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ABSTRACT

In the first part we int:ioduce a kind of "Hamiltonian"
Mechanics where z and not time t is the independent variable,
We discuss the Ycanonically conjugate! variables of this

scheme and list a number of useful formulae.

In the second part we apply this formalism to the motion
of a proton in a linac gap-. We introduce the Thin Lens
Approximation for such a gap by Canonical Transformations
leading to reduced variablese. Reduced Variables are constant
if no field is acceleraiing the particle, We thoroughly
discuss the principles of ithe Thin Lens Approximation. In
the one~dimensional case we dcrive by this method the Modified
Panofsky equations .for the change of phase and kinetic encrgy
across a linac gape When irduding transversal motion, we have
to make further approximations, But we +then succeed in giving
a-set of differencrequations corresponding to those given by
P. Lapostolle at the Frascati Conference (1965)5).

In Aprondix B we correct a mistake made in deriving an

5)of Lapostolle's equationse. Tables for

improved version
the difference cquat’-ns fcr the change of longitudinal kinetic
energy, phase, and the transversal quantities acioss a linac

gap for the non-relativistic and for the relativistic case may

be found at the end of the papere.
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INTRODUCTION

‘This paper consists of tﬁo parts somewhat differing in
scope and pfesentation. In the first part we develop a kind
of Hamiltonian Mechanics with z, i.e. with a space coorainate,és
indebeﬁdent variable, In the second part 'this formalism is employed to

derive the Thin Lens Approximation for an accelerating gape

When using the usual Lagrangian or Hamiltonian formulation
of mechanics where time t is the iﬁdependent variable, in the
theory of accélérators, one often hits on the following problem:
By sdlfing fhe equations of motions, one gets solutions giving
the position and the velocity (or momentum) of a particle aslé
function of t.  But one wantsto know what are the valuesrof 7
some of these or other quantities (e.ge energy) when the particle
arrives at a certain point, say z = z, (eeg. at the end of an
accelcrating gap). One must now solve the cquation z(to) = 2,
for to and insert this to in the time dependent solutions des-
cribing the quantities one is looking for. In general, since
the field of force will exhibit a harmonic or an even more
complicated time bechaviour, the cquation z(to) =2 will be a
nasty transcendental one, In this and similar applications

one notes that it would be more convenient to have a space .

coordinate, say z, as indcpendent variablc.

Now, the game usually played - essentially a Legendre-
trdnsformation- for t as indepcndent variable leading ‘%o
caﬁbﬁically conjugate varisbles and to Hamilton's cquations
Whicﬁ then may be brought to new reprcscntations by canonical
traﬁsformatibﬁs, can bc cxecuted for any variational problem,
provided the integrand does not depend on higher derivatives
than the first onc and is not hompgencous of degrce one in

1),11). ThuS,'intrqducing by a substitution

these derivatives
in Hamilton's principle a certain variable, say 2z, as variable

of integration, it becomes the indepcndént variable of tho
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Buler. cquations, i.c. of the cquations of motion in their

Lagrangian or Hamiltonian form. Such formulations have bcen

2)3).

Here we work out this scheme in a more systcmatic and gencral

cmploycd before in many cascs c.ge in linac theory in rcfse.

fashion and cnumcrate a number of formulac, hoping that such a

list nay be uscful for rcfercncce

In Scction 2 we give the rclations between clectromagnetic
ficld and potecntials. In Scction 3 we summarizce Hamiltonian
Mcchanics with t as indcpendent variablce. In Scction 4, we
introducec z as tho independent variable and stato non- -rclativistic
cxprcssions for "canonlcal monenta™ and tho "Hanlltonlan" in the
z-schemee Scction 5 deels with "canonlcal" transformatlons. In
Scction 6 the formulac arc specialized in the practidally important
casc of axial symmetry. Scction 7 contqins.rolativistic exprcssions

of "canonical moncnta' and the "Hamiltonian'.

In the sccond part we apply this formalism to the theory of
the motion of a proton in an accelerating gap. Trcating first
(Scation 8) thc onc dimensional problen, ospocially.that of a time-
harnonic spacially homogencous clectrical field, we introducé'by a
"canonical" transformation as new coordinates reduced time-angle:
p - z20% = 0wt -wz (dt/dz) and T/w = kinctic cncrgy dividéd by fhc
angular frequencye Solving afterwards "Hamiltons cquations" by
itecration, we find again the paramctoer L = OEO/(mwvo) which plays an
inportant rdlc in the perturbation tiacorctic trecatment of the motion

4)5)

solutions arc the modificd Panofsky oquations6)5). Simultancously,

of protons in thc RF-ficlds of accclerators. The first order

we claborate the principles of the Thin Lens Approximation, in which
onc sccks to replace the description of the rcal nmotion of a particle
in a gap by that of an cquivalent fictitious "motion" where the
dynamical variablcs heve junps across a planc in the centre of the
@ap and behave before and after it as if the particle werc noving

in a rcgion frece from ficldse
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The principles how to conduct this approximation and how
to derive a Thin Lens Hamiltonian by "canonical transformations"

leading .to reduced variables, are discussed in Section 9.

When pursuing this programme in Section 10 for a general
axially symmetric TM-RF-field described by a Fourier integral in z,
we meet some difficulties forcing us to make severe approximations
concerning the radial dependence of the field. When we approxi-
mate it by a field which does not chanée radially, we can give the
exact "canonical transformations", but the resulting new "Hamiltonian'
is only linear in the transversal quantities. Taking into account
the next power of radius r in the field expressions we must employ
a different approach where we blend the foregoing results with a
treatment using Newton'!s equations. We find only approximate
expressions both for the "Hamiltonian" quadratic in transversal
quantities and for the new transversal variables. As a consequence,

the latter do not exéctly fulfil the "Poisson brackets'.

In appendix B we take the opportunity to correct an error
3)5)8)9)

committed in earlier papers 77 in the course of the derivation
of (r; - r’). The fault was that in the transformation
dr/dz = dr/d¢ . d9/dz one wrongly replaced dg/dz by the constant

k = w/éo = (d@/dz)o .

In Table I we give the new set of non-relativistic difference -
equations for a linac gap, in Table II the relativistic one. In
the latter we made, in addition to the improvement just mentioned,
some corrections for computational errors and missprints in the

expressions for (@+ - Q_)r and for (5+ - ;-)r .

Remark concerning notation: Repeated indices have to be summed

over their whole range: l...f.

* = d/at © = d/dz Y= d/dg = ¢/d(wt)
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REPRESENTATION OI' THE I'TELD

It is just for conmpletcness that we here shell state a fow

well-known fornulac relating the clectromagnetic potentials to the

electronagnetic, ficld. The latter nay be described by a scalar
potcntial U and a wvector potential K;: 7)
- -— _
A : (2.1)
=3 s
B= T xA - aE (2.2)

- ‘ -
U and A arc only uniquc if wc additionally pose a sidc condition.

We chose the Lorentz gauge

v«f"]* e U (203)

I
@)

%

The four~potential is conneccted to the clectrical Hertsz vector by :

. —> : —_
Eh“jTt ﬁ=~v;Tr (2.4)

whose rcctangular conponcents arc solutions of the Helmholtz
cquation, Any axially symnetric TM~ficld may be expressed by the

following Hertz vector :
-

LS ol
=3¢ (r,z) cos(9 + po) =, (r,z) cos(wt + @O)
| (2.5)
The two non-zero potential functions arc in this casc
U= - (p =+ )T_T‘ A = - k2/w]_rsin(¢ +9)
= T COSle * 9, 'z z 0 Y
(2.6)
In our appliaations3)5)8)9)it is useful to rcproscnt—ﬁ-by a Fourier

integral :

TE%r,z) = E,/(2n) [ ak, b(k,) cikzzJo(yr)/(szU(va)) (2.7)

= @
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with:

ki = auwz k=k -9 (2.8)

According to (1),‘(2) and (6) the ficlds are given by :

E = cos (9 + @o)[—g;]T;z + GZ(TT;Z + ki[!) (2+9)

|

2 > _ 12/ . ]—[
3?—09 B, B@ = ko/ua 81n(9 + @O) . (2.10)

30 USUAL HAMILTONTAN MECHANTICS

10)11)

indcpendent variable, one starts from Hamilton's principle
. t
2 . ; .
J_L(qk-,ék;t)dt = Extr. (3.1)

]

the Lagrangian L being cither ' P

In usual Hamiltonian Mcchanics where time t is the

L=T-10 . (3.2)
where U is the Potecntial (not depending on velocities or timc) or the

generalized potential describing the force Fi according to

F.==1T P, = a/dt Us =T ; (3.3
or the Lagrangian for an external clectromagnetic field (e = charge of
the particle) :

L=T+c (vy A) = cU (3.4)

In the non-relativistic case,.T is kinctiw .cnergy

‘T =n v2/2 = mlﬁiﬁi/2 - (5-5)-;
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In the relativistic trcatmonts wo inscrt for T

1/2

T = emeZ(1 - %) (3.6)

(n = rcst mass)(semc usc : T = mc2(1 - (1 - Bz)l/z)which docs not

change the cquations of motion; but ncither of them is reclativistic

ne? [(1 - 52)”1/2-1J.

