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Abstract Modern analyses of experimental data from hadron colliders rely on theory predictions at high
orders in perturbation theory and a variety of input settings. Interpolation grids facilitate an almost instant
re-evaluation of theory predictions for different input parton distributions functions (PDFs) or scale settings
and are thus indispensable in the study of the parton content of the proton. While interpolation grids at
next-to-next-to-leading order (NNLO) exist for some key processes relevant for PDF determinations, a
notable exception is the Drell–Yan process that constitutes the production of electroweak gauge bosons
at hadron colliders and provides important constraints on the quark content of the proton. To address
this gap, we report on a new interface between the parton-level Monte Carlo generator NNLOJET and the
interpolation grid library PINEAPPL and demonstrate its use for the Drell–Yan process. Accompanying
this note, we release Drell–Yan grids covering a wide range of measurements that commonly enter global
determinations of PDFs. We use the grids to study accidental cancellation between partonic channels at
NNLO and inspect the validity of a K-factor approximation that was widely employed previously.

1 Introduction

Over the past decades, the unprecedented precision
achieved by the experiments at the Large Hadron Collider
(LHC), as well as the projections of its high-luminosity
upgrade (HL-LHC), has driven remarkable theoretical ad-
vances, pushing the frontier of perturbative Quantum
Chromodynamics (pQCD) to next-to-next-to-leading or-
der (NNLO) accuracy and beyond. Given the high compu-
tational resources consumed by such state-of-the-art cal-
culations, efficient methods to re-evaluate predictions for
different inputs are of critical importance. Of particular
interest are fast interpolation grids, which preserve the
dependence of the partonic cross sections on the renor-
malisation and factorisation scales, the longitudinal mo-
mentum fractions carried by the partons within the collid-
ing hadrons, and the strong coupling αs. The generation
and usage of interpolation grids are facilitated by libraries
such as APPLgrid [1], fastNLO [2,3], and PINEAPPL [4,5].
These grids enable fast evaluations of the cross section for
different choices of parton distribution functions (PDFs)
that would otherwise require a costly re-calculation, and
are thus indispensable for the determination of PDFs.

Interpolation grids are available at NNLO for various
processes, e.g., for jet production in deep-inelastic scat-
tering (DIS) [6, 7], jet production in hadron collisions [8],
top-quark pair production [9, 10], and inclusive DIS pro-
duction [11,12]. A notable absence in this list is the Drell–
Yan (DY) process, which constitutes the production of
electroweak gauge bosons at hadron colliders. While grids
were made available for inclusive fixed-target DY [13], no

differential predictions are available despite it being a pro-
cess of high importance for PDF determinations, account-
ing for roughly 20% of the total dataset in recent global
fits [14–16].

Moreover, the Drell–Yan process [17] is a high-precision
probe at hadron colliders and it has been known fully dif-
ferentially at NNLO for a long time [18–21], and most re-
cently also computed at N3LO both at the inclusive [22–
25] and differential level [26–30]. Despite the availability
of predictions, no differential grids are available at NNLO
and so current PDF determinations commonly rely on an
approximation basted on NLO grids supplemented with
NNLO K-factors obtained for a specific choice of PDF.
In this note we interface the parton-level event gener-
ator NNLOJET [31] that is based on the antenna sub-
traction formalism [32–36] with the PINEAPPL [4,5] grid-
interpolation library. This enables the production of inter-
polation grids for all processes included in the NNLOJET

code in a variety of scenarios. We demonstrate the use of
this new interface using the DY process as an example.
Together with this paper we make available a wide range
of grids that correspond to the entire set of DY data that
enters the NNPDF4.0 [16] determination of PDFs. The
grids are available to download at:1

https://ploughshare.web.cern.ch

This note is structured as follows: in Section 2 we de-
scribe the grids that we make available and provide a

1 Grids are provided in the PINEAPPL format; conversion
from and to (pineappl [import|export] --help) this format
facilitate its use as an universal converter.
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summary of the metadata that is included. We demon-
strate the accuracy of the interpolation and provide some
examples of studies that can be readily performed with
the PINEAPPL command-line interface (CLI). We end in
Section 3 with new insights into the known feature of ac-
cidental cancellations at NNLO and assess the impact of
the widely used K-factor approximation in the context of
global PDF analyses.

