EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/ISC 93-25 ISC P53 13/7-93

PROPOSAL TO THE ISOLDE COMMITTEE

Single-particle states in ¹³³Sn.

Strasbourg¹⁾ - Studsvik²⁾ - Oslo³⁾ - Göteborg⁴⁾ - Mainz⁵⁾ - Warsaw⁶⁾ - Lyon⁷⁾ - Bergen⁸⁾ - collaboration

P.Baumann¹⁾, B.Fogelberg²⁾, P.Hoff³⁾, A.Huck¹⁾, B.Jonson⁴⁾, A.Knipper¹⁾, K.-L.Kratz⁵⁾, W.Kurcewicz⁶⁾, G.Løvhøiden³⁾, G.Marguier⁷⁾, G.Nyman⁴⁾, T.F.Thorsteinsen⁸⁾ and G.Walter¹⁾

Spokesman: P.Hoff

Abstract

It is suggested to investigate the β -decay of ¹³³In and ¹³⁴In in order to determine the single-particle states in ¹³³Sn, which are so far unknown and needed for the shell-model description of the region close to ¹³²Sn. Large hyper-pure Ge-detectors will be used for the γ -ray spectroscopy. In the experiments with ¹³⁴In, delayed neutrons in coincidence with γ -rays from excited states in ¹³³Sn provide the opportunity for a very selective detection of the states in question.

Geneva 1993

1. Introduction

Several attempts have been made to determine the energies of the expected pure single-neutron levels in ¹³³Sn, but so far the success has been very limited. Ten years ago, a measurement of delayed neutrons and γ -rays from ¹³³In decay ($T_{\varkappa} = 180 \pm 15$ ms) was performed at ISOLDE (1), using a 30 % Ge detector and a ³He neutron spectrometer. A fairly good delayed neutron spectrum was obtained, but the γ -ray spectrum was too poor in statistics and difficult to interpret to give any valuable information about the low energy structure of ¹³³Sn.

More recently, an attempt to measure the γ -ray spectrum following the decay of ¹³³In was done at the thermal fission product mass separator OSIRIS at the reactor in Studsvik (2). The separator ion source was run in a surface ionization mode, providing a rather chemically selective ionization of In at mass number 133. The experiment was run for 36 hours at maximum intensity, but no transitions attributable to states in ¹³³Sn were observed. The OSIRIS experiment was run with an 80 % Ge detector.

Although practically no information about the structure of 133 Sn could be extracted from these experiments, they revealed the main obstacle for obtaining this information: The delayed neutron branch is as high as 87 ± 9 %. Additionally, a first-forbidden β -transition from the probable $g_{9/2}$ ground state of 133 In to the probable $f_{7/2}$ ground state of 133 Sn seems to exhaust the part of the β -strength not leading to delayed neutrons (there are no indications for β -decaying isomers in 133 In). The total intensity of γ -rays following the 133 In decay can be roughly estimated as less than 0.25% of the total number of decays.

Thus, the experiments up to now have mainly made it clear that the conditions for obtaining detailed experimental information about single-particle states in ¹³³Sn are particularly unfavourable. Nevertheless, the structure of this nucleus is of such importance that a special experimental effort on it can be justified. With a new approach "bypassing" the unfavourable decay properties of ¹³³In, it is therefore suggested that two new series of measurements should be performed at ISOLDE.

2. Scientific motivation

The importance of the single particle levels at the doubly closed shell nucleus 132 Sn has been realised for many years. The energies of these levels are essential tests of the shell model at an important closed shell nucleus, as well as crucial parameters in shell-model calculations for N≥82. The energies of single-neutron levels in odd-mass N=83 nuclei have been determined down to 135 Te (fig.1), apart from the $i_{13/2}$ states, but the 133 Sn states have so far been impossible to determine.

In a recent attempt to construct a shell-model description for Z≥50, N≥82 nuclei, Chou and Warburton (3) showed that the lack of information about single-neutron energies at ¹³²Sn was an important obstacle for this type of calculations. Since there was no reliable information from ¹³³Sn, semi-empirical values for the single-neutron energies were chosen to obtain the best possible agreement at other odd-mass N=83 isotones, e.g. ¹⁴¹Ce. The general agreement between experimental and theoretical level energies obtained through this procedure was far from satisfactory.