The Buler cquation of the variational problem (1) arc the

kinetic cnergy =

cquations of motion :

d/dt L. - L =0 347
t g (3.7)

a system of f ordinary sccond order differential cquations (f =

nunbor of defrocs of froedom). Introducing canonical momcnta

(which in general differ from common mononta méi);

pi = Lé‘ (3-8)
i
onc transforms the variational problom into a canonical onec whosc
Euler cquations arc a system of 2f first order diffecrential

cquations, Hamilton's cquations :

4. - L p. = ~-H &, = H (349)

H =
Pi% i qQ

Transformations of the dependent variables in these cquations
arc called canonical if they preserve the canonical form of the

variational problcm and thercwith of the cquations of motione

In the non-rclativistic case, if kinctic cnergy is a quadratic
form of the § and if U does not depend on the q, thon H cquals total
CNCIrgYe The sccond condition is not fulfilled if a magncetic field

is present (scc (4)).

PS/6101
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4+  HAMITTONTIAN MECHANICS WITH z AS AN INDEPENDENT VARIABLE

As cxplainced in the introduction, we want z to be the in-
dependent and conscquently .tinme t to be. a dependent variablce
Instcad of the latter we prefer the dimensionless (w = circular

frcqucnéy of the accclcerating ficld) :

0(z) = wt(z) W = conste (441)

for which wo sugzest the name time-anglc. It has a certain reiation
tb-ﬁhéso which we .do not know oxactiy, to a first approximatiéh

they may be cqual.
We substitutce
dp =w dt = (du/dz) dz = ¢’dz

x(+)—> x(2) y = y(t)sy(z)  (4e2)
dx/dt = x*/t* =wx'/fo* F =wy'/e’

*

It

)
X

in Hanilton's principloi(5.1) :
t o z

n2 2
JL(x,y,z;x,:'v,é;t)dt = J‘L(x,y,z;x'/t',y'/t',1/t';t)t'dt =
t1 z2, 21 o
=f f(x,y,t;xﬁyst';z)dz = Extr.
Zu1

We uso all the nanes we know from the t-scheme for the mathematically
corresponding -quantitics in the z-schemc oxcept that we put then
within quotation marks to avoid confusion, since the latter may have
different physical dimension and ncaninge Diffcerentiating the
"Lagrangian" 1 |

2

T m(x’2 + 7 +.l)/(2t‘)-+'e(xfﬁx'+ y'ﬂy + AZ)'— el £7°

It

: o : (3.6)
mm(x"2 + y’2 + 1)/ (297) + e(x’AX'+ y‘Ay + Az) ~ U 9% /w

]
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we get the "canonical momenta':

P, = fx, =m x’/t + eAX = Li py =m y/t+ e Ay (4.7)

p, =Ty = n(x? +y? +1)/(2 57) -eU = B (4.8)

Py = icp’ = - Bl = - [(rx’2 + y'2 + l)mwz/(2cp'2) - eU"J/w
(4-9)

The transversal "canonical momenta" Py py agree with the
canonical momenta (3.8). The "momentum" canonically conjugate
to time (time-angle) is the negative total energy (divided by w).
We solve (7) ill (9) for t°

1/2 "1/2

vee v (0/2)7% | opy —eU <((p, - ea)® 4 (o, - es)®)/(2m)

J
(4.20)

Since we are only concerned.with particlés moving in the positive
z direction, t”> 0, we use throughout the positive branch of the

Y iy * ) N ~ RN
square root. Therewith we form the "Hamiltonian':

H(9,0P o Pys36,7,b32) = %2 + 37 + tpy - T =

o 1/2
_(zm)l/2t[_9t TEU~_<(px —i—eAX)L + (py+eAy)?)/(2m) -§Az]
(4.11)

E(px,py,p,;xyyswsz) =

= -(2m)1/2 [-mp¢ ~el —((pX+eAX)2 + (py+eAy)2)/(2m) -eAZ]

(4.12)

and we find the variational problem equivalent to (4.5) :

25

[pkqé - H(pk,qk)] dz = Extr. (4.13)
zZ
The transition from (5) to (13) is here exposed in a rather
superficial fashion. * A very careful treatment:of it: (for 1t
instead of 2z as independent variable, but this does not strike

10)

the structure of the mathematical proof) is contained in ref. .
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The Fuler equations of (13) are "Hamiltons -equations":

d ,/dz = H R SWALE Hy - {4.14)
k k
It is easy to find the physical meaning of H.-with the help
of (10):

H = -m dz/dt - eh = -p, : (4415)

This foreshadows a bit the four- (or eight-) dimensional symmetry
inherent to Hamilton mechanicslz). Among the pairs x,ﬁx; y,py;
ZyP,} ’c,pJG = =L, one may choose any one as independent variable,
the other one being the "Hamiltonian" and the remaining pairs are
the dependent "canonically conjugate" variables, The minus in
(15) should not irritate us toomuch, for t' < O it would not be

here.

Canonical Transformations in tae z-scheme.

Canonical Transformations (C.T.)_are such a choice of new

dependent variables

Q; = 9 (pyryiz) 4 = 9 (P;,Q;52)

which preserves the canonical form of the variational problem
(4,5),1)’10), therewith the form of "Hamilton's equations".
This does not mean that the integral in the new variables Pi’ Qi

e

e - ° = ° .
f [PkQ . K(Pk,Qk,z)] dz = Extr (5.2)
2z

must be identic alwith that of (4.13), but only that both assume
simultaneously their extremal values, i.e. if (4.13) assumes its

extremal value for the qi(z), pi(z), then the same thihg should

happen to (2)for those Qi(z), Pi(z) which arise from}the\qi(z),

pi(z)by the substitutions (1). A necessary and-sufficiént

condition is that both integrands only differ by the total derivative
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of an otherwise arbﬂrary function ¢(qP’Qk’Z)’ because for fixed
limits the lntegralf ag/dz = @#(z ) - ¢(zl) is a constant which

does not influence the extremal values of the integrals.,

pa’y - T = P,Q K+ df/dz : (5.3)
together with
| ad/dz = ‘i c 5.
gives by cquating coefficients of qé and Q£
Pk = g P = . K = ﬁ. + .
w Py =, g, (5.5)

One solves the sccond set of equations for Q = qk(Q P ,z)
these are inserted in the first set to give Py = pk(Pi,Qi;z);

with both we get the new "Hamiltonian" K(Pk,Qk;z).

