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Impact parameter determination for *°Ca+ *°Ca reactions using a Neural
Network
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Cyclotron Institute, Tezas A & M Unwversity, College Station, Tezas 77843
C.David, M.Freslier, J.Aichelin
Subatech, 2 rue de la houssiniére, 44072 Nantes cedez, France

ABSTRACT

A neural network is used for the impact parameter determination in *°Ca+ 4°Ca re-
actions at energles between 35 and 70 AMeV. A special attention is devoted to the effect
of experimental constraints such as the detectin efficiency. An overall improvement of
the impact parameter determination of 25 % is obtained with the neural network. The
neural network technique is then used in the analysis of the Ca+Ca data at 35AMeV
and allows separation ofthree different class of events among the selected ”complete”
events.

1. Introduction

The increasing use of 47 multidetectors makes experimental heavy ion data more
difficult to interpret without the help of theoretical calculations. Unfortunately, one of
the key parameters of most calculations is the impact parameter which remains poorly
known experimentally. Several attempts have been made to extract this quantity®)
using the charged particle multiplicity, the perpendicular momentum, the neutron
number,etc... It turns out that, in the energy range under consideration here, all
these methods, very efficient for peripheral reactions, failed for central collisions due
to saturation of the observables. In order to use as much available information as
possible, it would be interesting to combine several different observables. A promising
step in this direction has been made recently using neural networks 2»2). Indeed, for
197 Ay+ 197Ay at 600AMeV David et al®) have obtained an improvement by a factor
of 4 in the impact parameter determination in central collisions with the use of a
neural network compared to the use of a single observable. The goal of this paper, 1s
to explore properties of a neural network at lower energies between 35 and 70AMeV.
We will also take into account explicitly the experimental filter and restrict ourselves
to measurable observables. Finally, the network will be applied to 35AMeV *°Ca+
40Ca data collected at SARA(Grenoble, France)?.

2. Introduction to Neural Network

Let us start with a brief introduction on neural networks. For details and general
background, the reader is refered to 5). By definition a neural network is an ensemble



of highly connected cells. A cell is an entity which has one or several inputs, I;
weighted respectively by w;, an activation threshold § and gives an output according
to a certain activation function {. Such a cell is represented on the top of figure 1.
The output, S, of the cell is generated according to the equation:

S = f(Zw,'L' + 9)

The activation functions used for each layers are displayed on the bottom of the figure
1. For a sake of simplicity, we have restricted ourselves to a three layer feed forward
network. The first layer, which corresponds to the input layer, is composed of three
cells, the median layer is called the hidden layer and contains 5 cells and finally the
last one is a single cell output layer. Input cells receive the data from the outside
(here the value of the physical observables) and the output cell gives the result (here
an estimate of the impact parameter).
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Fig. 1: schematic view of a cell (upper drawing) and of our network(lower drawing).

The use of a network is a two step process: a learning stage followed by an
application stage. During the learning phase, the different parameters of the network



(6, w) are determined. This is done with the help of a learning sample ie a sample
for which inputs and the expected output are perfectly known. The parameters are
then adjusted in order to minimize, according to the different weights and thresholds,
the difference D between the calculated output, Outyy and the known one, £ for the
whole training ensemble. The function D is defined in our work as

n

D(w:, 6:) = 0.5(3_(I¢* — Outiyn!)?)

u=1

where n is the total number of elements of the training sample. The details of the
whole minimization procedure can be found in ref 3.
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Fig. 2: Energy dependence of the deviation(see definition in the text) for Ca+Ca reactions obtained
from QMD+Gemini.

In our case no real data are available to make a learning sample. A theoretical
model has then to be used to generate this sample. A QMD dynamical calculation”
coupled with Gemini® has been chosen. This hybrid model has already been very
successful in reproducing many features of the **Ca+°Ca reaction at 35AMeV*). The
learning sample is composed of 1000 events uniformely distributed between 0fm and
8fm.

For this study, the three inputs that provide the most efficient combination of the
available observables for *°Ca+4%°Ca at 35AMeV have been used. They are the charged

particle multiplicity (CP), the perpendicular momentum (Pperp), and E,q = g___P ¢ [2m

PZ/2m

3. Behaviour of our Neural Network



To compare the performance of the Neural Network (NN) with other commonly
used methods, an observable is defined:

1 N
Deviation = — BeMD _ puar
§ 2 1B - B
which gives an estimate of the dispersion over the overall range of impact parameter.

