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ABSTRACT

We consider a simple model in which a non-elementary electroweak neu-
tral Higgs scalar (H) can arise primarily as a multi-body bound state. Only
standard-model elementary particles have to be introduced explicitly. We
work with a non-perturbative analytic tf scattering-amplitude unitarization
scheme (basically a relativistic generalization of the usual Schrodinger equa-
tion) with a strong high-energy (multi-body) inelastic contribution added in,
and with no divergences requiring arbitrary cutoffs or subtraction constants.
The H itself is required to be simultaneously consistent in both mass and
coupling with the exchange of the same H in the crossed channel when con-
structing the relativistic generalization of the input potential. The strong
energy dependence of our amplitude near the tt threshold then leads to a
bound-state H with standard-model coupling and mass calculated to be im-
mediately below the tt threshold, a result which is expected to persist for a
broad class of similar models and suggests that alternative solutions may be
obtained with H immediately below the ZZ or W+W- thresholds. We also
find that our high-energy tt scattering-amplitude multi-body inelastic contri-
bution can be constructed explicitly from the exchange of a Regge trajectory
passing through the H and generated dynamically in the same way (but for
unphysical angular momentum). Finally, we find that our amplitude is in ap-
proximate agreement with the perturbative crossing-symmetric H-pole-only

tree-graph amplitude at low energies, despite the highly non-perturbative

origin of the H in our scheme.
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The Higgs scalar (H) is usually taken to be an elementary particle in
simple electroweak symmetry-breaking schemes, with arbitrary mass. In a
more economical theory the H would not have to be put in by hand, but
would arise dynamically, e.g. as a bound state with calculable mass. Build-
ing on an early preliminary exploration by Lee, Quigg and Thacker [1]. the
simplest bound-state models tend to give a massive TeV-scale Higgs; see e.g.
ref. 2 and the references listed therein. It is difficult to find a less massive
bound-state H without introducing somewhat arbitrary divergence-averting
high-energy cutoffs or subtraction constants [3], or by making the theory
more complicated, e.g. through the introduction of technicolor, supersym-
metry, etc.

Most non-elementary-Higgs models consider the H as a bound state of
a small number of particles. Here we explore the possibility that a major
part of its binding might come from high-energy multi-body systems. We
first consider a simple approximation for a unitarized top-antitop (tf) quark
scattering amplitude A where such multi-body effects are added in through
a simple inelasticity contribution. The strong energy dependence of A necar
the ¢ threshold then leads to a self-consistent bound-state H solution, with
a calculated H-mass my = 2m, and small standard-model ttH coupling; in
this sense the tf channel itself plays an important dynamical role (4].

This result is similar to the one obtained in ref. 5 for coupled-channel
WW — Z Z scattering. Here, however, we find that we can construct a specific
model for our high-energy multi-body inelasticity contribution by assuming
Regge behavior [6] above an appropriate threshold, (calculated to be about
1 TeV) with parameters calculated self-consistently from a continuation of
our equations to unphysical angular momenta [7].

We will neglect the effect of the spin of the t. This should not affect om

main conclusions. Since the self-consistency of our dynamics rehies primanihy

on very general features like the rapid energy dependence of our amp.itude
near the ¢f threshold, these conclusions should not be affected much by re-
finements like spin, although the actual numerical values of our H parameters
may be modified somewhat. Moreover the t and t are nonrelativistic near
the tf threshold and so a scalar H exchange would be dominated by a cen-
tral spin-independent potential term there, with only negligible spin-orbit or
other relativistic corrections. With the appropriate amplitude we can also
treat high-energy Regge behavior as an effectively spinless problem in what
follows.

The exchange of a single H in the crossed () channel gives a contribution
to A(s,t) of

W(t) = mpTa/(m}y —t) (1)

where /Ty o« Htt coupling and s,t,u are the usual Mandelstam variables.
By carrying out a multiple iteration procedure, e.g. by starting with Eq.(1)
and using S-matrix unitarity and analyticity properties in all channels, we
are led to the diagrams of Fig. 1; Eq.(1) would itself be included within
the first (simplest) term in the sum of Fig. 1(a), for example. Basically,
Fig. 1(a) would be closely connected with unitarity at low s, whereas the
multi-body intermediate states of Fig. 1(b) would be closely linked to high-s
multi-body-production inelasticity in the direct (s)-channel. In general, of
course, the lines in Fig. 1 would include more complicated systems beyond
the t and H particles, and it is understood that we must add in corresponding
diagrams with crossed lines where applicable. We must be careful to avoid
double-counting, however, and subtract out any contributions from higher
graphs that are already fully included in lower (simpler) graphs.