One has much more freédom 16 choose on which variables the

generating function ¢ of the canonical transformation should

depend. The most general result is : Let ¢(xk k,z) be an
arbitrary function of the 2f+l Variables x, X, ,2 3 x (k=1,..f)
being any of the Pys Oy ;Xk any of the Pkka-
Then
. + _
v = - ¢ Y o=+ f _ |
kT fx k X, K =H+ ¢Z (5.6)

is a canonical transformatior, Ty is "canonically conjugate" to

IX&, Yk to Xk. Take the upper (lower) sign when deriving with

respect to a cordinate ("momentum”).
Defining the "Poisson bracket"

(Uyv) =u v -u v (57)
9y pk P g’k' .
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we- can give an other set of necessary and sufficient conditions

for the transformations (1) to be "canonical;

(s @) = (2, B) = 0O (@5 B) = o, (5.8)

Analogous conditions may be stated by.use of the "Lagrange bracket®:

[u, %] = qu/au . apk/av - apk/av . aqk/au, (5.9)

and replacing in - (8) +the round by square Brackets. These
conditions are sometimes very useful : One o2ften has to guess
some of the new “canonical® variables as funcition of the old ones
or vice-versa. The above relations permit to check whether_these‘
assumed functions are admissible -and compatible.as “canonical-.r |
transformations'., Of.course, it is much better to guess or to
find the generating function, -because then you get at once trans- .
formations which are 'canonical®. 'The difficulty is only s You
can assume a generating function, but will then the "canonical®
transformationdo what you Qoﬁld like to achieve?

Specialization to axial symmetry.

We employ cylindrical coordinates (f} 0, z) and describe the
electromagnetic field by U and AZ (see (2.5)). On account of
the assumed symmetry there is no force acting in the ©@-direction.
® and ©6" are constant and we put them to zero. We simply

restate equations (4.6) to (4.12):

-g (r72 + 1) %,+”EAZ~ Ut = mi (r’2 +l)/(2@!)+eAzé eUns/w . (6.1)

(]
]

3L 3L ey aies S : (e
r = %pe =7 = mer’/of = or /t - (6.2)
- ‘ 2/, 2y |
P, =L, =~-D =~ (r*“/ %7 + 1/47°) /2 + & _ (6.3)
- . Uion2, 2 2y 2, Y .
Py = L@, = - B/ = —L(I‘ Jo7 + 1/¢*7) mw/2 + o }/w (6.4)
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-1/2 —-1/2
. m 2 ) ’ l
t = qu{: P, - eU - p_ /(ZmE} ;0= w(m/2) /2) - wp@-eU—p /(ZQY
L - , (6.5)
1/2
~ 1/2
8= -(2n) / y; WP, + eU(r,z,0) - prg/(2mj] - eh (6.6)
i .
The "Poisson bracket" (5.7) becomes:
(wy v) =u v =~-u Vv +u_ v. =-u v (5.7)
r P, P. T p@ P@ ?

It's this one in particular that we shall use extensively through-

out the later sections.

Relativistic case.
At the one hand we give the related formulae for the general
case in Cartesian coordinates, at the other hand those for the
axially symmetric problem in cylindrical coordinates under the
assumption © = 8 = o. (m = rest mass.)
The "Lagrangians® are (see 3.4), (3.6) and (4.3) ):
1/2
= ,2 I2 2 rd r P -
I = _mcz{i-(x +y741)/(c ¢ 2)] 7. <TeUt '+Aenxxﬁ 5 eAyy’ Fed (7.1)
_ r rn L/2 | o
L = -mczi_l-(r'2+l)w2/(c2(p 2): 2w = cUn w4+ eAZ (7.2)
-3
Prom these we derive the "canonical momental':
_ . reeln NS |
p, =L .= mx /% }1 (x ry +1)/(c ) + eh = Ty p,= Ly, (7.3)
-1/2
- I‘r_ ’ _1/2 ” ’1— ’2 2 z
p,=1_-= mr /% 'E_w(:f' +l)/(c ) = mer”/ o lLl—(I' +1)w /(e )?
=y (7.4)
— 2 ’2 ’2 2 12 ‘ '
p, = D,,= B = -me 1-(x %4y %+1)/(e® t77) ] -eU (7.5)
r 1/2
wp, = Wl = =B = —ché}m(X’2+y'2+ Jw / c @'QW (7.6)
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}~1/2
2@'?& - U (7.7)

wp = -B = ~m02[;~(r'2+ 1)w2/(c

For particles moving in the positive z-direction:

~[-1/2

. 2 2 2 2 2 24 -
ct” = —(pt+eU)[kpt+eU) -c (px—eAx) -c (py-eAy) -m ¢ | - (7.8)
1/2
- 2 =2 22 2 2
B = -eh }%U+p ¢ -me” -(p_-eA ) —(p.=eA )7 (7.9)
BARERS x y oy
- T 2 7Y
H = —eA LFeU+pt) c —m c ~P.. (7.10)

71/2
= —eA - KeU+wp ) c —m2c2-p j

One-Dimensional Case. Derivation of the llodified Panofsky Equations.

As a first application of the general formalism elaborated
before, we treat the motion of a proton in a time harmonic spacially
homogeneous electrical field 13). We neglect in the formulae of
Sect. 6 all radial quantities and drop the subscript ¢ in pW =D

Ve have only a scalar potential:

U(z,0) = - eEOz cos (@+@O) (8.1)
and "Hamiltons equations” read: Y
- —=1/2
. 1/2 1/2 a
0" = w(n/2) / i— wp elU (Z,@i} = w(n/(27)) / (8.2)

) =172 1/2
'*@Kw@ﬂ/zi-m>-eU(m¢ﬂ v, = -ole/(20) U (8.3)

— 9

o]
|

As data we are given:

z2=02: ¢9=0 p=-%os=- mvi/(2w) = - mw/(2k2) (8.4)

We know that m(z) cannot be expressed in closed form 4).
Therefore it is not possible to solve these equations of motion

exactly. We intend to solve them by perturbation theory starting
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from free particle motion (EO = O) and taking into account the
influence of the field in iterative steps. To zerctir order (3)

becomes:

p(o), =0 p(o) :Im'mw/(zkz) = const. k = w/vo
(vo = velocity at z = 0). This inserted in (2) yields :

(o) (o)

i =k ] =kZ+q}o

One could put these zero order solutions into the right hand

sides on (2) and (3), get the first order solutions and so on.

But we would prefer to have instead of (6.6), (2) anda (3)

(8.5)

(8.6)

a "Hamiltonian" - with ‘something like a power sexics:in the poten=- .. ... .

tial of the field; since then we could sdlve the equations of

motion by assuming for the solutions power scrices in thé same

perturbatioﬁ"parameter and separate the ordcrs of approximation - -

5)

in the same way as we did carlicr » We try to achiceve this by -

"canonical transformations" and for a first attempt we choose as

new variables:

Q=g+ -2 (-/(2up)) 7

o)

P=-7/0="P+ e (2,9)/w

which are "canonically conjugate™ (Q,P) = 1. The main reason

for this choice is that similar variables have been uscd

3)e)

for a kind of thin lens approximation (see Sece. 9). We

suggest for Q the names reduced time-angle. T 1is kinetic

energy. From ¢ = -, Q = ﬁp (see (5.6)) we find the generating

P
function:

PS/6101
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F(psPyz) = Z(-meP)l/2+ 9, P+ (P-p)arccos(-w(P~p)/(eEo z))

(8.9)
2 - 2 \1/2 -
+ (o8 alw)?- (2 - p)? )Y
and we get the new "Hamiltonian": X = H + @_
. 1/2
K(P,Q,z) = (eEo/w) sin(Q + wz(-m/(2wP))™ ) (8.10)
Q - KP P = - KQ
This "Hamiltonian" has exactly the shapé we are looking

for. Solving (10) by iteration we begin with free particle.
motion (EO = 0): | | ”

Q(O> = ¢ = const. P(O) = - W/ = const. 7 “(8.11)

0

Inserting these into the right sides of (10) we find the next
approximation by integration w.r.t. z: ' '

Q=g +E E;z sin(o, + kz) + cos(g  + kz) - COS%J = Q"+ E Q<l)(8‘.12)

P

I
Hd

—W/w gl + B 2 (sin(g_ + kz) - sin@;;! (0)y 5 M (a.13)
Thus this method leads us straightforward to the perturbation .

parameter:

f\;: . ‘ = - . 8o
5 = eB/(nov,) = (eE /w)/(uv,) (e.18)
=(impuls exerted upon a proton during one period)/(free particle
momentum),‘ : ‘ i
E<.1 lﬁl a proton machine above .5 1%eV. This parameter has been

and has been shown to work in cases

4)
5)

found in an earlier paper
where one assumes more realistic fields.

