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the odd-A Rn isotopes, 48 shifts of beam time are requested. OCR Output

Therefore, to establish the upper border and to follow the eH'ect of octupole deformation through

theoretical model over the whole octupole region detailed spectroscopic studies are required.

concerning possible octupole deformations. In order to enable meaningful comparison with the

upper border line. In the case of Rn isotopes there are not enough data to draw conclusions

one due to a more stable quadrupole field. The present cases, R.a and Fr are at the predicted
231237

This transition e&`ect should be more clearly observed in the high mass region than in the low mass

disappearance of the octupole deformation in the presence of a well developed quadrupole field.

Ra and Fr nuclei. It is of particular importance to demonstrate experimentally the sudden

Previous experiments have demonstrated clear evidence for stable octupole deformation in several

and on the odd—A Rn isotopes, 219’221’223
the mass region A z 225. To this end, the present proposal focuses on the nuclei Ra and Fr,

231227

The aim of the proposed study is to investigate the limits of the "island” of octupole deformation in
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arises from the nuclear structure of Ra established in a model—independent OCR Output225

Among the odd Ra isotopes, Ra exhibits octupole deformation. This conclusion225
cv—hindrance factors (HF), and enhanced El transitions connecting these bands

similar decoupling parameter with opposite signs for the KW = 1/2:: bands, similar
opposite parity. Parity doublets are identify by their similar magnetic moments,

observation of parity doublets, i.e. close-lying bands with the same K-value but

An important signature for static octupole deformation in odd—A nuclei is the

with stable octupole deformation, see fig.1.

and the nucleus Ra (ref.) appears to be outside the limited region of nuclei23017)

228m)nuclei, while for Ra this mode of deformation (if any) is less pronouncedm) ,
like *Ra. The even isotopes *Ra have features of the octupo1e—deformed224226 224226
to the non—observation of the harmonic two-photon octupole vibrations in nuclei

interpretation. The concept of a ground state octupole deformation is closely related

of the oz-transitions feeding the K,J7r = 0,1' states are consistent with this

presence of particularly low K,.l7r = 0,1' states. The very low hindrance factors (HF)

reflection—asymmetric shape in the ground state of the even—even nuclei is the

facility, was focused on the signatures of an octupole shape. One signature of such a

The study of the excited levels in 224*2%*228*230Ra, performed at the ISOLDE

many of the nuclei are inaccessible to in—beam spectroscopy.

and isotopic sequences of nuclei around A:-225 is feasible at lSOLDEwhilst10'25)
octupole correlations are taken into account. The experimental study of isotonic8’9)
large deviations between calculated and experimental masses are reduced when

to have this property. These nuclei also belong to the region where the relatively

theoretical calculationspredict about 30 nuclei in the region between At and U4`7)
around A=225, form the basis for the existence of octupole deformation. The

f7 /2 and i13 /2 proton orbitals, in the proximity of the Fermi surface for nuclei
occur is relatively small. The close lying 89/2 and j15/2 neutron orbitals and the
molecular physics°}. The region where stable octupole deformation is expected to

A=225 (see recent reviews). These nuclei exhibit features familiar from1’2)
new indications of reflection-asymmetric octupole deformation in the nuclei around

In recent years numerous experimental and theoretical discoveries have provided

1. Introduction



(ref.) suggests a ret]ection—asymmetric shape for these nuclei. OCR Output29)
parity doublets as well as enhanced E1 transitions in Ra (ref.) and Ra22128)223
have vibrational-like patterns similar to the ground state band. The presence of27)

2195*6) 2occur. Two side bands in Ra, recently investigated in heavy—ion reaction6),
of the light actinide region where stable octupole deformation is predicted to

For radium isotopes, the transitional nucleus Ra appears to lie at the beginning
219

2.1. saaaoa ron ocrupora SIGNATURES IN was

availability of the high intensity mass separated radioactive beams.

Presently, proposed experiments could be done at the ISOLDE facility only, because

single—particle orbital is occupied by the odd particle

and the size of octupole barrier in odd-A system would vary depending on what

polarization effect on the core. One may thus expect that ground state deformation

deformation. The quasiparticle excitations induce a strong octupole shape

effect of single—particle orbitals on the octupole component of the mean field

The excited—state spectroscopy of odd-A nuclei will provide information on the

theoretical predictions5*6)
Rn isotopes where the laser spectroscopic dataare in disagreement with the25)
octupole deformation in the A=225 mass region, and to clarify the situation for the

227Fr and 219¤221*223Rn. Our aims are to investigate the limits of the island of
We propose to extend the search for octupole signatures in odd-A nuclei to Ra,231

