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Abstract. The ATLAS experiment is currently developing columnar analysis
frameworks which leverage the Python data science ecosystem. We describe
the construction and operation of the infrastructure necessary to support demon-
strations of these frameworks, with a focus on those from IRIS-HEP. One such
demonstrator aims to process the compact ATLAS data format PHYSLITE at
rates exceeding 200 Gbps. Various access configurations and setups on differ-
ent sites are explored, including direct access to a dCache storage system via
Xrootd, the use of ServiceX, and the use of multiple XCache servers equipped
with NVMe storage devices. Integral to this study was the analysis of network
traffic and bottlenecks, worker node scheduling and disk configurations, and the
performance of an S3 object store. The system’s overall performance was mea-
sured as the number of processing cores scaled to over 2,000 and the volume
of data accessed in an interactive session approached 200 TB. The presenta-
tion will delve into the operational details and findings related to the physical
infrastructure that underpins these demonstrators.

1 Motivation and Context

The HL-LHC introduces unprecedented challenges in data processing, storage, and access
[1–3]. Efforts are underway to develop innovative solutions for high-throughput analysis,
addressing both software [4] and infrastructure needs [5]. This study demonstrates an HL-
LHC analysis pipeline capable of sustaining a data transfer rate of 200 Gbps between storage
and CPU. The analysis was based on a model approximating the processing of a 200 TB
dataset within 30 minutes, a projection for 2030 [6]. For 2024, the goal was scaled to 25%
of this target, corresponding to the 200 Gbps benchmark. Testing was performed at the
UChicago Analysis Facility, part of the U.S. ATLAS Shared Analysis Facility [7], taking
advantage of its close proximity to storage servers at the ATLAS Midwest Tier 2 center
(MWT2), which is a component of the Worldwide LHC Computing Grid (WLCG) [8].
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1.1 UChicago Analysis Facility

The UChicago Analysis Facility (AF) supports diverse analysis workflows for the ATLAS
collaboration [9], integrating traditional batch systems like HTCondor with interactive tools
such as Jupyter notebooks with GPU support. At its core are approximately 35 “hypercon-
verged” nodes, each equipped with substantial disk space, memory, and CPU resources, mak-
ing them well-suited for hosting storage, job slots, and other critical services. The facility also
includes four dedicated login nodes and six GPU nodes, alongside additional machines op-
timized for running Jupyter notebooks, enabling interactive analysis workflows. Co-located
with MWT2, the facility employs a flexible Kubernetes-based infrastructure that enables dy-
namic reconfiguration to adapt to evolving analysis requirements. This Kubernetes founda-
tion facilitates the integration of advanced services like ServiceX [10] and Coffea-Casa [11],
as well as other container-based applications. During the 200 Gbps challenge, the facility
expanded its resources by adding 75 servers to its original 35 hyperconverged nodes to meet
the benchmark’s requirements.

2 Shape of the Challenge

As indicated schematically in Figure 1, the challenge was structured around two distinct
data workflows: (1) direct data flow from XCache [12] servers to Dask workers using the
Uproot [13] and Coffea libraries for high-performance ROOT file handling, and (2) trans-
formed data flow through ServiceX which converts ROOT files into columnar formats for
storage in S3-like object stores before ingestion by Dask. The two workflows reflect modern
trends in high-energy physics, emphasizing efficient data handling and interoperability be-
tween diverse tools and formats. This dual-path approach also provided flexibility to explore
bottlenecks inherent in each method.

Figure 1. Both processing paths started from a warm XCache. The path that involves ServiceX is
expected to have higher scaling limit but requires optimization in splitting resources between ServiceX
and Dask workers.