2 Interpolation grids

The general idea of interpolation grids follows from the
property of QCD factorisation, where hadronic cross sec-
tions can be written in terms of a convolution of the par-
tonic cross section with the PDFs. Approximating the
PDFs through a decomposition into a set of eigenfunc-
tions, a grid can be produced that corresponds to the
convolution of said eigenfunctions with the partonic cross
section. With this at hand, the evaluation of a hadronic
cross section reduces to performing a sum over the grid
entries weighted by the PDFs at the given nodes, thus,
substantially speeding up the evaluation. Further details
on the grid-interpolation techniques as implemented in the
PINEAPPL library can be found in Ref. [4].

Accompanying this manuscript, we release a large set
of interpolation grids for the Drell–Yan process corres-
ponding to the measurements summarised in Table 1 that
were produced using the implementation of this process
within the NNLOJET framework [59]. All predictions are
produced for the central scale choice µR = µF = ET,V ,
where the transverse energy ET,V is defined in terms of the
invariant mass of the intermediate electroweak gauge bo-

son and its transverse momentum, ET,V =
√
m2

V + p2T,V .

This choice largely coincides with the invariant mass mV

in inclusive quantities, however, it accounts for the im-
pact of hard QCD emissions in phase-space regions that
are sensitive to it.

Lastly, all grids evaluate to absolute predictions in fb
units with appropriate bin-width normalisations follow-
ing the HEPData entries provided with the correspond-
ing measurements. No composition of observables is per-
formed in order to maintain the full flexibility and gran-
ularity that these grids offer. In particular, this means
that in order to obtain normalised distributions, such as
(1/σ) dσ/dO, this has to be performed by the user by ap-
propriately summing the cross section of the individual
bins.

2.1 Metadata

The interpolation grids made available alongside this pub-
lication contain the following metadata that are accessible
through the PINEAPPL CLI:2

nnlojet runcard — A sample NNLOJET runcard used
to produce the grid.

2 pineappl read <grid> --get <key>

nnlojet version — Version of NNLOJET used.
pineappl gitversion — Version of PINEAPPL used.
result — Reference numbers as reported by NNLOJET

broken down into different perturbative orders together
with associated Monte Carlo integration errors.

results pdf — The PDF set used to generate the res-
ults. This information is necessary in order to perform
closure tests shown in Section 2.2.

hepdata — HEPData entry of the dataset for which the
grids were produced, c.f. Table 1.

2.2 Closure tests

One of the main advantages of interpolation grids is the
relatively small storage requirement associated with them.
This is in contrast to approaches based on storing separate
collision events, such as Ntuples [60,61] or HighTEA [62],
which often have a significantly larger storage footprint.
The smaller size is achieved by both fixing the setup (event
selection and binning of histograms) and thus giving up
on some flexibility, as well as the approximation through
interpolation. The latter demands that any systematic un-
certainty introduced by the interpolation to be well below
other uncertainties in the calculation. In the case of the
Drell–Yan process, where NNLO corrections are known
to be very small and plagued by large numerical cancel-
lations, assessing the quality of the grids is particularly
important.