'ft>is_of'importange_in

the theory of electron linacs; there (VO = ¢) it may assume values
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14)

> 1 and it cannot be employed as a perturbation parameter .

We now describe an accelerating gap by a strip (g/2)z)-g/2)
of a homogeneous electric field (1). To first order in E® the
effect of the field integrated along the whole gap is

g/?2
+ == %41 T % T
-gy2

(o)

P -P = =(W -Wn)/w = -aHTL/aQ = -GHTL/aw-

+ - n+l

with the "Thin Lens Hamiltonian':
g{?

HTL = K(Q = 9,0 F = W/ wyz)dz = (evd/w) 7(k) sing
g/

where T(k) is the transit time factor T(k) = (sin(kg/2))/(kg/2).
These are the modified Panofsky equations for the change of reduced
time-angle and kinetic energy as given by Carne, Lapostolle and

Promé 3).

Panofski6) put the right hand side of (15) to zero, i.e.

he set Py = Oy FoOr this very reason the equations (15) and

(16) violated Liouville's theorem. J.S. Bellz) then gave a
Hamiltonian formulation of difference egquations for an accelerating
gap, but employing different variables (cf. (22) to (24)). One is
permitted to replace in (15) and (16) the derivatives 8/0P, 9/8Q by
a/aP(O), a/aq(Q) and to interchange these derivations with the
integration w.r.t. z, since to first order in E Q = Q(o)
P = P(O) in the right side of (10), (15) and (16) and the only

thing which remains variable is 2. Cf course, this is no longer

and

possible in higher orders of approximation.

A more detailed discussion on tke thin lens approximation

will follow at the beginning of the next section. For this purpose

PS/6101
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it may be useful to give a few further examples. One might take

a different generating function, for instance:
# (9,25 2) =(9+9)P+az (- omwp) /2 (8.18)
which again leads to reduced variables:

T-0-9+9, - (-o/(200)77
: - (8.19)
P=p-= —-E/co

Q is not reduced time-angle and differs from it already to first

order. The new "Hamiltonian":

ko

. = ° 1
o= (- 2mB) Y2 - ( (2m) (= oF - ev) )V/? (8.20)
is zero if the field is zero. Therefore it can be employed for the
derivation of a Thin Lens "Hamiltonian":
KTL i/ B 1) dz = (eVO/w)" 7(k) - -cos(kg/2) sing (8.21)
“g‘//g‘ . ' .
though the procedure and the result are less simple.

YTet another set of variables has been introduced by J.3. BellZ),

namely time t and relativistic Xnetic energy. In close analogy

to that we may choose time-angle and nonrelativistic kinetic

energy for Q and P
Q=9 ,P=- T/w =p + eU(z,9) /w e - (8,22)
. , o L _ ‘
#(0,2) = oF - (O/w) [ G (z,7T) dr ' (8.23)

: Q
K = (~2ﬁw?)l/2 —:(e/w)Jf v, (z,5)dr - . (8.24)
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But in this case Q 1is not a reduced variable. Therefore the new
"Hamiltonian" does not vanish if the field is switched off and it
is unsuited for the derivation of a Thin Lens Hamiltonian. Finally
we point out that the C.T. leading to the variables (7), (8) can be
set up quite generally for any potential U(z, ¢). We solve (8) for
P ¢

9 =¥ (z;, P-p) (8.25)

The generating function is:
=P

7 (psP3;z) = / ¥ (z,7) dt + z (—zme)l/2+@op (8.26)
J

and the-hew "Hamiltonian" is:

P-p

K (pyQ32) = f ¥)Z(z,x) dt (8.27)

\J
where one has to eliminate p with the help of (8) after having
throvm out ¢ from this equation by use of (7). Though we do not
know for certain that this transformation will lead for every
z-dependence of the potential to a "Hamiltonian" suitable for the
derivation of a Thin Lens Hamiltonian, we expect this from the

reduced character of Q and P .

The relativistic problem can be handled in a very similar
manner. Unfortunately, it is not a realistic approximation to talke
into account the mass variation while neglcecting the magnetic field
which necessarily accompanies a time dependent elcctric ficld. 1In
short, tho "Hamiltonian” may be found by specializing (7.10), the
reduced time-angle iss

, 25— -
n = 9+Q, —29 = p+o_+ (z/c)(wp$+cU) ((wp@+oU)2—u2c ) 1/2 (3.25)

while P and K arc the same as in (2) and (27)
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 (P.ny2) = (eEO/w) sin(n + z(wP/c)((mP)g— m204)"1/2) ' (c.

Principles of thce Thin Lens Approximation for a Realistic TFicld.

From what has becen learnced in the preceding scction, and
anticipating sonic of the insight gained when :iorking out the
realistic field case which will follow, we statc vhat we believe to
be the principles of the Thin Lens Approximation. . The derivation

of such a "Hamiltonian® HTL essentially involves two steps:

a) At first one has to introduce by a C.T. "reduced
Variables" (R.V.),‘Pi, Qi° By definition we regard as R.V. such
ones which are constant outside the region where the field is
acting on the particle; " (In some cascs this can be only achiecved
for the limits =z = T .) The Change of Pi’ Qi across the gap
then characterizes the integrated effect of the field on the
particle. The Thin Lens approximation then consists in rcplacing
the continous change of a R.V. through thc gap by a step

function whose initial and final wvalues arc equal to the recal

initial and final values of the r».V. and wvhose jump in the centre

of the gap cqualsthe total change of the I.V. across the gap-

{inetic Zherg is an example of such a Q.V. (see Tig. l)a Pime

angle is not a R.V., it increases linearly when there is no

acceleration. This increment is cancelled by the term -z¢” in

the reduced time angle (8.7)° This reduction of tiue-angle has

been ?plied earlier, either for the total phase change across the
4 i 3)

. . 6] . . . . -
gap s PMig. 2, or in a continous way as indicated in Fig. 3.

Similar transformations must be and have been applied to the radial

variables 3)5>8)9).
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b) The second step is only possible if one restricts one-
self to first order perturbation theory (i.e. first iteration
starting from free particle motion or, what is equivalent, first
order in E.) ' Only then one is allowed to substitute the
constantS'Pio, Qio for Piy Qi in the right hand sides of

"Hamiltons equations®:

zI&)IIZ_KPO...Q'.,P._’.i.= _N&Q . Kém. : - "A(9,1)

o]

and as indicafed, derivarioneiw{r.t. the ”canonical” variablee

are equivaient with'those w.r.t. their Zero order'constantsf The
only thing which remalns varlable in (1) is z.:?'one integrates
w.r.t. =z and 1nterchanges this with the derlvatlons to get the

Thin Lens "Hamlltonlan“

L )
| _ (1 :
oy, (Pio’_Qio) - \/ dz X <Pio’ Qo3 ?) _ (9.2)
‘ -1
We neglect in X = K(l> + K(B) terms nonlinear in the potentials

(= K(B) ). At present we cannot evaluate them in a satisfactory
manner. Moreover when one solves them by 1teratlon starting from
free-particle motion (= K(B)(Q( )) ), they are expected to glve
contributions which are of the same order of magnitude as those

(1) o(1)y y,

For the last ones the step b) is no longer poss1b1e Linear contri-

comlng from the second iteration of the linear terms (= K

butions are roughly of the order of E = eE /(mwv ) (< .1 in a

proton machine above .5 lieV), nonlinear ones at leaut of the order
=2

of B

The example (8.19) till (8.21) shows that it is not absolutely
neceséary that the new "Hamiltonian® be awpdwerJSeriee'in the
potentials. But comparing the derivations leading to the two Thin
Lens Hamiltonians (8.17) and (8.21), it seems that the power series

Hamiltonian is easiest to handle.
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This Then Lens Approximatim should be regarded as a purcly
mathematical procedure which is very useful for numerical appli-
cations. But it seems not possible to build a physical system i.e.
a small accelerating gap which performs like a rcal accelc¢rating

gap with velocity depcndent energy gain as e.g. (8.15) = (8.17).

