EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/ISC 93-25 ISC P53 13/7-93

PROPOSAL TO THE ISOLDE COMMITTEE

Single-particle states in ^{133}Sn .

Strasbourg¹⁾ - Studsvik²⁾ - Oslo³⁾ - Göteborg⁴⁾ - Mainz⁵⁾ - $\frac{1}{2}$ Warsaw⁶⁾ - Lyon⁷⁾ - Bergen⁸⁾ - collaboration

P.Baumann¹⁾, B.Fogelberg²⁾, P.Hoff³, A.Huck¹, B.Jonson⁴, A.Knipper¹, K.-L.Kratz⁵), W.Kurcewicz⁶, G.Løvhøiden³, G.Marguier⁷, G.Nyman⁴, T.F.Thorsteinsen⁸) and G.Walter¹)

Spokesman: P.Hoff

Abstract

It is suggested to investigate the β -decay of 133 In and 134 In in order to determine the singleparticle states in ¹³³Sn, which are so far unknown and needed for the shell-model description of the region close to ¹³²Sn. Large hyper-pure Ge-detectors will be used for the γ -ray spectroscopy. In the experiments with ¹³⁴In, delayed neutrons in coincidence with γ -rays from excited states in ¹³³Sn provide the opportunity for a very selective detection of the states in question.

> Geneva 1993

1. Introduction

structure of ^{133}Sn . in statistics and difficult to interpret to give any valuable information about the low energy fairly good delayed neutron spectrum was obtained, but the Y-ray spectrum was too poor performed at ISOLDE (1), using a 30 % Ge detector and a 'He neutron spectrometer. A a measurement of delayed neutrons and y-rays from ¹³³In decay (T_M = 180 ± 15 ms) was single-neutron levels in 133 Sn, but so far the success has been very limited. Ten years ago, Several attempts have been made to determine the energies of the expected pure

The OSIRIS experiment was run with an 80 % Ge detector. hours at maximum intensity, but no transitions attributable to states in ¹³³Sn were observed. chemically selective ionization of In at mass number 133. The experiment was run for 36 (2). The separator ion source was run in a surface ionization mode, providing a rather was done at the thermal fission product mass separator OSIRIS at the reactor in Studsvik More recently, an attempt to measure the γ -ray spectrum following the decay of 133 In

decay can be roughly estimated as less than 0.25 % of the total number of decays. indications for B-decaying isomers in $\frac{3.9}{2}$. The total intensity of γ -rays following the $\frac{1.9}{2}$ In to exhaust the part of the B—strength not leading to delayed neutrons (there are no from the probable $g_{9/2}$ ground state of 133 In to the probable $f_{7/2}$ ground state of 133 Sn, seems. delayed neutron branch is as high as 87 ± 9 %. Additionally, a first-forbidden β -transition from these experiments, they revealed the main obstacle for obtaining this information: The Although practically no information about the structure of 133 Sn could be extracted

measurements should be performed at ISOLDE. the unfavourable decay properties of 133 In, it is therefore suggested that two new series of that a special experimental effort on it can be justified. With a new approach "bypassing" particularly unfavourable. Nevertheless, the structure of this nucleus is of such importance obtaining detailed experimental information about single-particle states in ^{133}Sn are Thus, the experiments up to now have mainly made it clear that the conditions for

2. Scientific motivation

so far been impossible to determine. been determined down to ¹³⁵Te (fig.1), apart from the $i_{13/2}$ states, but the ¹³³Sn states have calculations for $N \ge 82$. The energies of single-neutron levels in odd-mass $N = 83$ nuclei have model at an important closed shell nucleus, as well as crucial parameters in shell·model has been realised for many years. The energies of these levels are essential tests of the shell The importance of the single particle levels at the doubly closed shell nucleus ^{132}Sn

procedure was far from satisfactory. general agreement between experimental and theoretical level energies obtained through this to obtain the best possible agreement at other odd-mass $N=83$ isotones, e.g. ¹⁴¹Ce. The information from 133 Sn, semi-empirical values for the single-neutron energies were chosen at ¹³²Sn was an important obstacle for this type of calculations. Since there was no reliable Chou and Warburton (3) showed that the lack of information about single-neutron energies In a recent attempt to construct a shell-model description for $Z\geq 50$, N ≥ 82 nuclei,

