows us to neglect inertial forces and the generation of acoustic
waves in the substrate. An important result obtained in the static case is that the heating
by absorption in the bulk of the substrate, as the laser beam traverses through it, is a factor
of 5 less as compared to the case of heating by absorption in the coating for the same levels
of absorbed power. The consequent aberrations produced in the former case are an order of
magnitude lower as compared to those produced by thermal lensing. We make use of this
result in the present work and neglect absorption of laser light in the bulk of the mirror. It
was pointed out in those studies that though the beam transmitted through the mirror has
negligible perturbations it might very well be that the reflected beam is affected to a higher

degree. In this paper we take up the dynamical problem left undone in those works.



I1II. THE TEMPERATURE PROFILE IN THE MIRROR

In this Section we consider the thermal effects induced in the mirror by intra-cavity high
power laser beam fluctuating at a certain fiducial frequency. The problem is first solved
exactly with the proper boundary conditions. The exact solution is not of much utility
in solving the thermo-elastic problem and hence we obtain an approximate, nevertheless
accurate, solution to the problem and show that the two solutions match very well except
when the power fluctuation time scale is too low. The most important result of this Section
is that the temperature profile on the surface of the mirror is coincident with the cptical

beam profile.

A. The Heat Equation

The mirror is in the shape of a cylinder of radius a and thickness # and consists of a
substrate, usually silica, and a high-quality reflective coating. In gravitational wave interfer-
ometers typically, a ~ 0.1 m and h ~ 0.1 m (for the input mirrors). The axis of the mirror
is the z-axis and it is coated on the face at z = 0 (see Fig.1). The cavity lies along the
positive z-axis with the other mirror (suitably curved) at = = L. The intra-cavity laser light
is incident on the mirror at z = 0 which gets heated due to absorption in the coating. We
neglect absorption in the substrate of the mirror. The mirror losses heat to its surroundings
by radiation. We consider a time varying intensity profile I(r)e~"** with a single Fourier
component at {1; the general solution can be built up from these Fourier components (see
Sec.V, especially Eq. (5.8)) since we shall linearize Stefan’s laws which is justified as the
rise in temperature of the substrate is very small. At frequencies {2 < 10 rad s~! the ef-
fects of a fluctuating laser power can be corrected with the aid of a transducer while for
Q > 10° rad s~! the thermal gradients and elastic deformations induced are negligible. Thus,
we shall assume that 10 rad s~} < ) < 10% rad s™!. Also we assume axial symmetry so that

I is a function only of the radial coordinate r. We will assume the intensity profile to be a
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Gaussian so that I(r) is a Gaussian with the maximum at r = 0 and standard deviation
wo/2, where wyp is the waist of the beam. We assume that the change in the temperature
of the mirror due to heating is small relative to the ambient temperature Tp. We have the
following equation for the temperature distribution in the mirror which follows from heat
conservation:

oT 5
pCr = KV'T, (3.1)

where (for pure silica) p is the mass density (2202 kg m~3), C is the specific heat capacity
(745 J kg=! K=!') and K is the thermal conductivity (1.38 W m~! K~!). The Stefan’s
constant o (5.67 x10™® W m=2 K-*) enters into the boundary conditions and must be
corrected for an emissivity factor since the mirror is not a black body. We assume an
emissivity factor of 0.9. The boundary conditions imposing the balance of heat fluxes,

consistent with the assumptions stated earlier, are:

LdT
—K a—r‘r:a = 40’T§’T|,___a, (3.28.)
—[{%j;|z:—h ~= 4OT§T|2=—h7 (32b)
_[\’%L:O :40’T3T|Z:0 —ef(t’r)_ (32(3)

where, ¢ is the absorption coefficient which is typically about 107° down to 107%. In
accordance with the assumption of small changes in the temperature relative to 7y, we have
linearized the equations around the ambient temperature 7y and in all these equations T'
represents the change in temperature from the ambient temperature.
We take the intensity I(#,7) to be of the form I(r)e~**. The function I(r) is the modulus

square of the electric field. For a TEMyg mode, the profile is a Gaussian given by
1) = 1(0) exp(~2r fu), (3.3)

where wq 1s the waist radius of the beam and we take it to be 0.02 m. The total power P in

the beam 1is,

P:A%AUuwmda (3.4)
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When the radius a > wg. we have the relation,

7wi1(0)

P~ 7

(3.5)

We shall consider P of the order of 10 kW or even a MW. Then correspondingly the absorbed
power is about 0.01 W to 1 W. As we shall see this entails an increase in temperature of a

small fraction of a degree.