Practical Realization of the Thin Icens Approximation.

We apply the program cstablished above to the theory of the
motion of a proton in the axially symmetric field (2.5) of a linac
gap. The "Hamiltonian" is given in (6.6). We begin by looking
for the rgduced variables. We choose for Qy and P again
reduced time angle and negative longitudinal kinetic enecrgy,
divided by w, beccause they werc gocd in the one-dimensional

problem and have a physical behaviour as we expect it from R.V.:

) . _— 1/2
Q(p =9, t 9 - 2p= 9+ ¢+ ngq =0 - zw(—m/(2wP@)) (10.1)

:PQ = p, ; oU (f,z,@)/wl+ pi/(2mw) (10.2)

They fulfill the "Poiééon bracket" (6.7):
| Q | P = l (1003)

For each of the two new radial coordinates we have the two

conditionss

0 = (X,P@) =1L (x) - Xp, eUQ/w : (10.4)

| 1/2 | -3/2 T. (. 1/2 3/2 '3
0 = (1,9.) = -2(me/2) 7 (-2 ) L;(x) - xpcp\eoq/w ~((2/ma) 2 (-2 ) )/9)

(io.s)‘
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with

L(X) = Xr-pr/(mw) - Xpr eUr/w + X@ (10.6)

They are only compatible if the new radial coordinates are

solutions of
I(x) = 0 (10.7)

and do not depend on P

(Q.) = (P ). = 0 | (10.8)
TPy | =Py

This forbids to employ r - r'z = r + zfip for Qr, which would

closely resemble qu° T

We try to solve the partinl differential equation (6), (7),
but this appears prohibitevely difficult for a general potential
(2.6)s (2.7). Therefore we expands

- gos (n ¥ qo)[f; (rsz) ' ‘(10.9)

'.U(I‘yzﬂp).
- COS(¢+¢O) 1[;(?1?2)

- - cos(gto,) [A

—Wr—
(r-r,) (ry52)+(r-2,) /2‘ (r ) 2
o 17 rlz 177 1 rlrlz 1

+

+

(r—rl) . D l+(r-rl)% 2.B/é}'

where T, may be given convenient numerical values including T,
and O. Az will be developed in the same way. We are not happy
about this approximation becausc it splits the dynamical variable

r into a paramcter Ty and a ncw dynamical variable r—rl-

Taking into account only A and D one approximates the rcal
ficld by a radlally homogencous field whose strength can be adjusted

by prescribing i. c. partlclcs w1ll experlence the same force

, e
irrcspective wether uhelr zcro order orblt is parallel or not to
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the axis r = 0. The transformed "Hamiltonian" is only linear
in the transversal quantities Pr and Qr . If B 1s prescnt,
things become much more difficult, we must procecd differently

and make further approximations from the begining.

a) Lincar Approximationi B=0.

We usc the two solutions of (6), (7) derived in appendix A,

to introduce as ncw radial variablcs:

PLo= b+ (eD/w) sin(g + 9,) (10.10)

£
It

) K
r - @pr/(mm)—(eb/(mw )(@Sln(@+@o)+cos(@+@o)) (10.11)
They fulfill the last "Poisson bracket':

(., 2) =1 | | (10.12)

and look 1like R.V. Outside the gap regidn the field, i.e. D
tends to zero. pr is a R.V. and in (11) thé second term rcmoves
the part of r which linearly increases with ¢=kz, again
making Qr a R.V. It is intcresting and gratifying that QW and
P impose their rcduced character upon the radial variables

by means of the Poisson brackets.

In the old variables we assume the datac:

-
€

z=0:Q = ¢y P

e /(20 4/2= _
o = = Wo— (-u/(2ur )™

where we droppcd terms pfoportional to D. The new "Hamiltonian"
is at least of order onc in the potentials (sec (20), (21)). Thecre-
fore the terms we neglected, would produce quadratic contributions

which we do not takcrinto account.

Ps/6101



- 25 -

The generating function leading to the four ncw variables
Q¢9 PQ, Qr and P of (1), (2), (10) and (11) iss
- \
ﬂ (u,pqu@,p 9 r) =

z (~2me(P)1/2 * 9P, * eZ (D -~ A)/w + (P(p u”pw) arcsinZ - (10.15)

1

]
- (/m?)? [y v 1/8 + (e« 32/ - D)Y2- 5572 |
[ ‘

with

X = wpr/(eD) vy = wPI/(eD) 2=y -Xx (10.16)

and

a, =~ @ Q =# (10.17)

For the evaluation of the new "Hamiltonian" K one needs
ﬁz . The necessary calculations are lengthy. It is convenient to

proceed in the following ways

z

b= By i = O/ + 98 (10.18)

where & . denotes the partial derivations of D, 4, z(-2mwP ),
z Vis P

i.e. the derivatives of those functions which do not owe their
z-dependence to x -or y . We split K = H + ¢z -into a ﬁart

(1)

linear in thc potcentials and one of second order

k(P ,P ;Q .Q ;z)ﬂ; K(l) + K(B) ; (1o.19)
97 r’ o

| | (c/w) cos(cp + 94) B/ mwﬁ

1

The argunent (rl,z) of allll's has been suppressed. For ease of

writing o + -9 has been used instead of:
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= + wz(~m/(2w 1/2
9+ 9, = Q (-m/(2 P@))

() oo /w?) [ (4 9/ + (1/8) sin(zo + 25,)
(10.21)
+ &2 ki D—E /(2mw3) sin(29 + 2ch)

In

@Pr/(mé) = PI/(wm) (Qw - 9, * wz(-m/(sz(p))l/2 ) (10.22)

i1t is not admissible to interchange the derivation a/aQQ with
the . replacement of Q(P by P and the subsequent derivation
with respect to Py Since we want to do exactly that thing in

the Thin Lens Approximation, we employ a little trick. We write:

cpPr/(mw) = Er/(mw) (Q‘P -9y en) (10.23)

and set = 9 at the end of all manipulations. The same

ol
difficulty would have appeared, if we had used T, instead of

r., in the expansion (9).

1
(1)

After this change reads as:

K(l) = (e/w) sin(g + @O){'(Lgﬂ—-;]ygz )+(Q@ -~ T+ Pr/(mw) .

L (9, - 9y + wz<-m/<zwpcp>>1/ 2><kfI1 ”’”Tml)

+ (e/w) cos{g + @O) (Pr/mw)_T"* (10.24)
| _ ' zar) .

M K(l)falone is not uniquey in fact, with the help of y ~ x =

(eD/w) siném + @O) , (10), and similar relations one can change
terms in X and afterwards shift to K(B) the exprcessions non-
linear in the potentials. This ambiguity is a wellknown featurc -

of perturbations theoretic series. But anyway, the new " Hamiltonian”
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is a power series in the potentials, so the new variables are

reduced and render the service we want them to do.

We shall not make here tho final step leading to the Thin

Lens "Hamiltonian', H since K(l) is only linear in the

TL’
radial variables. Ve shall do this,; after having derived terms

quadratic in this quantities.

b) Quadratic Approximation, B £ 0.

If B # 0, it seems pretty hard; if not even practically
impossible (see appendix), to solve the partial differential
equation (10.6), (10.7) which P and Q. are to obey. We
employ a different way of approaching the problem.

The exact solutions Pr 5 Qr of (10.6), (10,7) will be
transcendental functions of B. However; at the end we only
use those terms which are linear in the potentials. Herc we
shall make this approximation right from the beginning. The

transformed "Hamiltonian? will then be:s
K = K(l) + K(2) (10.25)

(1) x(2)

of second ordef in Qf and Pr . Qr' and 'Pr' will consist of

where is given in (20). should be linear in B and
two parts:

P =P, +P,=PF ¢+ (cB/w) glr,9) (10.26)

Qpq + eB/(mwz)f(r,@) (10.27)

+
£
]

where Pr and Qr equal to Pr and Qr of (10), (11) resp.
The definition of Q@ and Pcp ((1) and (2)) remains unchanged.
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"Hamiltons equationsn. then read:

(1) (2)

P’=-K - K. (10.
P - Qcp Qm-,
Q’ = Kgl) + K§32) (lo’
P P - '
Pr - Prl * Pr2 ” :*KQ'“'A KQ“'” (10.
r I“ _
s e () ()
Q.= QL + Q, = KPr + 5 Klo.