energies is always necessary. These extrapolations are not always very reliable. For r-process calculations, some type of model-dependent extrapolation of the single-particle region has been given in a recent ISOLDE proposal (4) and will not be repeated here. In importance. A general astrophysical background for this type of experiments in the ^{132}Sn Also for astrophysical considerations, the single-neutron energies in ^{133}Sn are of interest for the r-process. used directly in the calculations, thus strongly diminishing the uncertainty in the region of knowledge of the single-neutron energies in ^{133}Sn , the local experimental values can be also occur in the estimation of P,-values, due to the same type of ambiguities. With exact half-life for 133 In which is about a factor of 6 too short. Similar large discrepancies may leads to a vg_{72} s.p. energy which is off by several MeV, which in turn gives a theoretical instance, in the case of 133 In it has been shown (5) that the commonly used QRPA code (6)

first-forbidden $0^* \rightarrow 0$ ⁻ β -transitions near ¹³²Sn (7). prerequisite to a good shell·model evaluation of the meson-exchange enhancement of the It should also be noted that knowledge of single-particle states in ^{133}Sn is a

ground-state of 133 In is therefore likely to be $g_{9/2}$. levels and given,a transition at the energies of about 600 - 700 keV. The B-decaying any β -decaying isomer in ¹³³In. A low-spin isomer would have populated the p_{3/2} and p_{1/2} from the 133 In decay can therefore be considered as an indication for the non-existence of indirectly populated and was hard to determine. The almost total absence of y-transitions With this spin of the decaying nucleus, the p_{12} state in ¹⁵⁵ Te is very weakly and only potential of a spectroscopic investigation. In this nucleus, the ground state is $7/2^+$ (g_{7/2}). A short comparison with 135 Sb decay properties (8) is relevant in order to assess the

 133 In decay. line was not seen in the OSIRIS experiment (2), and should be more firmly assigned to the observed in the old ISOLDE experiment (1) was a transition from this level. However, this It is possible, but not at all sufficiently strongly confirmed, that the weak 1488 keV γ -ray (the $11/2$ state seen in the systematics of fig. 1 is collective and does not exist in ^{133}Sn). statistics, probably would only give information about the excitation energy of the $h_{\alpha/2}$ state This means that a spectroscopic investigation of the 133 In decay, even with excellent

 ~ 2.5 MeV (9). decay exclusively through delayed neutron emission, as the neutron separation energy S_n are expected below approximately 4 MeV in ¹³³Sn. States at 4 MeV will most probably 135 Te, is hardly possible, for the simple reason that no more states able to populate them weakly populated in the 133 In⁻⁺ 133 Sn β -decay. Indirect population, which was observed in Directly, the $p_{3/2}$ and $p_{1/2}$ states, and possibly also the $f_{5/2}$ state will only be very

lead to the population of the desired excited states in ¹³³Sn. delayed neutron branch. Single delayed neutron emission following the decay of ¹³⁴In will compared to the 134 Sn estimated neutron separation energy (4.1 MeV) points to a sizeable Therefore, an investigation of the ¹⁵⁴In decay seems much more appropriate to obtain information about the structure of ¹³³Sn. The large Q_6 -value estimated for ¹³⁴In (14 MeV)

high energy protons are needed. good enough for this experiment. The more broad yields obtained from irradiation with The experiment at OSIRIS clearly showed that the yields from thermal fission are not

3. Proposed experiments and experimental method.

133 In decay.

simultaneously collecting singles events and in coincidence with each other, in order to in fig. 2. Four Ge detectors, each with an efficiency around 80 %, will be run of the Strasbourg group, installed at ISOLDE. The experimental arrangement is illustrated nucleus seems meaningful. It is the intention to make use of the spectroscopic equipment detectors has improved to such an extent that a new effort to investigate this difficult Since the measurements of 133 In decay at ISOLDE in 1982, the quality of Ge

decay of 133 In. of β -particles. As explained above, only one single weak y-ray is expected to follow the make maximum use of the beam time. A thin 4π plastic scintillator allows the identification

 $1.1x10³$ atoms per second and μ A. It is asked for 6 shifts for these measurements. The production yield of 133 In from a uranium carbide target has been measured to

134 In decay.

populated, including states above the neutron binding energy. particularly selective, and a relatively high number of states in 134 Sn can be expected to be state in 134 In, possibly also an isomer. Unlike 133 In, the decay of 134 In is not expected to be $(\pi g_{9/2}^{-1}/v_{7/2})$. From this, one can expect either a high-spin (8) or a low spin (1) ground neutron-hole in 133 In, it seems very likely that the ground-state configuration of 134 In is the level systematics shown in fig. 1, and the probable $g_{\alpha\beta}$ configuration of the ground-state \pm 30 ms). Some predictions may be outlined from simple shell-model considerations. From The experimental information on 134 In (1) is limited to a half-life measurement (110)

excited states in ¹³³Sn will be populated through delayed neutron emission. Regardless of the value of the ground-state spin of 134 In, it is highly likely that several The delayed neutron emission from 134 Sn populates the desired states in 133 Sn.

