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Abstract. This study explores enhancements in analysis speed, WAN band-
width efficiency, and data storage management through an innovative data ac-
cess strategy. The proposed model introduces specialized ‘delivery’ services for
data preprocessing, which include filtering and reformatting tasks executed on
dedicated hardware located alongside the data repositories at CERN’s Tier-0,
Tier-1, or Tier-2 facilities. Positioned near the source storage, these services
are crucial for limiting redundant data transfers and focus on sending only vi-
tal data to distant analysis sites, aiming to optimize network and storage use
at those sites. Within the scope of the NSF-funded FABRIC Across Borders
(FAB) initiative, we assess this model using an “in-network, edge” computing
cluster at CERN, outfitted with substantial processing capabilities (CPU, GPU,
and advanced network interfaces). This edge computing cluster features dedi-
cated network peering arrangements that link CERN Tier-0, the FABRIC exper-
imental network, and an analysis center at the University of Chicago, creating
a solid foundation for our research. Central to our infrastructure is ServiceX,
an R&D software project under the Data Organization, Management, and Ac-
cess (DOMA) group of the Institute for Research and Innovation in Software
for High Energy Physics - IRIS-HEP. ServiceX is a scalable filtering and refor-
matting service, designed to operate within a Kubernetes environment and de-
liver output to an S3 object store at an analysis facility. Our study assesses the
impact of server-side delivery services in augmenting the existing HEP comput-
ing model, particularly evaluating their possible integration within the broader
WAN infrastructure. This model could empower Tier-1 and Tier-2 centers to
become efficient data distribution nodes, enabling a more cost-effective way to
disseminate data to analysis sites and object stores, thereby improving data ac-
cess and efficiency. This research is experimental and serves as a demonstrator
of the capabilities and improvements that such integrated computing models
could offer in the HL-LHC era.

1 Introduction

In high-energy physics, data processing tasks can be broadly categorized into two groups with
distinct computing requirements: “production” and “analysis”, as they are informally referred
to in ATLAS [1]. The production tasks include Monte Carlo (MC) generation, simulation,
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reconstruction, calibration, and similar activities. These tasks typically involve processing
vast datasets, consuming millions of CPU hours, and have turn-around times measured in
weeks. The PanDA workflow management system [2], designed for global grid computing,
efficiently handles such workloads.

In contrast, analysis tasks involve one or more event-filtering steps, followed by detailed
analysis and systematic studies. For these tasks, optimal processing demands turn-around
times measured in hours, minimal data management overhead (e.g., merging small files,
dataset movement, and cleanups), and a streamlined workflow that delivers only the necessary
filtered data. This distinction highlights the differing operational needs between production
and analysis in high-energy physics.

ServiceX [3], developed by the Data Organization, Management, and Access (DOMA)
group within IRIS-HEP [4], enables rapid filtering of large datasets using func_adl [5], with
the option to download or stream the resulting data in a user-preferred format. However, its
performance heavily relies on the input data being locally accessible.

To address this requirement, two strategies can be employed: implementing a highly ef-
ficient caching system or performing the filtering directly at most grid sites where the data
resides. We evaluated both approaches and compared their performance against the com-
monly used download-then-process workflow.

Figure 1. Server-side filtering strategy processes data locally available at ATLAS Tier-0 site (CERN)
EOS storage. Outputs are transported via fast FABRIC links to University of Chicago Analysis Facility
for a parallel processing using up to a thousand Dask workers.

2 System Architecture and Setup

To evaluate the download-then-process workflow, we utilized the University of Chicago Anal-
ysis Facility (UChicago AF) [6]. For testing central filtering with cached remote data access,
we employed a production ServiceX instance also hosted at the UChicago AF. Server-side
filtering was tested using ServiceXLite, deployed on the FAB cluster at CERN, with out-
put data transported via FABRIC [7] and subsequently processed on a large Dask [8] cluster
(Figure 1). In the following sections, we provide a detailed description of each component.



2.1 University of Chicago Analysis Facility

This facility is one of the largest ATLAS Analysis Facilities, supporting over 500 users and
offering a wide range of resources, including HTCondor [9] processing queues, Jupyter-
Lab [10] environments, GPUs, and Dask clusters. It boasts more than 7,500 CPU cores
distributed across 115 nodes, providing robust computational capabilities for its users. All of
the resources are a part of single Kubernetes cluster. A Rook-orchestrated Ceph [11] cluster
provides filesystem, block device and S3 storage.

2.2 ServiceX

ServiceX comprises multiple interconnected services that require a Kubernetes cluster for
deployment. It is managed through a Helm[12] chart and demands careful configuration and
maintenance. Given these complexities, deploying and supporting a large number of indepen-
dent instances is impractical. Additionally, expecting users to log into multiple instances or
determine which instance is best suited for specific data introduces significant inefficiencies.