B. The Exact Solution

We obtain an exact solution to the heat equation by separating the variables. The
solution is found in a series form. Assuming a time dependence for the temperature field of

the form e=*¥, Eq. (3.1) takes the form
(iQCp+ KVHT = 0. (3.6)

Since axial symmetry is assumed, the convenient choice of coordinates 1s cylindrical coordi-
nates. Assuming the solution in the form,
oo
T =5 0.(2)Jo(kar), (3.7)

n=1

where Jp is the zero-order Bessel function, we get ©,(z) satisfying the equation,
Q/(z) —ul0(z) = 0. (3.8)

Here u2 = k2 —iQpC/K and the prime denotes differentiation with respect to the argument.
The constants k, are determined by the radiative boundary condition (3.2a) at r = a as

follows. Let &, be the n th root of the equation,
zJi(z) — 7Jo(z) = 0, (3.9)

where 7 = 40T%a/K; then k, = &,/a. For the parameters assumed and To ~ 300° K.

7 ~ 0.4 and the first few £,. 7 = 1,2,3.4..... have the following approximate values: 0.85,

oD



3.93, 7.07,10.21, . ... For large n the consecutive ¢, differ approximately by r. The solution
to Eq. (3.8) is,

0.(2) = an exp(unz/a) + Bnexp(—unz/a), (3.10)

where, the constants a, and 3, are to be determined from the boundary conditions at z = a
and z = —h.
The functions Jo(k,,r) have the property that they form a complete orthogonal set over

the interval [0, a] and satisfy the orthogonality relation,

* T+ & 2 2
/0 Tolknr Vol ke rdr = S T (o(n) P’ (3.11)
Next, we expand I(r) on the basis of Jo(k,r) as,
](7‘) = anJO(knr)a (312)
n=1

where the coeflicients p, can be obtained by inverting the relation with the help of Eq.

(3.11) and noting that a >> wy. Thus,

~ L & 2, 2/Q. 2
P = — RN IATAL exp(—£-ws/8a”). (3.13)

For our case where a = 0.1 m and wo = 0.02 m, the first few p,’s (in units of W m™?) are
as follows: py ~ 38, p2 ~ 182, p3 ~ 275, py ~ 303, ps ~ 273, ..., pio ~ 21, p1z ~ 1073, .. ..
The p, exponentially fall off to zero as n increases further. With the above expression for

I(r), the boundary conditions (3.2a) and (3.2b) for ©,(z) become,

KO (=h) = 40T)0,(—h), (3.14a)

~KO(0) = 40T50,(0) — ep. (3.14b)

These conditions give a pair of simultaneous equations for each value of n for a and 8 which

then can be solved to yield O,(z). Thus,

o @ (T +un)explun(z + h)/a] = (7 — un) exp[—un(z + h)/q] 3.15
O S R expluaba) — (7~ wesp(wadga) )
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This gives the exact solution for the temperature profile within the mirror. Fig. 2 shows
the plot of the temperature for various constant values of r as a function of z for a Watt of
absorbed power. We notice that the temperature field is essentially nonzero close to the lit
surface of the mirror and decays rapidly to zero away from the lit surface as well as towards
the rim. The rise in temperature to a maximum of about 0.2° at the centre of the Mirror
at z = 0 is small as compared with the absolute temperature Tp. This suggests that an
approximate solution may be possible. This is in fact so and we obtain such a solution in

the next Subsection and we find that it is remarkably close to the exact one for 0 > 5rad s™.