3 Baseline

To establish a performance baseline, a 192 TB data sample in the ATLAS PHYSLITE format
[14] was replicated to the dCache storage system at MWT2 using Rucio [15]. The data was
distributed across 62 pool nodes, each connected at either dual 10 Gbps or dual 25 Gbps to
the local area network. Care was taken to place this data on newer storage servers, chosen
for their superior read performance. Initial tests focused on measuring raw data read rates
using the XRootD xrdcp client utility [16] writing to /dev/null. These tests achieved an
aggregate throughput of nearly 300 Gbps (storage to client) while concurrently supporting



ATLAS production workloads, Figure 2. The test setup employed 250 xrdcp clients dis-
tributed across the Analysis Facility (AF) cluster worker nodes. The results confirmed that
the storage system and network infrastructure were capable of supporting the benchmark’s
aggregate throughput target for simple read operations from storage, ensuring readiness for
further high-throughput analysis benchmarks. However, the shape of the analysis challenge,
with its focus on using “nearby” caches, was not as topologically simple as we discuss below.

Figure 2. Aggregate throughput between AF workers and MWT2 dCache storage servers. Each color
represents the read rate from an individual dCache pool. Most testing occurred during a 90-minute
period, where competition for client workers (due to HTCondor scheduling on the AF) and shared
usage with MWT2 production I/O resulted in the observed variability.

4 Bottlenecks

The demonstrator called for caching rather than directly reading from the MWT2 dCache
system since future analysis facilities may not be co-located with a large storage facility
and performing analysis over wide area networks introduces additional challenges. The AF
initially employed only a single XCache server with a 50 Gbps network connection for its
physics community. This was obviously going to be the first bottleneck. To remove it, the
cache capacity was expanded to eight servers, each equipped with ten 3.2 TB NVMe drives
configured as JBOD arrays. With dual 25 Gbps interfaces, which we bonded, the system thus
was capable of a total bandwidth of 400 Gbps for read (egress) traffic from “fast” storage.
After deploying these additional servers we conducted another round of low-level read tests,
this time targeting the caches, and again using simple xrdcp clients from AF workers. The
tests utilized 85 AF nodes, with each node running one xrdcp client for each cache (a total of



85 × 8 clients). Figure 3 shows that these tests achieved a peak aggregate throughput of 350
Gbps, comfortably above the benchmark requirement of 200 Gbps. However, initial runs of
the demonstrator pipelines (both data flow paths) yielded throughput measurements far below
that target and thus “the network” drew further scrutiny.

Figure 3. Network egress traffic for each XCache server during simple read tests.

4.1 Caching and Network Topology

The network topology, specifically the relative placement of workers and caches within the
AF, was a critical factor in achieving high throughput. A detailed examination of all host and
switch uplink interfaces for errors and I/O rates revealed that the placement of caching servers
within the AF worker node racks was the primary bottleneck. These caching servers, origi-
nally repurposed worker nodes with large, fast disk volumes, were connected to top-of-rack
switches with uplinks to the spine network limited to 80 Gbps, as shown in Figure 4. This
configuration resulted in multiple caching servers on the same top-of-rack switch compet-
ing for limited bandwidth when serving clients distributed across the cluster. To address this
issue, the XCache nodes were redistributed across multiple top-of-rack switches, which local-
ized traffic and reduced cross-rack contention. While this redistribution partially mitigated
the bottleneck, it underscored the importance of cache-aware network planning for future
deployments. File distribution for the entire 192 TB dataset across the eight caching servers
was managed by Rucio, which used filename hashing to assign files to specific XCache nodes.
This file placement information was utilized by both Dask and ServiceX clients during dataset
reads, ensuring efficient access paths for their respective workflows.