I f is the center-of-mass scattering angle, the fth partial-wave pi ojection
1 1
An(s) = 5/ dcos® Py(cosf)A(s, t) (2)
1

pives an amplitude with e.g. “right-hand” cuts in the complex-s plane



running from branch points at s > 4m? to s = oo, and “left-hand” cuts
from s < 4m? to s = —oo. These arise from Fig. 1 and can be seen
quite readily for some of the simpler graphs. A projection of Eq.(1) with

cosf = 1+ 2t/(s — 4m?), for example, gives

Wi(s) = 2m% FT (s — 4m2)'T(£ + 1)T(3/2)/2T(€ + 3/2)(2m]; + s — 4m{)"!
(3)

where

(+2 €+1 3
F = zFl(—2—,—2—;€+5;(3—-4mf)2/(2m§,+s——4mf)2)

is the usual hypergeometric function; Eq.(3) gives a branch point at s =
4m? — m%,. We expect W,(s) to give the dominant singularity structure for
low-magnitude s < 4m?. In practice we can approximate the contribution of
W quite well for our purposes by setting F' = 1; this reproduces the exact
value and derivative of W at the physical s = 4m? threshold and is adequate
for higher energies.

We can obtain a unitarized amplitude taking account of the above sin-
gularities by using Padé approximants [5] or the N/D method [8] (See the
Appendix.) With an F' = 1 approximation in Eq.(3), an equivalent simpler
and more elementary alternative would be to apply the Cauchy integral for-
mula to W,/A,, which has branch points and cuts at the same positions as

Ay(s)/Wi(s) itself. We then obtain the dispersion relation

Wi(s)/Ad(s) = 1+(s—4mf+2mi,)/jo ds'Im[We(s')/ Ae(s))]/m (s —4m?+2mi,)(s'—s),

(4)

where we have made a subtraction at s = 4m? — 2m¥};. with the subtraction
constant (= 1} adjusted to guarantee that A, — W' there, since Ay is dom-
nated by the pole in W, at that point in the F' = 1 approximation. Strictly
speaking, this approximation fails for s < 4m? — m3, when evaluatmg U5

itsell. However. it can be argued. g from the N/D method. that Fq (1)
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nevertheless continues to be a good approximation for A,(s) for s R 4m?, and
also for any s < 4m? bound state arising from it, if we consistently set ' =1
everywhere (see the Appendix). In our case, this can be checked explicitly,

e.g. by modifying the F =1 approximation away from s = 4m? by taking
F = [m%.(s + 2m% — dm?)/m} (s + 2miy, — 4m2)|*,

so that our equations continue to apply with H — H'. We find that A, is
not affected much by moderate changes in my- for s R 4m?, even though W,
may change drastically in certain regions of s < 4m?.

With F = 1, W, and A, are both real for low-magnitude s < 4m? away
from the W, pole at s = 4m? — 2m};, and W,/A, is real at the pole itself,
since A, — W, there. For low s > 4m?, elastic S-matrix unitarity gives

ImA;!(s) = —p(s), where

p(s) = [(s — 4mf)/s}'* (5)

with our amplitude normalization; lower channels, such as W*W~ and ZZ
turn out to have a relatively small effect on our dynamics as Jong as mpy
is away from their thresholds, and will therefore be neglected for the time
being. For high |s|, on the other hand, Aq¢(s) would be dominated by the

inelastic Regge-type bebavior arising from Fig. 1(b). We can therefore write
Im[Wie(s)/Ad(s)] = —We(s)[p(s)8(s — 4m?) + R(s)8(Is| - M)l (6)

where R(s) is related to the inelastic Regge contribution to ZmA;'(s) for
very high |s|, and 8(y) = 1 for any y > 0 and zero for y < 0 [7]. Vor lower |s],
R(s) may also include the contribution of other intermediate-energy inelastic
cffects and singularities, but these could be approximately taken into account
simply by using a Regge R(s) with an appropriate modified A, which will in

anv case be fixed by self-consistency. In fact we will later find that such a A is