C. The Approximate Solution

The basic reason that such an approximation exists is that we have two time scales in

the problem one of which is much larger than the other:

1. The thermal time scale tinerm ~ pCa?/K which is typically several hours. Here we

have tiherm ~ 3 hours.
2. The time scale of the intensity fluctuations tos which is 27 /€0

Secondly, most of the power is confined in the region of the waist wo of the beam and
since a 3> wo, the coefficients p, fall off very rapidly to zero. For 1 W power absorbed,
the maximum is ps ~ 303 W m~2 while p;s ~ 0.1 W m~2, for this choice of parameters.
We obtain an approximate solution when Qfiherm > 1 in a very simple and closed form as
follows: Since the p, decay very rapidly only the first few terms are important, say, up to
1 ~ 15. Now if Qiherm 3> €2 ~ 2000, then we can neglect &, from Eq. (3.8). In other words,
at low values of n, Qtnerm dominates k2 in Eq. (3.8), and for high values of n, low values
of p, make the contribution of ©,(z) insignificant. Thus, ©n(z) becomes independent of n,
except for the factor p,. and the series sums up to give essentially the intensity profile I(r).
Physically, this amounts to saving that there is no radiation from the rim of the mirror.

Thus,

10



tn ~ (1 —1)/8, (3.16)

where, 6 is the ‘skin depth’ defined by,

2K
6=/ —. 17
‘/Qcp _ (3.17)

Here § ~ 4 x 107* m for 2 = 10 rad s~1. Further, we neglect 7 with respect to a/é, which

physically means negligible radiation from the surface z = 0, and we obtain a simple form

for O,(z),

O.(z) = :/’;[5( exp [2(1 —3) +zZ—] . (3.18)

The final result is that the p,’s combine with the Jo(k.r) in Eq. (3.7) to yield the intensity

profile /(r) and we obtain,

I(r)o 2 fz 7
T(t,rz)= 6\/(;]){ exp [—5 -1 <5 — % + Qt)} . (3.19)

This sclution agrees very well with the exact solution for sensible choice of the parameters,

for example, for = 10 rad s™!. The approximation in fact improves at higher frequencies.

IV. THE THERMO-ELASTIC PROBLEM

In this Section we address the problem of computing the deformations produced in
the substrate and on its reflective coating. Thermo-elastic equations together with the
boundary conditions are introduced in Sec.IV A. To obtain a closed form solution we use
the approximate form of the temperature field derived earlier. This facilitates to express the
solution to the thermo-elastic equations, in Sec.IV B, in a manner similar to that followed
in the Sec.III by employing Bessel series expansion. We end this Section by computing the
maximum and average deformations produced in Sec.IV C, and the concomitant phase shift
induced in the light beam, and show that even when the power stored in the intra-cavity is
as high as | MW the largest deformation is less than one part in 10* of the wavelength of

infra-red laser used in gravitational wave interferometric detectors..
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A. Thermo-elastic equations

Since the temperature changes are basically confined in a thin region close to the lit
surface of the mirror, the thermo-elastic forces appear like a boundary condition at the
surface z = 0. The varying temperature produces varying deformation near this surface and
gives rise to acoustic waves within the mirror. But we will principally be interested in the
deformation of the surface z = 0 because it is the deformation of this surface that couples
to the intracavity light field. We again proceed by Fourier analysis.

The strain tensor E;; in terms of the displacement vector u Is,

1 ou;  Ouyg

B =20, 52

(4.1)

in Cartesian coordinates. The stress tensor ©;; for homogeneous and isotropic medium in

which there is a temperature field 7" is given by [13],
O = (—vT + AE)bi + 21 Lk, (4.2)

where, p, A are the Lamé coefficients, v is the stress temperature modulus and E is the
trace of Ei. For pure silica g = 3.13 x 10 Jm™2, XA = 1.56 x 101 Jm™ and v =
5.91 x 10* J m=3 K1,

Since we assume axial symmetry, we choose cylindrical coordinates in which the strain

and the stress tensors take the following form:

ou, Uy ou, 1 {0u, Ou,
ETT:—vE':_>Ezz:_a rz — o\ ™3 -y ) 4.3
or ve r 0z E 2(8z+0r> (4.3)
O, = —vT + A\E + 2uFE,,, (4.4a)
6¢¢ = -—I/T + /\E + 2;LE¢¢, (44b)
O.. = vl + A\E+2uE,;, (4.4¢)
0,. =2ukE,,. (4.4d)

12



(4.5a)

The dynamical equations are [13],
00,, 00,, O, — 04 0%u,
R e
99.,  09.. 0.,  Ju,
o e T TP (4.5b)
These equations have to be solved together with the boundary conditions,
(4.6)

OzzIZZO = ezzlzz—h = er'z‘z:O = Grzlzz—h = erzlz: = @1'1:§T=a =0.