To address these challenges, we developed ServiceXLite—a streamlined, single Kuber-
netes deployment designed solely for data filtering. ServiceXLite relies on a central ServiceX
instance to assign workloads, simplifying deployment and ensuring a more user-friendly ex-
perience. The architecture of that setup is shown in Figure 2.

When used to filter data delivered over WAN, the central ServiceX deployed at the
UChicago AF was configured to use eight XCache [13] instances with NVMe-based backing
storage.

Figure 2. System architecture of the server-side filtering approach. A user at the UChicago AF submits
request to a local ServiceX, and uses a local Dask cluster to analyze data from local S3 storage. Num-
bered arrows show order of steps and direction of information flow. Filtered data has been delivered by
a ServiceXLite instance running on the FAB cluster at the CERN Tier-0 site.

2.3 FABRIC and FAB

FABRIC is an international infrastructure that enables cutting-edge experimentation and re-
search at-scale in the areas of networking, cybersecurity, distributed computing, storage, vir-



Figure 3. Network peering arrangement that links the CERN Tier-0 and the Analysis Facility at the
University of Chicago.

tual reality, 5G, machine learning, and science applications. It has 29 sites interconnected by
high speed, dedicated optical links.

FABRIC Across Borders (FAB) is an extension of the FABRIC testbed connecting the
core North America infrastructure to four nodes in Asia, Europe, and South America.

The FAB infrastructure at CERN includes almost 1200 CPU cores, 5 GPU equipped
nodes, and high-speed network interfaces. A FABRIC experiment (slice) is a virtual cluster
composed of compute and networking services. After creating the slice using FABRIC APIs
via the Jupyter Notebook service, we utilized Kubespray [14] to set up a Kubernetes cluster
and Flux [15] to manage Continuous Deployment (CD) of infrastructure components such as
CertManager, the ingress controller, Multus [16], and application components (e.g., ServiceX
Lite).

The experiment slice consists of 10 nodes, each equipped with 64 cores and 128 GB of
RAM. We leveraged FABRIC’s external connections and peering services (based on intercon-
nects via ESnet [17] and R&E networks) to provide the slice with access to both the LHCOne
network [18] and the UChicago Analysis Facility network.

By running ServiceX Lite on FABRIC as a middleman, we required only two peering
connections: one between the slice and LHCOne, and another between the slice and the
UChicago Analysis Facility. This approach eliminated the need for a direct route between
LHCOne and the Analysis Facility, preventing experiment traffic from interfering with pro-
duction traffic and reducing overall complexity, as shown in Figure 3.

3 Performance Evaluation

Our analysis involved processing 3 TB of ATLAS data distributed across 21,000 ROOT [19]
files, accessing approximately 5% of the data from each file. The results, including time-to-
result and the volume of data transferred, are summarized in Table 1.

The conventional workflow, which relies on downloading the entire dataset using RU-
CIO [20] followed by HTCondor processing, required nearly 24 hours, with the vast majority
of this time spent on data transfer and only minutes on processing.



Table 1. Time to completion and bandwidth used by the three approaches to data analysis

Configuration Time to result
(HH:MM:SS)

Transatlantic data
transfer volume (GB)

Download and local processing 22:28:00 3057
ServiceX transformers local, reading over
WAN 00:15:28 12

Process data using ServiceXLite on
FABRIC@CERN 00:06:54 5
ServiceX transformers local, reading from
cache 00:03:33 N/A

Using ServiceX in its standard configuration, input data is read over the WAN. How-
ever, the high latency between the University of Chicago and CERN makes reading small
file segments inefficient. When leveraging XCaches, blocks of 256 KB are read and cached,
significantly reducing the number of read operations and mitigating latency penalties. This
approach, however, nearly doubles the amount of data transported. Despite this, the process-
ing time of less than 16 minutes, while transferring only 12 GB across the Atlantic, marks a
significant improvement.

The ServiceXLite-based approach, which performs local filtering near the data storage,
completed the task in just seven minutes—a 55% improvement in processing time. Moreover,
it further reduced the transfer volume by an additional factor of two, as only the filtered data
was transported. However, this approach remains roughly twice as slow as the theoretical
minimum achievable when processing data directly from a local hot cache.

4 Future Prospects
The study identifies avenues for further enhancement, including the integration of intelligent
scaling, fair-share resource allocation, and location-aware data distribution. By redesigning
the filtering service as a single distributed system and deploying it across most or all Tier-1
and Tier-2 sites that host analysis data, these facilities could become highly efficient data
distribution hubs, strengthening the broader HEP computing ecosystem.

As the HL-LHC era approaches, characterized by exponentially increasing data volumes,
the Server side filtering model offers a scalable, cost-effective solution to meet the computing
demands of next-generation experiments.

5 Conclusion
By deploying an efficient data filtering service close to the storage hosting frequently used
datasets for analysis, we demonstrate the potential of server-side (or even in-network) data
filtering and reformatting to revolutionize data access for high-energy physics analysis. This
model achieves significant gains in processing speed and bandwidth efficiency, paving the
way for more agile, responsive computing infrastructures within the HEP community.
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