T

In these equations we feed some of the results we obtaineéd in an.

earlier paper 5) where ¢ = wt was the independent variable.

(Grave accents will
showed in this ref.
form:

2 .
mw = eEr— ewB z°

mw2z<<= eE + ewBQr‘

(10.
can be split up into sets of perturbation equations by assuming
perturbation theoretic series:

z = z(o) +E 2 () F oees (10.
T o= r(o?__+ Er (1) + e (10.
E = eEO/(mwvo) k = w/vow - (10.

which correspond to

denote derivétions wer.t.e @z "= a/de). TWe

that.the equations of motion in Newtonian

02 pein(ero )| (1c
= e cos(¢+@o;U_;z - eko z 81n(¢+¢0) r (10.

= e cos(@+¢o)(kgﬂ—;1—zz) + eki r‘sin(¢+¢0;i_

T

the different steps one reaches in solving

(32) and (33) by iteration starting from free particle motion.
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I‘(O)\\ = 0O, I'-(O) = I‘; ¢+ rQ’Z(O)\‘= Oy Z(O) = (P/k ‘ (10.37)
Emw2r(l)\‘ = e cos(@+@o)-uﬁzr + (r<o)— rl;g—zr . (10.38)
3 1 171
. T o),
- (eki/k) 81n(¢+¢O) d v + (r ?_ rl;ﬂ_rlrl

- 2 (1)an | 2, 2|, 2l
Emow z( ) = e cos(9+@o) 1+(r(o)- rl) a/ar1+(r(o)—rl)/2 a/ar;](ko + zz)
— _
S o F 7 (10.39)
+ek® sin(g+g ) ” + (r<o) -1 )
o o 0 ry 1/ Il r.r
where we expanded: |
| L l( 2 ]
7 , - (10.40)
From (1) we finds: :
Qc; - -Z(Pv’:)E"- kq) k=z (l)\\(cp) . (10.41)
The last ékpression follows from (34) if we solve the series
for ¢ by iteration i :
xz = 0% F ket T (o) +eur o= ks - F k2 (p)
Q = <p<o) + E. (p(l) + . s - : <1O~42)
@(O) = kaz, q(l)’z -E kz<l)(¢(°)) = ~E kz(l)(kz)

and take into account thesfollowing fact: If a term already
contains £ , then to this order one may use ¢ = kz, d/dz = Kt i/dog

in all functions accompanying B .

Similarly one may calculate:
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é = - m/(2w) d/dz (dz/dt)2 = «(mw/2) d/dz.(Z‘)2
(10.43)

- Y
- - o 52 ()

We insert (32) ((33)) into (41) ((43)), then (41) ((43)) into
the left hand side.of (28) ((29)). On the right hand side we
use (20) for K(l) and put into it thc zcro order quantities (14).

We get cexpressions for the partial derivatives

(2) : (2) , (2) :
K (Pio’ Qo3 z), KQ and from these we ovaluate K (Pio’ io’z)'
P ? '
The derivation w.r.t. k 1s more convenient than that w.r.t. Péo)z
a / (O) —- 3 - ~
O/@P@ = (k7 /{(nw)) 3/dk (10.44)
which follows from (14). We intcgrate:
o (1) _ (2) _ (43 (2) : ' |
Q- KP = K = (¥ /() X7 (2) 09, ,52) (10.45)

¢ p | data P@ data

K£<2)=(ek§/w){ z cos(kz+@0) (ro--rl)2 + 2r;(ro—rl)+ rgz(kz)f]/z

+ 3z sin(kz+@o) r;(r0~r1)+ r“zkz 'n-fi].!l 3

+(e/w) z co&(kz+@o) (r ~r1)2 +‘2r; kz(r -r ) ‘2(k )“]/HH—

° ZZI‘ I‘

K(z)(P 52 ;Z) =

[ : B
= (cki/w)‘ sin(kz+@o)[kro~rl)2+2r; kz(ro~r1)+rg2 (kz)%] /2 “

(ro~r Ty kz) /2 r‘_] o 1  (10.46)

°

+ cos (kzwo)[ (z,mry + 7 lz“,“l 22T )

+ (o/w){ sin (kz+@ )

I
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Guided by experiences made in the linear theory a), we guess

that we can find the full "amiltonian® K(z)

(P.,Q.32) by the
i

substitutions:

r +r kz—0Q
o

°
x ~~4Pr/(mw).' (10.47)
o0y -y e (2m )2
3(2)(?@9PI9QQ’Qriz) = | - | “ ~ (10.48)

(eki/w){ sin(¢#@o) Qr—r1+(Pr/mu)(Qq—@l+zw(~m/(2wP¢))]/%§ iﬂ_r r

A R §

+

~ " - . /_12 .
(e/w){sin(@+@oﬂ-[hr—rl +(Pi/gm)(qm~ 9yt zw(—q/(ZQPQ))l’il f<3r/mw)%]

cos(¢+¢o)(Pr/uw?[§r~rl+ (?T/mw?(Q¢%?1 + zw(~m/<2mPQ??l/%IIK;Zrlrl

+

Onc casily verifies that this "Hamiltonian" is compatible with
(29), or rors .accurately withs

= - ng) (10.49)
data - -~ Tp | data

= - Dnw z(l)'“(w) + Kél)

P+ Kgl)
data ‘; o . o

B

The only unknovn quantitics in (BC and (31) are Péz and Q;Q if
we usc (10) and (11) for:

. —_ 1 ‘
P = 5] wmkr(l)“(Q)—(o/w)sin(kz+qo)1{ A(ck/m)COS(kz#Qo)“T.-(10,50)
data ' zzr; : " oerg
. L = 1)< : 2 - .. ‘ :
er daia~3 ok r( ) Y (0)+e/ (nw°) (kz 31n(kz+9b)+cos(kg+@o);ﬂ-zzr1(19.51)

TN {1 .
+ ot/ (mw®) kz cos(Lz+¢o)| ar,

(32) for Er(l)‘"and K(l), K(Z) fron (20), (48) resp.
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1ith these rclations we land. the final blow:

= (e/(mu2)) a/az{2f)

A ¢ ) chjl)
data

v TP rl
T T

; i ]
= c/(mw2)§81n(kz+@ )[jf =T 4T, uZ)um+2Tél +cos(kz+qo)[Erowrl+2r;k?g X
i

B
bogor »

xS (10.52)
N ' ) 2 rl
+ ck/(nw”) COu(kZ+QO)[— ro~r1)Lz + rO(Lz) _h.zrlrl
Pl o=~ K(2)~ P.o= K(l) = (c/w) d/dz(Bg) (10.53)
r2 Q rl Q
T T data

- ~(e/w){:81n(k2+@ )(r - r1+ r kz)+ cos (@0+ kz) T‘I]f;ér )

. o Mear®y
“(e?yu) coc(xzrw Lfr - T r; k%ﬂ H

The coefficients of ”

coefficicents of

ZZr Ty are fy g rcspectively. The

zr,T; really axc £7 and g 3 so- that the
overdetermined system for f and g contains no contradiction.

Pinally we substitute

T, ry + Ty kz—r -~ Ty / r, kz—épr/(mw) (1C.54)

and gete

r3

o (eB/m)!j(r - rl)-sin(¢ + QO) + pr/(mm) cos(@%@OzJ --(19-55)

&2
|

r2

= «(oa/mwz)){[kr - rl)Q - Zpr/(mw{] sin(g + @O)- k15;56)

[}r - rl) + 9D, (mm{},cos(p + 9,) }
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We evaluate the:"Poisson brackots”.fof'the tpanstrsavaariables_.
(26) and (27)s .