The corresponding equations for the displacement vector components u, and u, are second

order coupled but linear differential equations. Assuming the time dependence for u as e~

the equations are,
0*u 0*u 0*u d [u
T -z - T ) — [ I ’ 20
A+ 257 + Ot mp g tugg + A+ 205 ( ; ) purll = v, (4.7a)
0%u, *u, Pu, (N + ) Ou, pw\ Ou, . 0T
(A+20) 0z2 O+ ﬂ)araz Ta or? + r 0z i <_> ar pusll = Yoz (4.7b)

B. Solution to the thermo-elastic problem

To solve the thermo-elastic equations we follow the method of suggested by Cutolo et al.

[9] (see also, Hello and Vinet [12]). First we expand the u,, u, and T in a Bessel function

series, in terms of Jo(k,r) for u, and T, and J1(knr) for u,. Thus, we write,
Ur = Z Am(z)']l(kmr)a (488‘)
m=1
(4.8b)

B (2)Jo(kmr),
(4.8¢)

=
I
]38

3
)

T (2)Jo(kmr),

I
gk

T

3
n

where the k, could be chosen to be the same as before (cf. Eq. (3.9)). However, this

choice is not unique and we are free to choose some other sequence of numbers k,, which

produce an orthogonal basis of functions. The k,, chosen earlier are tied to the thermal
13



problem. They suffice here as well and shall use them in the analysis that follows. We can
immediately obtain Tp(z) from Eqs. (3.12) and (3.19). Comparing terms for a given m, we

have,

6 . 1—:
Tm(z) = ameﬁz’ Qm = Pm \/51{6”\'/4, ﬂ = s (49)

For A,, and B,, we get two coupled equations with forcing terms in Tp. Thus,

(1 B+ b AL+ p(BL — K2, Bo) 4 g0 By = v, (4.10a)
z
(o + Nk (Bl + ko Am) — p(A” = k2 An) — pQ? A = kT, (4.10Db)

where the prime denotes differentiation with respect to z. Defining Un = Al + kyn B, we
obtain an equation for U,
0?2
Ul + <—2 - k,’i) Un =0, (4.11)
€2
where, ¢, = /p/p is the velocity of the transverse sound wave. For silica, ¢; ~ 3770 m s~ 1.
For the range of Q we are considering £} < 1000 rad s™!, and we have f—: < k2 and hence
2

we ignore it in the calculations that follow. This amounts to neglecting the inertial term.

Thus, solving Eq. (4.11), we have,
Al + ky By = 2k (R cosh k2 — Srysinh kmz), (4.12)

where, R., and S,, are constants to be determined from the boundary conditions. We now
solve Eqs. (4.10b) and (4.12) simultaneously. Eliminating Bm(z) between these equations

we obtain an equation for A,,(z),

_kml/am P 4 2nk2 ( Ry sinh kmz — S cosh kmz), (4.13)

A//_kZAm:
m m /\_*_p \

where, n = (u + A)/(2¢ + A). The solution to Eq. (4.13) is,
Am(z) = Pp cosh kmz + Qm sinh kpnz + nkmz(Rm cosh kpnz — Sm sinh kpnz) — yame’?, (4.14)

where,

14



knvan,

T O (F R
Then B,,(z) follows from Eq. (4.12),

(4.15)

B (2) = =Ppsinh kpz — Qm cosh knz + (2 — n){ Rm cosh knz — S, sinh kmz)
+v1m €% = Nk z(Rm sinh kpz — Sy, cosh ki 2), (4.16)

where, Y1m = B72m/km. These give the solutions to the equations with four sets of arbitrary
constants Ppm, Qm, Rm and S, which must be determined via the boundary conditions at
the surface of the mirror. We make use of the boundary conditions listed in Eq. (4.6).

The first four boundary conditions at the two flat surfaces of the mirror give the following

conditions on A,, and B,, at z =0 and z = —h:
Al —k,Bn =0, (4.17a)
— VT + Ak A + (A 4+ 2p)B., = 0. (4.17b)

The first follows from the vanishing of ©,, and the second from ©., at the flat surfaces.