In Fig. 1 we present closure tests that compare predic-
tions obtained from evaluating interpolation grids against
exact reference numbers from the calculation used to gen-
erate them. Any observed difference is thus solely due to
interpolation errors. To this end, we decompose the NNLO
predictions into separate contributions

dσNNLO = dσLO + dσδNLO + dσδNNLO ,

and perform the closure test on each of the perturbat-
ive coefficients. Figure 1a highlights that the interpola-
tion errors are typically well below the per-mille level in
the bulk of the phase space. However, deviations can be-
come as large as few per-mille in extreme cases such as
the forward region of the LHCb experiment that probes a
much larger range of the momentum fractions as seen in
Fig. 1b. It should be emphasized that dσδNNLO typically
amounts to a few percent of the full NNLO prediction and
an interpolation error of 1‰ on the coefficient translates
to a 0.01‰ level of exactitude on the final results. In con-
trast, the residual Monte Carlo errors on the predictions
are at the few ‰ level, which in turn are already negli-
gible with respect to the experimental uncertainties of the
measurement. For any phenomenological application, the
impact of interpolation errors in the provided grids is thus
completely negligible.

2.3 Uncertainties

A common use-case for grid files is the study of various
sources of uncertainties that require re-evaluating predic-
tions for different input parameters. The PINEAPPL CLI
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Dataset Ref. Ndat Cuts

CDF Z differential [37] 29 0.0 ≤ yℓℓ ≤ 2.9, 66 ≤ mℓℓ ≤ 116
D0 Z differential [38] 28 0.0 ≤ yℓℓ ≤ 2.8, 66 ≤ mℓℓ ≤ 116
D0 W electron asymmetry [39] 13 0.0 ≤ ye ≤ 2.9
D0 W muon asymmetry [40] 10 0.0 ≤ yµ ≤ 1.9

ATLAS low-mass DY 7 TeV [41] 6 |ηℓ| ≤ 2.1, 14 ≤ mℓℓ ≤ 56
ATLAS high-mass DY 7 TeV [42] 13 |ηℓ| ≤ 2.1, 116 ≤ mℓℓ ≤ 1500
ATLAS W,Z 7 TeV (L = 35 pb−1) [43] 30 |ηℓ, yZ | ≤ 3.2
ATLAS W,Z 7 TeV (L = 4.6 fb−1) [44] 61 |ηℓ, yZ | ≤ 2.5, 3.6
ATLAS W 8 TeV [45] 22 |ηℓ| < 2.4
ATLAS low-mass DY 2D 8 TeV [46] 84 |yℓℓ| < 2.4, 46 ≤ mℓℓ ≤ 200
ATLAS high-mass DY 2D 8 TeV [47] 48 |yℓℓ| < 2.4, 116 ≤ mℓℓ ≤ 1500
CMS W electron asymmetry 7 TeV [48] 11 |ηe| ≤ 2.4
CMS W muon asymmetry 7 TeV [49] 11 |ηµ| ≤ 2.4
CMS DY 2D 7 TeV [50] 132 |ηℓℓ| ≤ 2.2, 20.0 ≤ mℓℓ ≤ 200
CMS W rapidity 8 TeV [51] 22 |ηℓ| ≤ 2.3
LHCb Z → ee 7 TeV [52] 9 2.0 ≤ ηℓ ≤ 4.5
LHCb W,Z → µ 7 TeV [53] 33 2.0 ≤ ηℓ ≤ 4.5
LHCb Z → ee 8 TeV [54] 17 2.00 < |ηe| < 4.25
LHCb W,Z → µ 8 TeV [55] 34 2.00 < |ηµ| < 4.25
LHCb W → e 8 TeV [56] 8 2.00 < |ηe| < 4.25
ATLAS σtot

W,Z 13 TeV [57] 3 —
LHCb Z → ee 13 TeV [58] 17 2.00 < |yZ | < 4.25
LHCb Z → µµ 13 TeV [58] 18 2.00 < |yZ | < 4.50

Table 1: Collider Drell–Yan datasets considered in the NNPDF4.0 global PDF determination and selected for this
release of interpolation grids. Table of kinematic cuts from Ref. [16].
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Figure 1: Grid closure between the interpolation and the exact NNLOJET reference numbers for the datasets of
Refs. [50] (a) and [55] (b) at LO and the NLO and NNLO coefficients.

provides efficient tools for analysing grids in various scen-
arios. Below, we demonstrate some representative analyses
using the built-in utilities.