(02) =1 - (s8/(u?)? (1 + sin® (g +9))  (20u57)"

1(0) = (e/(m?))? B(D+(x-r))B) cos(gry,) (“2sin(gry )+ geos(gr,))
(10.58)

: L(frji:fff: é?ﬁ/(@@) (p”+'(rf- rl)B)‘cds2 (¢+¢0) (10.59)

Due‘%5H%ﬁe”éﬁ5f6kima%eEnéturé'of’(26j; (27) ‘the "Poisson
brackets"'éfe?dniyasatiéfied wp to linear order in'tho potentials.
But we méﬁweipféSSrthe"foiiowing:hopeé The equation L(X) = 0 (6),
(7) has two independént particilar solutions and any arbitrary func—
tion of these two is again a solution. If we wcre able to get the |
exact expressions for such two solutions (E.g. if we could solve
exactly the cquations (A.2) to (A.4) for the characteristic curves),
then it shouldtbe‘possible to find expressions which also. fulfill
the "Poisson bracket" (Pr, Qr) = 1. To this set of new canonical
variablos Qr’ Pr ‘and P , Q¢ _bqlongg‘a generating function ﬂ]“
which loads to the new "Hamiltonian" K = H + ﬁz. If one then cxpands
in powers'of B, retaining only terms linear in it, then one should
get tho P s Q .(26), (55), (27), (56) and X = K(l) + K(Z) with
K(l) (24) ;nd £(?) (43). But .we have no probf of these stipulations.
Howevor, we arc ébnvincéd that the variables and fho "Hamiltoniaﬂf"‘
descfife dynamics_exactly to linear order in the potentials and
transversal cbbrdinatbgg since we derived them from dynamical

equations cxact t0 that order.

‘c) Computation of the Thin Lons Hamiltonian.

We evaluate tho Thin Lens "Hamiltonian" only in tho limit

L— @&, since this expression is alrcady complicatodﬂengugbﬁm.m_

Eop(Bior Qo) = 1%? L? K (Péo),Pﬁo),Q;O),Qr(o);z)dz (10.60)
I-Yeo T
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K consists of. K(l) (24) and K(2) (48). The method %ow to
calculate the integrals has been described elsewhereS’. We
indent the path of integration in the complex kz~plane upwards )

(downwards) at

k, = - k(+k) with k = w/vo = w/éo. (10.61)
Then one integrates w.r.t. 2. One closes the path in the
kz-plane by a semi-circle of infinite radius in the upper (lower)
half of this plane for z = L(-L). One employs Cauchy's residue
theorem. If L tends to infiniy the contributiqns due to the
simple boies Jé Q%ﬂ‘z O which contain a faqtor' eéL;.. vaniéh

and only'the residues of the poles kz = t'k remain. From fhese we

getx)s
_ (1) (2) | |
Hpp = H7 o+ Hyp L (10.62)
1) ) P
Hpp'= (ev /w)Sln@ojToIo 4§(rb - rl) + T (po— Wl),Tokrllr' o
L rlo S 1 ;o (10.63)
~(eVo/w) T - cos O% k d/dk(TokrIl) - Tk Il/kr§

0

NS - W 2_ 1, 2
-(rok) (1/2) a“/dxk (Tokrli) -T I+ k d/dk‘(Tok I
Lo j , o —t (10.63)

+ (eVa/w)COS@O fo (ro - rl) + io(@o - @l) s

o 2 2 . _ 2 _
- B (@O - @1) + T (rO - rl) k da/dk (Tokrli) j

-

——— 1
—
bl 3

In all these formulae we suppressed the argument X  in. Té(k)“and Y

kry in In(krrl) where

% one has to set

9, = 9, after the partial derivations of HTL’ see (23).
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2 2 2\1,/2
k= (x° .~ k Y+ (10.64)
and In is the modified Bessel function of order n . TO is
the Transit Time Factor: 5)9)
m r _ l ] — N y I ™ . —_ r [
LO(L) =J uz(z,r_O,t) cos(kz) dz J P (2,0,t) dz = b(k)/Io(Lra)(lo.OS)
-0 0
Pinally we specialize.fof Ty = o~
21 L (ev Jo) sing T (¥) (10.66)
7L o cPo 0
(2) . r : ® e 12
Hpp' = (eVO/(2w))S1n¢O A ro(q)O - @1) /2 T k.
2 [ .2 .- 2 2, 2, ,21
-(rok) [}Ok + &k d/dk(lok ) + (1/2) a/dk (lohpl
+(ev /(2w)) coso 1% 4 +2(o ~ )T n x? (10.67)
o) : o) ") o'\ % @l’J o) .

The shift of the representation point in phase space which

° 2 2 o 2
-~ T - + r Jte lc m ]r
l o (Qo @1) To%o \ k d/a (lo'r)

corresponds to the integrated cffect of a linac gap, is given by
the following equations in "Hamiltonian® form (lincar in the

potentials and quadratic in the transversal quantitics):

P@+ - P@_ = -(wn+l - wn)/w. = »CHTL/CQO . \.".(10.68)

Q¢+ = Q@_ = P41 ~ 9 = 5HTi/ano) = (k3/(mw)) O, / ok (10.69)
P,-P _=p., -o._=umlb 5 - r )= - aHTL/ano) =.8HT oz (10.70)
Q. - Q._=7 4 ~T, = aHTL/‘Pio) - nt OH /0% (10.71)

Note that the second column of (69) and (71) o and r denote
reduced quantitics as in earlicer ref.3)5)8)9) .

Yie also used the

* put 9 = 9, after the partial derivations of H see (23).

7L}
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fact that D and B vanish for L -— eoo.

The above set of difference equations for a linac gap
is more interesting from thz theoretical point of. view; while
for practical beam dynamics calculations onc prefers to employ
r‘= dr/dz ;nstead of p, or P_, since r and 17 afe _
quantities one can measure by slits 18). There is no objection
to such a procedure. One is completely at liberty to use ah& |
set of independent variables, even if they are not canonically
conjugated, to describe the motion. By this reason we do not
work out in more detalil the expression (68) till (71)1 Instead
we give at the. end of this paper in Table I and II a sct of
diffence equétions for the variables currently in use. Their
entries differxfromlearlier fesults in as much.as the caflicr
expressions for ,r: - r’ contained an erTor, recently detected

. * -
by Promeé 19 . The necessary correctlons arc treatcd in appendlx B."

The :author is very indebted to Dr. P.M. Lapostolle.for the
suggestion of this topic and for many helpful discussions... He

also drew great profit from discussions with Prof. A. Sessler.

- (@a - ¢). ena (F, =~ %) in table IT differ slightly from the

5)

same quantltles given in table IV of ref. as already noted in the

fwo 1ast sentences of Sect. 1

PS/6101
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Appcn dﬂ} x A.

Solution of the partial differential equation (10.6).

Inserting the cxpansion (10.9) into L(X) = 0, we find:

X, pr/(mw) - Xpri}e/w) D+ (r - rl) cos(@+¢oﬂ-+x¢ =0 (a.1)
5)

gencral solution of (1), we have to solve the system of ordinary

1
According to standard thcory "7’, in order to get the

differential cquations belonging to tho characteristic curves:

dr/du = pr/(mw) - (A.2)

dpr/du = - (e/w) iD + (r - rl) B] cos(o + @O) A.3)
de/du = 1 - (A.4)
a B = O¢_

The general solution of the system (2) to (4) is:

P =u + C (4.5)

D= -(oD/u) s1n(¢ +u o+ 03) + ¢, (A.6)

r = cD/(mw )cos(@ + u + C3, + C v/ (mw) + C1 (A.7)

From these we form the cxpressions:

X; = pu+ (cD/w) sin(o + @ ) = C, (4.8)
X, = 1= mpr/(mm) - cD/(mm ) cos(o + L ) + osin(o + 9,) = (4.9)

- C C /(ma)

Xl and X2 rcgarded as functions of r, P, and ¢ arc constant and
this for arbitrary valucs of Ci’ so they are constant along every

characteristic curve and thercfore a solution of (1) (with B = 0).
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and X

The general solution is an arbitrary function of Xl 0"

D) B # 0.