experiment. seriously decrease the counting efficiency, and energy information is not needed for this planned to measure energy spectra of delayed neutrons, because such an effort would neutrons (hexagonal cells, active volume per cell 3750 cm', NE213 scintillator). It is not outlined in fig. 2 will be used, but with an additional liquid scintillation counter for suggested to extend the investigation to 134 In. The same set-up for γ -ray spectroscopy as In view of the "bad prognosis" for the outcome of the 133 In decay study, it is therefore

appropriate way to obtain information about the structure of ^{133}Sn . obtained by demanding neutron coincidence, 134 In spectroscopy seems to be the most However, considering the expected less selective decay mode, and the very pure conditions still get a count-rate of interesting γ -rays which will be roughly the same as from 133 In. of magnitude less than 133 In, and the neutron counting efficiency to be 50 %, one would The production yield of 134 In has not been measured. If one assumes it to be 1 order

important and still almost unknown nucleus. It is suggested that 8 shifts are allocated for the first test experiments of this

4. Targets and production techniques.

collected during the first 300 ms after a pulse. also intend to make use of the bunched beam now available. The sources will only be 276 keV, which is well below the transitions that can be expected in the 133 In decay. We order of magnitude as for 133 In. However, most of the 133m Ba decays give a y-transition at Realistically, the disintegration rates of the contaminant can be expected to be of the same nuclide is probably close to 10⁸ at/s at 1 μ A proton beam, compared to 1 σ 10³ for ¹³³In. number 133, the problematic isobar will be ^{133m}Ba (39 h). The production yield of this presence of long·lived isobars produced with high yields will represent a problem. At mass the best production system. Although surface ionization is very favourable for ln, the For both series of experiments, a UC target with a tungsten surface ionizer will be

1982, and there is no reason to assume that the conditions were more favourable then. Furthermore, ^{133m}Ba did not hamper the experiments on mass number 133 back in

At mass number 134, the most problematic disturbing isobar can be expected to be
^{134m}Cs (2.9 h). The yield of the contaminant will be of the order of 10^{10} at/s at 1 μ A At mass number 134, the most problematic disturbing isobar can be expected to be

the first 150 ms after a proton pulse. this case, it is the intention to make use of the bunched proton beam, and collect only for B coincidence requirements ensures a selective detection of the desired transitions. Also in below the transition energies that can be expected in ¹³³Sn. Additionally, the neutron and intemal transition, 127 keV, allows the setting of a threshold for the Ge detectors well desired nucleus. Although this figure may seem unfavourable, the low energy of the to a ratio of approximately 2000 between the disintegration rate of the contaminant and the average intensity, compared to 10^2 which can be expected for 134 In. This figure corresponds

References:

- 1) The ISOLDE·collaboration, unpublished work (1982/1983)
- 2) B. Fogelberg, M.Hellström, P.Hoff and J.P.Omtvedt, unpublished work (1991)
- 3) W.T.Chou and E.K.Warburton, Phys. Rev C45 (1992) 1720
- 4) W.B6hmer et al. Proposal CERN/ISC 92-34 (1992)
- Inst. Phys. Conf. Ser. 132 (1993) 829 5) K.L.Kratz, Proc. 6th Int. Conf. on Nuclei far from Stability, Bemkastel-Kues, Jul 1992,
- 6) P.M6ller and J.Randrup, Nucl.Phys. A541 (1990) 1
- 7). E.K.Warburton and I.S.Towner, Phys.Lett. B294 (1992) 1
- 8) P.Hoff, B.Ekström and B.Fogelberg, Z.Phys. A332 (1989) 407
- 9) B.Fogelberg, data under evaluation (1993)

Fig. 1 Level systematics for odd-mass $N=83$ isotones (from ref. 8)

1 IE. L

Ge detectors and the 4π thin plastic scintiliator. Schematic view of the experimental arrangement for the ¹⁹⁹In experiment, showing the four

Fig. 3

scintillator are not shown on this figure. additional liquid scintillation detectors. Two of the Ge detectors and the 4π platic rig. 3
Schematic view of the experimental arrangement for the ¹³⁴In experiment, showing the