Together with (4.12) the first condition yields the important relation,
B, (0) = Ri. (4.18)

This means that we need only solve for R, in order to get the deformation of the surface at

z = 0. In other words, the deformation of the reflective coating of the substrate is given by

u,(z=0)= i R Jo(kmr). (4.19)

m=1

The boundary conditions (cf. Eq. (4.6)) give four sets of simultaneous equations for the
constants Pn, Qm, Rm and S,,. Since the equations do not mix the index m, we drop this

index for brevity and also write z = ky,h. Thus,
Q+(n—DR=m, (4.20
— Psinhz + Qcoshz + R(pzsinhz + (n — 1) coshz) + S((n — 1) sinh & + nz cosh z)=0, (4.20
P+ S =, (4.20
Pcoshz — Qsinhz — R(nz cosh z — sinhz) + S(coshz — nzsinhz) = 0. (4.20.

15



These equations can be easily solved for P, @, R and S to yield the displacement vector.
However, we are only interested in the deformation of the surface at z = 0. According to

Eq. (4.19) we need only comp.ute R. Solving,

(1 sinh z — (3(z + sinh z cosh )

k= sinh? z — z2 ’ (4.21)
where, introducing the index m again,
-1 Bram
m = m = ) 4.22
i = = N - R (e
Com =17 " Y2m = vombn (4.22b)

(1 + )8 = k2)
For the parameters we have chosen, again only the first few terms, say about a dozen,
matter because a,, < pn. But in that case, 2 > k2 which in turn implies that (om < Cim-
Thus, we neglect (a,, from (4.21) and obtain a more simplified form for (ym ~ vay, [B(p+A).

The final result is that

v §? o
Lz {surface — A mdm rn s 4.23
et = 1 5 ) g 17601+ 3 gt (4.23)

where,

(km)?

= . 4.24
sinh? kmh — (knh)? ( )

For A = 0.1 m, kih ~ 0.85, koh .~ 3.93,..., and the g, are practically zero except for
g1 ~ 3.76. So only the first term is significant in the series in Eq. (4.23). Moreover, in
the region of the beam r ~ wo and Jo(ki7) is constant equal to unity. Thus the square
bracket collapses to [I(r) + p1¢1] essentially and the expression for u, at the surface z =01s

considerably simplified.

v fn)
uy(r, Q1) = Z;L+ Vel (4.25)

where, f(r) = e(I(r) + pr1)-
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C. Deformation of the mirror and phase shift

The maximum displacement is at r = 0. This may be easily computed for a given ab-
sorbed power €P. Let us assume eP = 1 W. Then, we have, eI(0) = 2¢P/rw2 ~ 1592 W m~?2
and ep; ~ 38 W m~2 which gives f(0) ~ 1734 W m~2. Thus, |u,(0,Q)] ~ 1.33x10~° m Q-1.
This is the displacement at the centre of the mirror per Watt of absorbed power and it is
a tiny fraction of the wavelength of laser. In Fig.3 we plot the deformation |u,(r,@)| as a
function of r for 2 = 10 rad s™' and 1 Watt of absorbed power.

We similarly compute the average displacement of the surface z = 0 averaged over the
intensity profile. This is needed in the next Section where we investigate the effect of the

deformation on the light intensity. For this purpose we need the normalized ®oo mode;

0]

2 \3
Doo = <i2> exp(—r?/w}), (4.26)
Tw

which satisfies, [, |®q0]2dS =~ 1 where the integral is over the area of the mirror surface A.

The average displacement is given by
(u.) (Q) = /Au2|<1>00|2d5. (4.27)
This gives for 1 Watt of absorbed power,
{(u) () ~ 0.72¢ x 107° Q7 'm. (4.28)

The phase 9 corresponding to this deformation is obtained by multiplying this average

displacement by twice the wave number k = 27 /X of the laser light. Thus we have,
Y(Q) = 2k (u,) (D). (4.29)

The Nd-Yag laser has wavelength A ~ 107® m (in the infra red). Thus, for this wavelength

we obtain,
Y(0) ~ 0.9 x 1072Q71, (4.30)

This is the phase de-tuning obtained per Watt of absorbed power. In the next Section we

turn to the effect of this deformation on the intra-cavity field.
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V. THE OPTICAL COUPLING

In this Section we estimate the effect of the deformation on the intra-cavity light field.
The effect of the deformation is to basically de-tuné the cavity. We give below a time
dependent treatment of this problem and connect it in an empirical way to the static solution
earlier obtained by Hello and Vinet [12]. We consider the situation when the frequency of
oscillation is much smaller than the free spectral range of the cavity. For instance, the free
spectral range of the cavity for the VIRGO detector is ~ 50 kHz. corresponding to an
arm-length of 3 km. For smaller cavities the free spectral range is even larger. In this case
we are able to obtain a differential equation for the phase ¢». We find that at least in this
regime there are no oscillations in the light intensity.