4.2 Cluster Optimizations

Running a production analysis facility supporting hundreds of users alongside the 200 Gbps
challenge posed significant challenges. Resource contention arose as Dask workers priori-
tized Kubernetes job slots over HTCondor workloads. To alleviate this, 75 MWT2 worker
nodes were allocated to the AF, adding 3,000 hyperthreaded cores. A Kubernetes Horizontal
Pod Autoscaler [17] was configured to dynamically balance HTCondor and Dask workloads,
ensuring equitable resource allocation. Additional operational tuning was necessary to ad-
dress performance issues during the challenge. The Kubernetes etcd database [18] required
reconfiguration to handle the large-scale launch of Dask workers. Additionally, networking



Figure 4. The AF network topology during the 200 Gbps demonstrator showing the relative placement
of caches and worker nodes within the network. Juniper model numbers and link capacities are shown.

inefficiencies, such as suboptimal MTU settings and DNS resolver timeouts, were identified
and partially mitigated. These adjustments demonstrated the complexity of operating a high-
performance analysis system at scale. Network bottlenecks described above were a recurring
theme, with significant traffic passing through multiple layers of indirection, including Ku-
bernetes ingress controllers and load balancers. Two potential solutions were proposed: (1)
developing smarter, rack-aware services to optimize traffic flows and (2) simply upgrading
the network infrastructure to eliminate bottlenecks. The latter was identified as the more
practical short-term solution.

4.3 Object Store Bottlenecks

The UChicago Analysis Facility (AF) employs a Rook-based Ceph storage system [19] within
its Kubernetes cluster to meet diverse storage requirements, including POSIX-compliant file
systems, block devices, and S3-compatible object stores. For the 200 Gbps challenge, the
RADOS Gateway (RADOSGW) was critical, managing the S3-like object storage utilized by
ServiceX and Dask. The RADOSGW relied on an all-NVMe disk pool with 3x replication,
which ensured data redundancy but incurred significant write amplification.

Initially, a single RADOSGW instance was deployed behind an Ingress controller for
TLS termination. This configuration quickly became a bottleneck, funneling all ServiceX



traffic through a single server. A high volume of 503 Slow Down errors indicated that system
components were overloaded under peak loads. Moreover, the reliance on a single ingress
point and MetalLB’s Layer 2 mode [20] for traffic distribution further constrained throughput.
Finally, the limited number of Ceph placement groups (32) resulted in poor data distribution
across the storage pool, exacerbating performance bottlenecks.

To address these challenges, several steps were implemented, with before and after con-
figurations depicted in Figure 5:

1. Multiple RADOSGW Instances: A total of 19 additional RADOSGW instances were
deployed across 35 nodes, each equipped with either 25 Gbps or 10 Gbps connectivity,
to better handle the increased S3 traffic.

2. Networking Configuration Update: The system was reconfigured to use NodePort,
enabling direct access to individual RADOSGW instances and bypassing the central
Ingress controller, thereby reducing network contention.

3. Increased Placement Groups: The number of Ceph placement groups was increased
from 32 to 512, significantly improving data distribution across the Ceph pool and
reducing data skew.

These adjustments alleviated many of the performance bottlenecks, improving storage
system efficiency. However, the 3x replication factor remained a challenge, amplifying net-
work and storage loads during high-throughput operations.

Figure 5. Deployments of RADOS Gateways before (left) and after optimizations (right).

5 Results and Summary

The results for the two pipeline methods after these facility reconfigurations and service de-
ployments are shown in Figure 6. The demonstrator successfully achieved the 200 Gbps



Figure 6. Aggregate read I/O traffic from from the two pipeline methods: Using Dask and Uproot
reading from XCaches (left), and ServiceX reading from caches and object store (right).

benchmark target for direct Dask-cache reading, whereas the path using ServiceX with ob-
ject storage approached a plateau value of 170 Gbps.

Looking ahead, we are interested to explore further optimizations of the object store for
ServiceX output, including eliminating the 3x replication, which is unnecessary for these
transient datasets. We are additionally exploring reorganizing the placement of caches within
the existing network, and upgrading with 400/100 Gbps capable switches.

This work was supported in part by the National Science Foundation awards PHY-
2120747, OAC-2115148, OAC-2029176, OAC-1836650 and PHY-2323298.
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