From (2) and (3) we gcnerate (uo = 9, * Cyy 0 = eB/(mwz))s
d2r/du2 + r(u) « a cos (u + uo) o (roB - D)e/(mwQ) cos (u + “0) (a.10)

Substituting in the Mathieu 16) equation:
a%y/dz° + (a - 2q s (22)) v (2) = O (A.11)
2z = u+u +om r(u) =y ((u+uo+n)/2) (A.12)
we find:
d2r/du2 + (a/4 + (2q9/4) cos(u+uo)) r(u) = 0 (A.13)

The solutions of the homogencous cquation (10) arc rclated
to solutions of the Mathieu cquation for the following special

values of its paramcters:

a=0 q= 20 (A:14)
o - . . . _ 16)17)
The difficultics of solving this equation are wecll known 4

so we do not try to get the gencral solution of (10) or (1). We
may draw one conclusion for application in Scect. 10 b): The
solutions of (13) are transccendental functions of q . Therefore
we expect the solutions of (1) to be transcendental functions

of B.
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Appopendi XxiB-.

‘ Corrections to.
 ROVISE 2D LI TAC B2ALl DYRALIICS ROUATIONS

by

B.chhnizef

1. _ Introduction

In a paper5) with the above title the author gave a set of
difference equations for energy gain, phase chanve, chanwe of radial
positidh énd radiél ?elocity across a.linac gap, thesc are crenerall—
sations of the so called Panofsky equations. 6 and have been

3)8 )9)

that all thesec derlthlons contaln elther an
\

error in the equatlons for the radlal ve1001ty 5/ 2 OT that tho

1ntroduced by P. Lapostolle and other authors Promé -

'has p01nted outlg)

approx1matlon omits an apprec1able torm. ThHe ‘$amec fwult is the‘
source of difficultics which have ariscn when comparing thi
5

relativistic and thc non-rclativistic .cnergy gain in recf.

It is the purposc of this note' to corrcct thesc mistakes.

2. Tho radial velocity.

" Using the notations of rofs) (a gra ave accent © denotes a
derivation w.r.t. 9 =:Qt; a prime 7 onec wir.t. 3z),; one may
describc the error in tho following waye' At first the‘radial |
velocity has becn cvaluated as function of ¢ : r* (9) = dr/do.
But we want to use r 7 = dr/dz. To cvaluatc the change of this

quantity across o gap in a corrcct way, we have to forms

PS/6101
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BlE

N
111
S—P—

w0l - ) - ) @

5)

f@e) . £lm)
dzl T 2N (kL) =z

z‘(kL) and z*(—kL) had been cerroncously rceplaced by
2} = z (o) = 1/k # 2°(um) £ z(-kL).

That mecans the change of 2z across the gap has been neglected

In

in the expressions of r; - r” of Table I and IV of ref 5).

To deal with equ. (1) in a corrcct way, we cmploy:

2(9) = k2 + E 2 1)(p) + B2t 2 (g) = x + B (V(g) + B2t (3.2)
(2o e x -5 2 M) -5 ...

where the last cquacion has been derived from the first by cexpanding

W.Tr.t. E = eEl/(mzwe).

The right expression of the change of the radial velocity

then rcads :

r’ -z’ = § r?i(l)(kL) TG RN 5 (kh(l)(km) - k%(l)(-kmjﬂ(B.B)

In the non-reclativistic case (Table I of refoS) ) this can be
writtens:
_ _2
r/ -r = (r+ - r7), - (w+ -w )/(ew) + E ... (B.4)

where (r; - r:lo,W+ -W_ , r‘and W arc the quantitics as
denoted in the tables quoted (I,--*9<X)), except terms proportional to
r'2 have to be dropped in the sccond term of (4). The explicit

expression is given in Table I.

For the rclativistic case (Table IV) we neced:

PS/6101
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L—-—%oo
X ~wJ/1dk b(KZ) elkz( )J (} r /J (7‘&) | - {B.5)

2D ) - 0™ (g - @ - )1/2(1 - (5 /8). (ko/k] . cos(g+e_)dy

- (1 -2 )1/2(1 - /) cosq v k1 (x) T (k v )/ 4 Tl e
Inserting this in (3) yields the correct relativistic
expression of the change of radial velocity (r; - r:)r indicated

beloW-;“Mm_

3, Relativistic and Non-Relativistic Energy Gain.

In the non-relat1v1st1c case (Table I of ref. )) LA

solely denotes the galn in 1ong1tud1nal kinetic energy. The'

second deflnltlon dlfferent from the flrst one has been adopted,
because we thought it is not admuss1ble to take the sole

longitudinal kinetic energy for a relativistic problom, since

their longitudinal and iadial energy'are eoup1ed. But we now

believe this separation is permissible to the degree of approximations

introduced.

‘The non-relativistic change of total kinetic energy

(w+ - W

-)toH,iS:

(w;-w;%0;=\n -w_+;uy®(my¢nf_ m/@(mymﬂf' | (B.7)

(m/z)(ar/5£)f - (/2)(ar/as)? = mw2<r;2 --f;Z)/é .
neo® & ré(;;(kL) - r“(—km)) :~-evoéb(k);%rll(krro) r sing + Eé:S)

This-istustrsheeektraafefﬁ'by*thch-(W; —-W;)i'differs"“““w
from W . W Thus the relativistic and the non-relativistic
gain of 1ongitud1nal or total ki netlo-energy'sre'equal'to th@t

degree of approximation.
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It is now a matter of personal taste which kind of encrgy
gain one likes to cmploy. If one wants to use the total kinetic
energy then in both cases the expression (W, - W_)r of Table IV

of ref. 5) is the right onc 3 fer thc bare longitudinal kinetic

energy take W+ - W of Table I.
TABLE I :

Nonrelativistic change of longitudinal kinetic energy, phase,

transversal velocity and reduced radial position across a linac

 Bap. e Toam
Vel Tolg st v o, aKrRh) el
¢, - 9_ = lim ;(ki) - p(-kL) - L(z‘(kﬂ))‘l - L(z‘(~kL))'l[
T el | -
' . h 2 2 ,
= ak d/dk(molo) sing - ok 4 /dk (Tokrll) r“coso

r’- 1’ = (dr/dz); ; (dr/dz)_

= -a Tk I,/k, sing + o« [}/dk(Tok»Ii)';'TOI;]r’c§sm
lim | (XL) - r(-kL) - KL(r (KL) + r‘(-kL)w
L — S ' -
| 2,2
= - d/dk(Tok Il/kr)rcosw - o d°/dak (Tok I

B
|

B
I

1) r’sing

TABIE IT :

The change of the same guantities in the relativistic cases

R - - - e e *
(V{& ..W_)r = = W_l_— W _ l:-_— ev, T'*k--I_;‘l/k,r r,slnsa

¥ By adding the term in the square brackets one gets in both cases
the gain in total energy. (Cf. (B.7), (B.8))

Ps/6101
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2\-1/2 _ 2,2 2,2 .
(9.~ 0.),.(1-67) = (9,- 9_)(1-k/k) - ak k/k° 1 ° I; k_x’cosy

~ I 2 "l 2 ’ ”» 2 2 2 2 ’
(x]- r_)r(;-ﬁo) / (/- z)(1-k/k)+ a ko/}; .To(Ii-IQ? r‘cosp.

¥ .
§ I 2,-1/2 - - 2,2 252
(r‘+— r_jr(l—ﬁo) = (r+- r_)(l—}:o/k: Y ko/k d/dk(ETOIinOIO)r sing
1 .
2, 2 ,
e ko/k‘-To.Il/kr coso
Common to both tables:
o= eVo/(2W) W = m/2 (dz/dt)i m = rest mass
2,2 2,2 2 . 2.2 2,2 . o
k /i = (dz/at) /e azp ) 1 - K /KRR /KDL - B
¢The arguwments k = w/zo of To(k), kr(k)rO of . Ih(krro) and
the subscript of © and r’ have been dropped.
o o 0 R o
| ]
L
-
'S
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