We consider a cavity as shown in the Fig. 4. The amplitude of the input electric field is
assumed to be a constant equal to A. The amplitude of the intra-cavity field B(t) is assumed
to vary slowly relative to the laser frequency ~ 2.8 x 10'* Hz. The intra-cavity light field

satisfies the following self-consistent equation:
B(t) = VTA+ R+ (1 — 7), (5.1)

where, VT = the arhplitude transmitivity of the corner mirror M,, R = ryry = is the product
of the reflectivities of the corner mirror M; and and end mirror M,, ¢q is the de-tuning of
the cavity, 7 = 2L /¢, is the round frip travel time within the cavity and v is phase de-tuning
due to the deformation. We neglect 7 in our calculations since (7 < 1). Then we may

solve for B(t),
VTA

The intra-cavity power P(t) is then just the square of the modulus of B(t),
2
P(t) = T14] (5.3)

- |1 — Rei(do+¥)|2”
By including a factor of ¢ we may relate this power to the phase shift 3 suffered due to

thermo-elastic effects. Thus, from Eq. (4.30) we obtain in the Fourier space,
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P()

P(Q) = iacT, (5.4)

where, @ = 0.9 x 1072J~1. This equation is valid when the oscillation time scale is much
smaller than the thermal time scale. We may, however, combine this with the static solution
of Hello and Vinet [12] in a heuristic manner. We do this by defining a combined transfer

function. In the static case,

¥»(0) = a(0)eP(0), «(0) = Tuz(()) ~2.4W1 (5.5)
Further, we define a knee frequency g by,
Q() -

a(o)rad st /(5.6)

In our case {2y ~ 40 mHz. We define the combined transfer function Y (§2) by,

Qe

T —i

$(Q) =Y (Q)P(Q), V() (3.7)

This transfer function goes to the expected limits: For 2 = 0 we get the static transfer
function, while for 2 > Q, we obtain the transfer function given by (5.4) and thus the
combined transfer function smoothly goes over to the static limit and we are quite justified
in using the above equation for describing what happens in the most general case. In Fig.5
we plot the combined transfer function given by Eq. (5.7).

In order to ascertain the temporal behavior of the phase ¥(t) we derive a differential

equation as follows. First note that,
0 :/m Y(Q)P(Q)e™d0. (5.8)

By differentiating this expression with respect to ¢ we get after some algebra, the differential

equation for 1(¢). Thus,

%—Et—) = —Qoy(t) + acP(t). (5.9)

We recover the static case in the limit %’tﬁ — 0; that is, we recover Eq. (5.5). In terms of

¥ the equation can be written in the form,
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o aeT|Al?

= (), — -0 . 5.10
dt 9(¥), 9(¥) o + 1 4+ R? — 2R cos(¥ + o) (5:10)
This equation may be put into a more convenient form:
dy a
— T = )+ — 5.11
100~ T coe + 60) (&1

where, a = 9—%%?—2, b= 1;—?2—. Note that since R <1, b> 1 and for b > 1 we obtain a stable
solution. In Fig.6 we plot the evolution of the phase ¢. The plot clearly demonstrates that
there is no instability whatsoever; within a few tens of the power fluctuation time-scale the
phase reaches 99% of its asymptotic value. For small values of ¢ we can expand the cosine

and retain only first order terms in 1. Then for the case of ¢o = 0, we can integrate (5.11)

to obtain,

(=) -
Qot-—/o md¢, (012)

which yields,

P~ (1= e (5.13)

If we assume the following values for the parameters: Pinira—cavity ™~ T|A|?/(1 — R)*,R ~
0.94,¢ ~ 1076 then, a ~ 107* to ~ 107% and b ~ 1.002. Then a/(b —1) ~ 1072 and ¥
reaches this value asymptotically. This approximate solution agrees well with the numerical
solution plotted in Fig.6.