BY*" stands for the impact parameter value determined using one of the following
observables NN, CP, Pperp, Erar.
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Fig. 3: Correlations between input impact parameter from QMD and the output generated by the
network for Ca+Ca at 70AMeV.

For methods other than the neural network, let us explain the way the impact
parameter is extracted. Using the training sample, the total distribution of a given
observable (var) is cut into ten equal size bins for which the average impact parameter
is calculated. Then, using a fit of a polynomial expression of these points, an impact
parameter value B¥%is associated to each value of the observable.

we have reported the results of such a comparison for Ca+Ca reactions as a
function of the incident energy in figure 2.

For all energies, the neural network gives the lowest Deviation. It is the most
accurate of the methods used here. It can be seen also that as the incident energy
increases, the impact parameter determination becomes better. This true for all the
different methods. Neverthless, in this model study, the neural network always allows
an improvement around 25% compared to the others.

In figure 3, the correlation between the known impact parameter, Boump, and the
neural network output, Qutyy is displayed for the Ca+Ca reaction at 70AMeV. This
correlation is very good from 8fm till 1.5 fm. For the very central reaction, Outyn
saturates. This is due to the saturation of input observables for this central events.



It can also be seen that the dispersion around the mean increases with a decrease of
the impact parameter.

In previous works, model calculations have been used without taking into account
any experiemental filter. The effect of such filter is far from negligible and has the
tendency to increasethe apparent fluctuations. The Amphora detector filter has been
applied to study this effect. The result is presented in figure 4. As expected, the
recognition by the neural network is poorer than without the filter. This clearly
shows the necessity to use a network trained as closely to the experimental condition
as possible.
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Fig. 4: Effect of a filter in the Neural Network performances.

4. Application on Real Data
The *°Ca+*°Ca reaction at 35AMeV has been performed at SARA(Grenoble)

using the Amphora multidetector system®). The analysis was carried out focusing

on "complete” events. These events which correspond to the more central ones, are
defined as those for which:

e The effective charge particle multiplicity threshold > 10
o The detected Z,,; > 85% of total combined system Z

The network has been trained with filtered events generated by the model calculation.
At this energy, the Qutyy distribution saturates around 2.5fm. A precise individual
impact parameter determination at this energy by our network does not seem rea-
sonable. Neverthless, we are going to separate the data into three groups according
to Outyn. The limits of these groups are Qutyy < 3.2fm, 3.2 < Outyy < 4.4fm
and Outyny > 4.4fm and have been chosen to make three equaly populated bins.
For these three different classes, the so called ”Campi-plot”® has been generated.
This plot allows exploration of the moments of the multiplicity distribution and has



been suggested as a usefull means to identify for possible critical behaviour in de-
excitation patterns. In figure 5, such plots are displayed for all events as well as for
the 3 Outyy classes.

Two peaks occur on the experimental contour plot in the pannel a) of Figure
5. One is located at large values of InZ,,-and small values of InS, and the other
is located at small values of InZ,,,,and large values of InS,. Plots obtained for the
different cuts in Qutyy show quite distinct behaviour. For the lower values of Outyy,
only the low InS) peak remain. On the other hand for higher Outyy values, only the
high InS) peak is present. This systematic nice behavior shows that neural network
can be very useful in data analysis by allowing the grouping of events according to
the correlation of several observables(here CP, Pperp and E,q:).
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Fig. 5: Logarthmic distribution of Zpez vs 55

Each contour represents

10, and each inner contour represents a progression in yield of 150.

5. Conclusion

In this contribution, the impact parameter recognition performance of a neural
network in intermediate energy heavy ion collision has been studied. in model studies
an improvement of about 25% is obtained compared to commonly used methods. Ap-
plied to real data, in this case *°Ca+*°Ca reaction at 35AMeV, the network provides
a clear separation of the different peaks obtained in the experimental Campi plots.
This indicates that the neural network can be a valuable tool in data analysis. For



such systems, it should be emphasized, however, that the impact parameter recogni-
tion 1s based on model calculations. Training the network would better be done using
empirical data if this were possible.
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