Also for astrophysical considerations, the single-neutron energies in ¹³³Sn are of importance. A general astrophysical background for this type of experiments in the ¹³²Sn region has been given in a recent ISOLDE proposal (4) and will not be repeated here. In r-process calculations, some type of model-dependent extrapolation of the single-particle energies is always necessary. These extrapolations are not always very reliable. For

instance, in the case of 133 In it has been shown (5) that the commonly used QRPA code (6) leads to a $vg_{7/2}$ s.p. energy which is off by several MeV, which in turn gives a theoretical half-life for 133 In which is about a factor of 6 too short. Similar large discrepancies may also occur in the estimation of P_n -values, due to the same type of ambiguities. With exact knowledge of the single-neutron energies in 133 Sn, the local experimental values can be used directly in the calculations, thus strongly diminishing the uncertainty in the region of interest for the r-process.

It should also be noted that knowledge of single-particle states in 133 Sn is a prerequisite to a good shell-model evaluation of the meson-exchange enhancement of the first-forbidden $0^+ \rightarrow 0^ \beta$ -transitions near 132 Sn (7).

A short comparison with 135 Sb decay properties (8) is relevant in order to assess the potential of a spectroscopic investigation. In this nucleus, the ground state is $7/2^+$ ($g_{7/2}$). With this spin of the decaying nucleus, the $p_{1/2}$ state in 135 Te is very weakly and only indirectly populated and was hard to determine. The almost total absence of γ -transitions from the 133 In decay can therefore be considered as an indication for the non-existence of any β -decaying isomer in 133 In. A low-spin isomer would have populated the $p_{3/2}$ and $p_{1/2}$ levels and given a transition at the energies of about 600 - 700 keV. The β -decaying ground-state of 133 In is therefore likely to be $g_{9/2}$.

This means that a spectroscopic investigation of the ¹³³In decay, even with excellent statistics, probably would only give information about the excitation energy of the $h_{9/2}$ state (the $11/2^{\circ}$ state seen in the systematics of fig. 1 is collective and does not exist in ¹³³Sn). It is possible, but not at all sufficiently strongly confirmed, that the weak 1488 keV γ -ray observed in the old ISOLDE experiment (1) was a transition from this level. However, this line was not seen in the OSIRIS experiment (2), and should be more firmly assigned to the ¹³³In decay.

Directly, the $p_{3/2}$ and $p_{1/2}$ states, and possibly also the $f_{5/2}$ state will only be very weakly populated in the 133 In \rightarrow 133 Sn β -decay. Indirect population, which was observed in 135 Te, is hardly possible, for the simple reason that no more states able to populate them are expected below approximately 4 MeV in 133 Sn. States at 4 MeV will most probably decay exclusively through delayed neutron emission, as the neutron separation energy $S_n \sim 2.5$ MeV (9).

Therefore, an investigation of the 134 In decay seems much more appropriate to obtain information about the structure of 133 Sn. The large Q_{β} -value estimated for 134 In (14 MeV) compared to the 134 Sn estimated neutron separation energy (4.1 MeV) points to a sizeable delayed neutron branch. Single delayed neutron emission following the decay of 134 In will lead to the population of the desired excited states in 133 Sn.

The experiment at OSIRIS clearly showed that the yields from thermal fission are not good enough for this experiment. The more broad yields obtained from irradiation with high energy protons are needed.

3. Proposed experiments and experimental method.

¹³³In decay.

Since the measurements of ¹³³In decay at ISOLDE in 1982, the quality of Ge detectors has improved to such an extent that a new effort to investigate this difficult nucleus seems meaningful. It is the intention to make use of the spectroscopic equipment of the Strasbourg group, installed at ISOLDE. The experimental arrangement is illustrated in fig. 2. Four Ge detectors, each with an efficiency around 80 %, will be run simultaneously collecting singles events and in coincidence with each other, in order to

make maximum use of the beam time. A thin 4π plastic scintillator allows the identification of β -particles. As explained above, only one single weak γ -ray is expected to follow the decay of ¹³³In.

The production yield of 133 In from a uranium carbide target has been measured to 1.1×10^3 atoms per second and μ A. It is asked for 6 shifts for these measurements.

¹³⁴In decay.

The experimental information on ¹³⁴In (1) is limited to a half-life measurement (110 \pm 30 ms). Some predictions may be outlined from simple shell-model considerations. From the level systematics shown in fig. 1, and the probable $g_{9/2}$ configuration of the ground-state neutron-hole in ¹³³In, it seems very likely that the ground-state configuration of ¹³⁴In is $(\pi g_{9/2}^{-1}/\nu f_{7/2})$. From this, one can expect either a high-spin (8') or a low spin (1') ground state in ¹³⁴In, possibly also an isomer. Unlike ¹³³In, the decay of ¹³⁴In is not expected to be particularly selective, and a relatively high number of states in ¹³⁴Sn can be expected to be populated, including states above the neutron binding energy.