Scale variations are the most widely used approach to
estimate theory uncertainties from missing higher orders
in the perturbative expansion. The PINEAPPL grids allow
to vary the renormalisation and factorisation scales, µR

and µF respectively, through any linear transformation of

the original scale used for the grid generation. This offers
the possibility to explore the (µR, µF) space with high
granularity.

The conventional variation by factors of ( 12 , 2) is dir-

ectly provided within the CLI through the command3

3 Instead of the 9-point variation, also the 3- and 7-point
variations are available, which can be specified through the
--scale-abs option.
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Figure 2: 9-point scale variations for the Z data
from Ref. [43], evaluated using the PDF set
(NNPDF40 nnlo as 01180) at all orders.

pineappl uncert <grid > <pdf >

--scale -abs=9 --orders <orders >

where <orders> specifies the perturbative orders to be con-
sidered, e.g. --orders a2,as1a2 for NLO in the DY pro-
cess. In Fig. 2 we show as an example the 9-point scale
variation uncertainties for the Z production calculation for
the measurement of Ref. [43].

PDF uncertainties are derived from a collection of pre-
dictions obtained via a convolution with PDFs of an as-
sociated error set. Interpolation grids provide detailed in-
formation across several parameters, not only the renor-
malisation and factorisation scales, to facilitate the effi-
cient a posteriori re-evaluation of the predictions for ar-
bitrary PDF sets and thus the study of PDF uncertainties
as well as their use in PDF fits. To this end, interpolation
grids additionally retain the information on the longitud-
inal momentum fractions of the colliding partons, x1 and
x2, separately for each independent combination of par-
tonic channels of the corresponding process.

In Fig. 3, we contrast the PDF uncertainties of differ-
ent sets at NNLO from the MHST [15], CTEQ [14] and
NNPDF [16] fitting groups. The figure is obtained with
the CLI command

pineappl plot -s 3 <grid > <pdf1 > <pdf2 >...

which is used together with the option -s 3 to specify the
3-point scale variation in this case. The output of the com-
mand is a Python script to generate a figure as shown in
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Figure 3: Scale and PDF uncertainties for the W− data of
Ref. [51]. Using interpolation grids we can obtain several
different analyses with a single command of PineAPPL in
a matter of seconds.
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Fig. 3 and is composed of several panels: The first two
panels show separately the scale- and PDF-uncertainties
of the predictions using <pdf1> (in this case MSHT20)
for the absolute prediction and the relative uncertainties.
This is followed by three panels that show the PDF un-
certainties for all PDF sets that were specified, which are
provided as absolute predictions and ratio plots with re-
spect to the central <pdf1>. The final two panels directly
contrast the PDF uncertainties of the different sets to-
gether with the pull in units of σ for each PDF, using
<pdf1> as reference.

By utilising interpolation grids, analyses can be made
with multiple PDF set at zero added computational cost.
The importance of these extra studies is clear e.g., in the
4th and 6th panels of Fig. 3. While the pull between
sets can be as large as 2σ, and thus the choice of PDF
might have phenomenological implications, this difference
is washed out once several sets are included in the analysis.

3 Drell–Yan phenomenology

3.1 Accidental cancellations

One peculiar feature of the DY process that has been
the subject of various investigations are the large acci-
dental cancellation between the qq̄ and (qg+ q̄g) partonic
channels. This cancellation is especially severe at NNLO,
in part causing the scale uncertainties to be underestim-
ated and for the N3LO predictions to often lie outside of
the NNLO uncertainty estimates [22]. This striking trait
of non-overlapping scale-uncertainty bands is particularly
pronounced at higher hadron-collider energies and was
found to be largely independent of whether pp or pp̄ colli-
sions are considered [25]. These observations hint towards
cancellations that are likely driven by correlations between
the gluon and sea-quark distributions.