Asymptotically, we obtain the static solution. There does not appear to be any instability
or oscillation in the power within this model at frequencies > 1 Hz, when 1 1s assumed to
be small. Perhaps, one must look at the problem non-perturbatively to obtain a physically

different behavior.

VI. CONCLUSIONS

Laser interferometric gravitational wave antennas acquire their high sensitivity to detect

radiation from cosmological distances by employing very long Fabry-Perot cavities of effective
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length ~ 150 km and laser beams of high power ~ 10 kW-1 MW. Due to the absorption
of radiation and the consequent heating the reflective coating of the mirror gets deformed,
in turn altering the resonance condition of the cavity. In addition to this thermo-elastic
deformation, and the associated instabilities, there are other sources of concern such as
deformations and displacements of the mirrors due to radiation pressure, warping of the
reflective coating due to its differential expansion with respect to the substrate, thermal
vibrations of the mirror, etc. All these effects are in principle coupled and when intense
laser beams exist in the cavity the problem is highly nonlinear. For the first generation of
gravitational wave interferometers these nonlinearities are possibly negligible but we cannot
hope for the same in future generations of interferometers. In this study we have addressed
one of the issues, nameli/, the thermo-elastic effects and how they back react on the resonance
condition of the cavity. Qther issues, notably the radiation pressure-driven instabilities and
the warping of the mirror, will be taken up in a future work. We have implicitly assumed
in this work that the system is controlled by a servo system which drives the cavity into
resonance on times scales ~ 100 ms and hence we do not consider thermo-elastic effects
on such time scales. The bottom line of this work is that under the physically reasonable
assumptions, such as the one stated above, we do not see the development of any instability
given that there is a transducer that takes care of motions occurring on large time scales.
Starting with the heat conservation equation {Sec.III) we solve for the temperature profile
in the substrate and on its reflective coating in the presence of a fluctuating light field in
the cavity. We show that there exists an approximate, but reasonably accurate, solution
to the thermal distribution, derived based on the assumption of negligible radiation from
the rim of the substrate, which shows that the profile of the temperature on the mirror is
identical to that of the light beam. With the aid of this approximate solution we solve for the
thermo-elastic deformations of the substrate, in particular of its reflective coating, and show
that, for time scales involved, the deformations are a tiny (10—4) fraction of the wavelength
of the laser (Sec.IV). With a knowledge of the thermo-elastic deformations, and the solution

to the static problem obtained by Hello and Vinet [11,12], we construct a transfer function
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for the phase offset induced in the resonance condition due to the coupling of the light field
with thermo-elastic deformations. This, then allows us to obtain a differential equation for
the phase offset that is solved numerically (and analytically in the perturbative limit) which
shows no anomalous behavior in the frequency range 1 Hz-10 kHz.

The results of this work are some what unexpected since the problem is nonlinear and
coupled. Generally, such systems do show some kind of instability or the other. It may be
that not all effects that will be present in a realistic system are not being considered and

hence we are unable to locate any chaotic behavior.
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FIGURES

#1G. 1. Schematic diagram of the substrate of the mirror and its coating heated by the in-

‘a-cavity laser beam.

FIG. 2. Temperature profile as a function of the radial coordinate r and longitudinal coordinate
:. Except close to the mirror surface and at the centre of the beam the rise in temperature is
aegligible. The radius of the mirror and the thickness of the substrate are 10 cm but the plot is

only shown for a portion of the mirror.

FIG. 3. Plot of the thermo-elastic deformation of the reflective coating of the substrate u,(r,0).

FIG. 4. Schematic diagram of the Fabry-Perot cavity showing the input and the intra-cavity

field and the coupling of the cavity to thermo-elastic deformatior.

FIG. 5. The transfer function for the phase shift induced in the cavity due to the thermo-elastic

coupling of the light field.

FIG. 6. Development of the phase offset induced in the cavity due to thermo-elastic deforma-
tion. The phase gradually increases and within a few 10’s of the fluctuation time-scale Q-7 it

reaches it attains 99% of its asymptotic value and we do not see any instability.
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