2. Proposed studies and experimental methods

is related to a ground—state octupole deformation in these nuclei.

the odd—N isotopes compared to their even-N neighbours - observed for Ra220'228

measurements. An inverted staggering - i.e. larger mean square charge radius of25)
Additional signature of an octupole shape was found in laser spectroscopy

theoretical predictions5*6).
structure is similar to the one in the lighter Ra—isotopesconctradicting the23)
deformation. Octupole effects persist at least up to Ra, its level

22911*18)
way13*14·20) (see Eg.2 and table 1). For 227Ra there is indication for octupole



1/2 and 3/ 2 appear close to the Fermi level in nucleus Fr, predicting a reflection OCR Output
227

(T1/2 = 2.47(3)min). According to ref.°) three one—quasiparticle states with $-2:1/ 2,
23(1)s (ref.). No information is available concerning the excited states of Fr16) 227
spectroscopy. The half—life of the parent nucleus Rn has been determined as

227
Rn (ref.), respectively, were measured with fast—beam high—resolution laser22734)

spins of J = 1 /2 and 5/ 2 for the nucleus Fr (ref.) and the parent nucleus22733)
1/2, 1/ 2 and 3/2 proton orbitals in Fr are very low (see fig.4). The ground-state227

the nucleus Fr is reflection—symmetric. Calculated octupole barriers for the (2227

nucleus Fr is predicted°} to be very octupole—soft. According to the calculations225

not allow us to draw any firm conclusions about the presence of parity doublets. The

deformation region!). On the other hand, spectroscopic data for Fr (ref.) do22519)
B(E1)/B(E2) branching ratio, is typical for nuclei in a ground-state octupole24)
electric dipole moment value of Q1: 0.24(4) e.fm for Fr, deduced from the

223

and 1 / 21: parity doublet bands, and a second K"` = 3/ 2: parity doublet. The
shape of this nucleus. Low—excited states of Fr were assigned to the KW = 3/2223

of parity doublet bands. Our data for Fr (ref.) gave evidence for octupole22324)
asymmetry, while the level structure of Fr has been interpretedin terms

22130) 31*32)
Among the francium isotopes, Fr is at the edge of the region of reflection219

2.2. smaou Fon K Z 1/2 BANDS IN m
m

band.

deformation in Ra, especially for the decoupling parameter of the lowest K=1/2231

excited states of Ra. We propose to search for the signatures of stable octupole231
as 103(3)s and 17.5(8)s, respectively. No information is available concerning thew)

Ra. The half—lives of Ra and the parent nucleus Fr have been determined231 231231

the octupole correlation, we propose to extend the study to the neighbouring nucleus

(see Eg.3). Because Ra, somewhat unexpectedly, showed significant influence of
229

nucleus Ra is outside of the mass region where static octupole deformation occurs
229

asymmetric rotor model5), as well as according to the recent calculations6) the
this nucleus in contradiction to theoretical calculations. In a reflection5*6)
isotopes (see table 1), which may be taken as signature of octupole deformation in

parameter of the [631l]-like band seems to be positive in Ra as in the other Ra
229

that octupole effects persist at least up to Ra (see sec.1). The decoupling
229

Our study of the heavy radium isotopes performed at the ISOLDE facility indicated



at multiple angles with many detectors greatly enhances the e£5ciency of 77 angular OCR Output

Compton—suppressed germanium detectors (g.5b). Simultaneous collection of data

(fig.5a). The 77 measurements will be performed using an array containing 8

spectrometer in front of a Si(Li) detector, B7- and 7e- coincidence measurements

be 7-ray spectroscopy, conversion electron spectroscopy with a mini-orange

decay, followed by 231Fr and 219*221*223At decays. The experimental methods will
In agreement with the programme outline above we plan to start with the Rn

227

2.4. EXPERIMENTAL PROCEDURE

parameters in the odd—A radon nuclei, 219*221*22;;
shapes, i.e. parity doublets, enhanced E1 transitions, sign-reversal of decoupling

nuclei with the aim to search for the ”tinger-prints” of re£lection—asymmetric

investigations of the decay properties of the parent neutron-rich 219*221’223At
scopy is needed to establish any specific configurations. We propose detailed

parameter B3 = 0.1 for *Rn and *Rn (table 3). Excited—state spectro219221223225

the reflection-asymmetric rotor model°} taking the same octupole deformation

and Rn. However, the observed ground-state properties could be explained with221
state reflection-symmetric shapes of these nuclei and gives B3 = 0 only for Rn

219
3). The normal odd-even staggering restored for R.n and R.n indicates ground

223225
were measured with fast-beam high—resolution laser spectroscopy(see table25*30)
Ground-state properties (spins and electromagnetic moments) of the Rn

219'227

formation region. The Rn isotopes are expected to be softer than the isotones of Ra.