>> 4m?, and that R >> p for |s| > A, with an approximately {-independent
R. With F =1, Egs.(3)-(6) then give

1/Ad(s) = 1/Wy(s) — [Ie(s) + K)(2m% + s — 4mD)]™? /(s — am?)'.  {

-1

where the elastic contribution
I(s) = \ ds'p(s")(s' — 4am))t/m(2m} + 5 — amD) (s — 5). (8
4m;]

can be readily evaluated analytically for integer ¢, and the remainder reduces

to
K= /A “ ds'[R(s') + R(~s')]/ms" 9)
for A >> |s|, when K is approximately independent of £ and s. We can
readily check that Eq.(7), or Egs.(4) and (6), correctly reproduce all the
required properties of A,(s).
A particle 1 of mass m; manifests itself as a pole contribution I';/(m? — s)
to A.(s), with an extra imaginary part in the denominator if it is a resonance
above the tf threshold. If it is a non-elementary bound state or resonance, it

would arise from Eq.(4) or (7) if
ReAg}(m?) =0, (10)

with pole residue I'; given by

Fi. = —[%ReA,“(s)],zm?. (11}
We find that, with 'y << 1, an £ = 0, 1 = H solution with my and 'y
simultaneously consistent with the values in Eq.(1) or (3) is only possible
with a A or A such that my is immediately below the ¢ threshold. A small
I'y 1s in fact required by the standard model with our normalization, since
it corresponds to [myc?/(246GeV ) /4T << 1 for my = 2m, 2 340GV /¢
in that model. Specifically, with 'y = 0.15, for example, we must have

K= 1omt and my = 2m, (1 - 0.006).

The strong s-dependence of our amplitude near the ¢f threshold, or, equiv-
alently, the large I(s) = 1/8m};(4m? — 5)'/2 contribution to Fe.(11) from
Eq.(7) for s = 4m}, plays a crucial dynamical role in making possible this
self-consistent + = H. This general feature continues to apply for a broad
class of models beyond the simple one considered here. We could, for ex-
ample, multiply Eq.(3) by a constant taking on a broad range of values and
yet maintaining my = 2my; on the other hand it would take a much more
narrow range to obtain an H away from the ¢ threshold.

Returning to our original model, we find that the perturbative crossing-

symmetric H-pole-only tree-graph amplitude
A(s, t) = m{Tg/(mYy — 5) + W(b) (12)

gives an £ = 0 amplitude at s =~ 0 within 20% of the one given by Eq.(7) if we
again set F = 1 in Eq.(3). A more explicit perturbation-theory evaluation
may also give additional constant terms of the same order in Eq.(12), but
this does not affect our general conclusion. There is, of course, no reason why
Eqgs.(7) and (12) should agree exactly in a non-perturbative scheme such as
the one we are using, and even a perturbative expansion might be expected to
generate corrections comparable to the difference between Eqs.(7) and (12).
The general success of electroweak theory at low energies, however, would
lead us to expect the two amplitudes to have at least approximate agreement
at s = 0.

An approximate way of adding in heavy-mass exchange contributions for
f = 0 would be to add a constant ¢ to W,(s) in Eq.(3). With increasing
¢ > 0 we then find that we must have a decreasing K. We continue to find
an my = 2m, self-consistent bound-state H solution with a small standard-
model 'y, however, even in the elastic limit of K — 0 or R — 0 in Eq.(6).
But the difference between Eq.(7) and the £ = 0 projection of Fiq.(12) then

worsens; we find that K = 0 gives an A,(¥ 7/2) much larger than the value
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(= 30y << 1) given by Eq. (12), contrary to what we might expect from the
general phenomenological success of electroweak perturbation theory at low
energies. But in fact it can be argued that the effect of heavy-mass exchange
is already taken into account in an average “Regge-resonance duality” 8]
sense by the more complex higher graphs of Fig. 1. We will therefore return
to ¢ = 0 in what follows.

Although I;(s) played an important role in the self-consistent calculation
of H through the large size of I'(s) for s = 4m? in Eq.(11), its effect is
relatively unimportant for other purposes, even in Eq.(10) for ¢ = H and s =
4m?. We can therefore safely set I, = 0 in what follows. In particular, with
our mg = 2m, solution, we then find that Eqs.(7)-(11) also lead to an € = 1
state with m; = 2v/5m, = 750GeV/c? and a width of 16m,['y /45 = 9.2GeV,
although the actual values are presumably more model dependent than our
H-mass result. The added contribution to W, from the exchange of such a
higher-£ state in the t channel is expected to be suppressed by the no-double
counting requirement discussed above, however.