The delayed neutron emission from ¹³⁴Sn populates the desired states in ¹³³Sn. Regardless of the value of the ground-state spin of ¹³⁴In, it is highly likely that several excited states in ¹³³Sn will be populated through delayed neutron emission.

In view of the "bad prognosis" for the outcome of the ¹³³In decay study, it is therefore suggested to extend the investigation to ¹³⁴In. The same set-up for γ-ray spectroscopy as outlined in fig. 2 will be used, but with an additional liquid scintillation counter for neutrons (hexagonal cells, active volume per cell 3750 cm³, NE213 scintillator). It is not planned to measure energy spectra of delayed neutrons, because such an effort would seriously decrease the counting efficiency, and energy information is not needed for this experiment.

The production yield of ¹³⁴In has not been measured. If one assumes it to be 1 order of magnitude less than ¹³³In, and the neutron counting efficiency to be 50 %, one would still get a count-rate of interesting γ -rays which will be roughly the same as from ¹³³In. However, considering the expected less selective decay mode, and the very pure conditions obtained by demanding neutron coincidence, ¹³⁴In spectroscopy seems to be the most appropriate way to obtain information about the structure of ¹³³Sn.

It is suggested that 8 shifts are allocated for the first test experiments of this important and still almost unknown nucleus.

4. Targets and production techniques.

For both series of experiments, a UC target with a tungsten surface ionizer will be the best production system. Although surface ionization is very favourable for In, the presence of long-lived isobars produced with high yields will represent a problem. At mass number 133, the problematic isobar will be $^{133\text{m}}$ Ba (39 h). The production yield of this nuclide is probably close to 10^8 at/s at 1 μ A proton beam, compared to $1^\circ 10^3$ for 133 In. Realistically, the disintegration rates of the contaminant can be expected to be of the same order of magnitude as for 133 In. However, most of the $^{133\text{m}}$ Ba decays give a γ -transition at 276 keV, which is well below the transitions that can be expected in the 133 In decay. We also intend to make use of the bunched beam now available. The sources will only be collected during the first 300 ms after a pulse.

Furthermore, ^{133m}Ba did not hamper the experiments on mass number 133 back in 1982, and there is no reason to assume that the conditions were more favourable then.

At mass number 134, the most problematic disturbing isobar can be expected to be 134m Cs (2.9 h). The yield of the contaminant will be of the order of 10^{10} at/s at 1 μ A

average intensity, compared to 10^2 which can be expected for 134 In. This figure corresponds to a ratio of approximately 2000 between the disintegration rate of the contaminant and the desired nucleus. Although this figure may seem unfavourable, the low energy of the internal transition, 127 keV, allows the setting of a threshold for the Ge detectors well below the transition energies that can be expected in 133 Sn. Additionally, the neutron and β coincidence requirements ensures a selective detection of the desired transitions. Also in this case, it is the intention to make use of the bunched proton beam, and collect only for the first 150 ms after a proton pulse.

References:

- 1) The ISOLDE-collaboration, unpublished work (1982/1983)
- 2) B. Fogelberg, M.Hellström, P.Hoff and J.P.Omtvedt, unpublished work (1991)
- 3) W.T.Chou and E.K.Warburton, Phys. Rev C45 (1992) 1720
- 4) W.Böhmer et al. Proposal CERN/ISC 92-34 (1992)
- 5) K.L.Kratz, Proc. 6th Int. Conf. on Nuclei far from Stability, Bernkastel-Kues, Jul 1992, Inst. Phys. Conf. Ser. 132 (1993) 829
- 6) P.Möller and J.Randrup, Nucl. Phys. A541 (1990) 1
- 7). E.K. Warburton and I.S. Towner, Phys. Lett. B294 (1992) 1
- 8) P.Hoff, B.Ekström and B.Fogelberg, Z.Phys. A332 (1989) 407
- 9) B.Fogelberg, data under evaluation (1993)

Fig. 1 Level systematics for odd-mass N=83 isotones (from ref. 8)

Fig. 2 Schematic view of the experimental arrangement for the 133 In experiment, showing the four Ge detectors and the 4π thin plastic scintillator.

Fig. 3 Schematic view of the experimental arrangement for the ^{134}In experiment, showing the additional liquid scintillation detectors. Two of the Ge detectors and the 4π platic scintillator are not shown on this figure.