Eg.4), while the nucleus Rn is predicted to be at the border of octupole de225
mation, with the highest asymmetry energy of 0.76 MeV for Rn (see table 2 and219

Calculations indicate that the odd isotopes 219*221*22BRn have an octupole defor
predicted, while Rn is predicted to be reflection-symmetric (fig.4).6)224
N and Z. For the even isotopes 218*220*22zRn a ret1ection—asvmmetric shape is
region, it is important to know how the octupole deformation varies as a function of

In order to experimentally test the behaviour of the potential surface in the actinjde

2.3. smnon Fon STABLE ocTUPoL1·2 DEFORMATION IN 219»221·223R¤

studying the K = 1/2 band.

symmetric shape for this nucleus. Experimentally we can characterize this shape by



thorium carbide target equipped with a plasma discharge ionizer do not seem OCR Output

with a chemically unselective target. For these nuclides, measurements with a

At the mass-numbers 221 and 223 the conditions for At are much less favourable

cross contamination from other masses or molecular side bands.

with negative surface ionizer, to avoid erroneous assignments of 7-transitions due to

measurements should also be performed with a chemically selective ThO2 target

Although the At source seems pure enough for coincidences, singles
219

should be feasible with the unselective ThC target with a hot plasma ion-source.

the sources are allowed to ”cool” between collection and detection. Measurements

therefore not as bad as the three orders of magnitude may indicate, provided that

undesired isobars have shorter half—].ives that At, and, the conditions are219

three orders of magnitude higher than At yields. However, at mass number 219 the

yields of contaminating isobaric activities from the thorium carbide target may be

At, At and At, respectively), but with poor chemical separation. The
219221223
gives high yields of At isotopes (estimated to 8 x 10, 1 x 10and 2 x 10° atoms/s of55

contaminations. A target of thorium carbide equipped with a hot plasma ion-source

could be expected. The reason for this is that the LaB6 surface is very sensitive to

foils, but the intensities are down by two orders of magnitude compared to what22)
ionizer gives pure At beams from targets of ThO2 or a mixture of Th foils and Ta

chemical purity beams of At have still not been successful. The negative surface

Attempts to construct a target system providing satisfactory intensity with high

discharge ion-source.

chemically pure sources from a ThC? target with a cold transfer line and a plasma

The Rn nuclei are easily obtained, with the yield of 1.3 · 10* atoms / s·;iA, as227

UC target with W—surface ionization ion-source.

A yield of 1.10° atoms / s.;iA is expected for chemically pure sources of Fr from231

2.5. TARGETS

E1 transitions, will be performed using BaF2 and germanium detectors.

schemes of the nuclei investigated) the lifetime measurements to reach for anhanced

correlation measurements. In the second part of the study (with known level
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calculated positive—parity state in Rn and 26 keV above in Rn. OCR Output223 225

Lowest calculated negative-parity state, located 8 keV above the lowest

5/2 —0.0817(9) 2.593(17) - -227Rn
7/2 —0.6952(25) 1.272(9)225Rn 7/2**) -0.74* 1.12a)
7/2 —0.7761(11) 1.216(8)223Rn 7/2-3) -0.743) 1.01°)
7/2 -0.020(8) ·0.581(4) 7/2* 0.02 -0.4722lRn
5/2 —0.442(15) 1.416(9) 5/2* -0.44 1.30219Rn

I p [n.m.l QS [bl I" p[n.m.] Qs [bl

Nucleus Theory5)Experiment 34)

dipole moments, and electric quadrupole moments for Rn.219"227

Experimental versus calculated ground—state spins, parities, spectroscopic magnetic

OCR OutputTable 3





are also shown for comparison (taken from rei`.°) ) OCR Output

The asymmetry energies for neighbouring even-even Ra isotopes

the three lowest states in the odd-A Ra isotopes.

Fig.3. Calculated asymmetry energies (octupole barriers), Eom, for
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are also shown for comparison (taken from ref.°} ) OCR Output

The asymmetry energies for neighbouring even—even Rn isotopes

the three lowest states in the odd-A Fr and Rn isotopes.

Fig.4. Calculated asymmetry energies (octupole barriers), Eom, for
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germanium detectors for 77 angular correlation measurements.
Fig.5b. Attempt at installing eight (two shown) Compton-suppressed
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moves the radioactivity in front of the detectors.

electron spectrometer, and the gamma detectors. The tape system

coincidences, showing the tape-transport system, the mini-orange

Fig.5a. Arrangement of the experimental set—up for e7 and eX

1 detectors
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