We have not as yet adopted any particular model for the inelasticity
function R(s) of Egs.(6)-(9). In fact any inelastic effects leading to the ap-
proximately constant K required for our self-consistent H solution would be
acceptable. We shall now see that R(s) can be consistently calculated by the
exchange of a Rrgge trajectory o passing through H, ie. by the collective
effect of H and a!l its orbital excitations. Our effective threshold A in Eqs.(6)
and (9) turns out to be relatively large, so that we should be justified in ne-
glecting the effect of lower-lying trajectories. On the other hand, the effects
leading to diffra-tion, while dominant for extremely high s, are expected
to arise from multi-ay exchanges with “deferred thresholds” in our type of
model, and should therefore not begin to modify single-ay exchange signifi-

cantly until we have |s| >> A, leading again to a negligible contribution to

K through Eq.(9); see e.g. ref. 10 and the references listed therein.
Eqs.(3)-(11) can be consistently continued to complex £. A Regge pole
contribution b(s)/[f — a(s)] to A¢(s) in the € plane then arises when
1/Aa(,)(s) =0 (13)
with A,(s) given by Eq.(7) and (3), with F = 1. The corresponding residue

b(s) is then given by

T8,
) 5214: (9)e=ats)- (14)

Using s — t crossing symmetry, a-dominant Regge exchange then gives
A(s,t) = B(t)e™™W + 1)(|s|/4m?)*® / sin ra(t) (15)
for large |s| and small |t|, where
B(t) = mb(t)(t/4m? — 1) *OT(a + g)/[‘(-;—)[‘(a +10. (16)

Eq.(15) arises basically from graphs of the Fig. 1(b) type.
To evaluate K from Eqgs.(6),(9) and (15) we must first evaluate ImA; (s)
from Eq.(15) using, e.g., the generalized complex-£ projection formula [7]

sin

Ai(s) = % /jl d cos B Py(cos ) A(s, t) — 7r1r£ /_:dcos 0Q(— cos8)A(s,t),
(17)
which is equivalent to the more familiar Froissart-Gribov formula and reduces
to Eq.(2) for integer ¢; it can be readily shown to give Eq.(3) from Eq.(1), for
example. Since A(s, t) is peaked at small |t| for high {s|, the second integral
of £q.(17) gives a negligible contribution, however, and we can actually eval-
uate Eq.(17) analytically if we write aft) = a(0) + a't in the peaked factor
(|s|/4m?)" in Eq.(15) and replace all its other factors by their values at

¢ = 0. For large |s|/4m? we then obtain the {-independent result
TmA, ' (s) = —4m’a’sin’ %n(ll)(lsl/llm,,?)]"”w)fn.(|s‘/4m'f\/B(()) (18)

9



Since we find that Eq.(18) gives ImA;* >> p for |s| > A, Egs.(6).(9) and
(18) then give the {-independent constant

K 2 o/ (A/am?) == {en(A/4m?) + (1 + a(0)] 7} /2m B(O)[1 + a(0)].
(19)

If we now combine Egs.(3),(7),(13),(14),(16) and (19) for { < 0 with our
earlier self-consistent i = H, ¢ = 0 results from Eqs.(3),(7),(10) and (11) we
find that we must have A = 44m? = 1TeV?. Since this A is >> 4m?, as
required for the large-|s| approximations of Eqs.(15)-(19), we do in fact have
a consistent model for the multiparticle inelastic function R(s). Since the
small-|t| approximation used in going from Eq.(15) to Eq.(18) should actually
overestimate R(s) for very high |s|, we may actually be underestimating A,
further strengthening our conclusion.

As discussed earlier, a future more detailed calculation should include the
exchange of more massive higher—# resonances in W, although we must at
the same time subtract out the exchange of contributions to the same partial
waves coming from the higher graphs of Fig. 1 to avoid double counting. The
net contribution to W would have the general spectral form [ dt'w(s, t')/(t' -
t) with an explicit s dependence through w(s,t’}. In the non-relativistic
case this would correspond to an energy-dependent potential, which can be
dealt with without introducing any divergences simply by allowing the overall
strength of the potential to be different at different energies. For any given
fixed energy /3 we then have equations similar to the ones we had befors.

but with the replacements
W(t) - W(t, &) =miTh/(mly —t) + /dt'u7(§,t')/(t' - 1),
A(s, 1) — A(s.1,53), Wils) — Wils, 3) and Ar(s) — Ag(s.8)
In effect. then, we have something like spinless exchange but with a coupling,

that varies parametrically with 5. The actual physical amphtude 1< then
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A(s,t,5) at s = § We can do the same with our relativistic equations.
Eventually, of course, we must also include the full spin complications of the
t and {, or of any other external particles we may bring in.

We have so far not explicitly included channels like WW and ZZ which
involve elementary particles beyond the t-quark. The effect of WW and Z2Z
is in fact negligible on our my = 2m, H-solution. However, the rapid energy
dependence of an amplitude including their contribution near the W'W and
Z 7 thresholds means that we can have, with a modified A, an alternative
self-consistent H solution with my immediately below the WW | or the ZZ,
threshold. In such a case it is the ¢ channel which now has a small effect
on our H, so it would be more appropriate to start with the coupled-channel
WW — ZZ amplitude, with perhaps my = mgy in first approximation. A
preliminary calculation with such an amplitude was in fact carried out in
ref. 5; this did not include an explicit Regge model for high-energy inelastic
multi-body contributions, however, and somewhat arbitrarily assumed that
the effect of lower-lying Regge trajectories and the particles on them can be

neglected. We shall explore both of these points in a later article.



APPENDIX

The equation (4) depended on the F = 1 approximation in Eq.(3}. The
N/D method provides a more general way of unitarizing A(s), even in the

absence of this approximation. To deal properly with the general—{ threshold

behavior of A; we write

AL(9)[(se + 5)/(s = 4m{))* = Eu(s) = N(s)/D(s), (A1)

with sy, < 4m? — m%,

Do) = 1= (s=s,) [ dSTUSINE) /(s = sa)(s =), (42)

N(s) = We(s)D(s) + [~ dsTus)WlIN()/n(s' — ). (43)

. 1 ‘m‘z_mz ’ r
W) =2 [T B Imi ) (GE) Ad)

TJ-A s —5 ‘' — 4m}?
and

Ty(s) = p(s)[(s — 4m?)/ (s + )/'6(s — 4m?) + R(s)8(|s| — A),  (A5)

where R is related to the inelastic Regge contribution to ZmE; '(s) for high
|sl; Eqs.(A1)-(A3) then give an s,-independent A, which satisfies the correct
unitarity relation IZmE;(s) = —Ti(s) for s > 4m? and s < —A, and has the
correct left-hand cut discontinuity, etc., as given by W(s), for 4m? — m}, >
s > —A. In the usual elastic limit, R — 0and A — oo. Care must be
exercised in dealing with the s = —A boundary for finite A, however. With
F =1 and W, given by Eq.(3), Egs.(A1)-(A5) reduce directly to Eq.(A7)
with s, = 4m? — 2m},.

If we use Eq.(A2), Eq.(A3) reduces to a non-singular integral equation
for N(s)

N(s) = ﬂ’,(s)+/ dST(SYN(S(8' =5, )We(8) = (s—s )Wl ) /(s < )i

{AGY

which only needs to involve N(s) and W(s) in the s > 4m?, s < —A range.
This is also the only range for which they are needed to evaluate D(s) from
Eq.(A2) for any s, or any 5 <0 bound-state parameters, since D = 0 at a
bound state, so that the W,(s)D(s) contribution to Eq.(A3) likewise vanishes
there, leaving a contribution which again only requires W(s) and N(s) in the
s > 4m?, s < —A range. This, in turn, means that any approximation for
W,(s) only has to be valid within this range.

In a more complete treatment we must remember that the left-hand cut
does not arise exclusively from Eq.(1). There are also contributions from the
higher ladders of Fig. 1, a small number of which are hopefully sufficient for
our purposes. An alternative approach would be to evaluate a finite number
of Fig. 1 graphs within a given partial wave, and rearrange the resulting

series in a Padé approximant {5].
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FIGURE CAPTION

Fig. 1. Generalized ladder diagram sums, e.g., for tt — t. The lines

may include more complex systems beyond the ¢,f and H particles.
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