Interpolation grids offer the unique opportunity to
study such hypotheses in more detail by providing the
possibility to evaluate the predictions at different orders
and broken apart into individual partonic channels (using
different bases), combined with the flexibly to evolve the
prediction to any value for the scales. Practically, this is
achieved by evolving the grids with the DGLAP evolution
library EKO [63, 64] to different values in µF, a feature
provided by the PINEAPPL CLI:4

pineappl evolve <grid >

<evolution_kernel_operator.tar >

<output_evolved_grid >

<pdf_to_check > --orders a2as2

where the evolution kernel operator is generated with the
pineko program [13] and the option --orders a2as2 en-
sures that only the NNLO QCD contribution is being con-
sidered.

4 Note that it might be necessary to set a high value for the
accuracy if the <pdf_to_check> used for the check has not been
evolved with the exact same settings as the kernel operator.

Figure 4a shows the NNLO contribution σδNNLO sep-
arated into partonic channels as a function of the fac-
torisation scale µF. The results correspond to the total
cross section obtained with the setup of the measurement
in Ref. [57]. The figure clearly highlights the large can-
cellation between the qq̄ and (qg + q̄g) channels, with a
compensation of almost two orders of magnitude around
µF ∼ MZ. We further observe a strong dependence on the
factorisation scale that enhances the cancellation for lar-
ger µF values, which hints at an underlying correlation in
the DGLAP evolution that drives this feature.

In order to gain further insights into this correlation
and its impact, we transform to the so-called evolution
basis5 by rotating the evolution operator with EKO, which
serves the purpose of decoupling the evolution of the dif-
ferent independent components. In particular, the gluon
evolves together with the combination of quark distribu-
tions Σ =

∑6
i=1(qi + q̄i) as the so-called singlet contri-

bution. The non-singlet part includes contributions that
in EKO follow the common notation of Vi and Ti, while
“mixed” refers to the contribution where both a singlet
and non-singlet part enter the convolution. The depend-
ence on µF for a decomposition in this basis is shown in
Fig. 4b. Indeed, in this basis two points are immediately
apparent: first, the cancellation is much less pronounced
even at high values of µF by approximately an order of
magnitude and; second, the dependence on the factorisa-
tion scale is rendered almost flat. This demonstrates that
much of the cancellations occurs within the singlet sector
and that the large cancellations observed in the flavour
basis are largely an artefact of the choice of basis and the
correlations introduced by the DGLAP evolution.

3.2 Stability of K-factors

The accidental cancellation between partonic channels
highlighted in the previous section could, in principle, be
either amplified or diminished by the choice of PDF, as
they control the relative size of each partonic channel. In
turn one might expect the NNLO contribution to the cross
section to be significantly impacted by the choice of PDF.

Figure 5a provides a detailed comparison of NNLO
predictions for a variety of PDF sets, where the bands
correspond to the respective PDF uncertainties. In the
bottom panel, predictions are also shown for approximate
N3LO sets in order to assess the impact from the (ap-
proximate) higher-order DGLAP evolution implemented
in these sets. The latter is particularly important as the
previous section exposed the correlation induced by the
evolution to be a main driver of the cancellations observed
at NNLO. The spread between the different PDFs is at
the few percent level and largely covered by the respect-
ive uncertainties. The largest deviations are seen between
the NNPDF and ABM sets of about 4%, which can be at-
tributed to the different datasets included in the fits and

5 The exact definition of the evolution basis is provided in
the EKO documentation.

https://eko.readthedocs.io/en/latest/theory/FlavorSpace.html#qcd-evolution-basis
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Figure 4: Channel decomposition of the NNLO contribution σδNNLO to the total cross section for Z production as a
function of the scale, normalised to the full NNLO contribution. Decomposition is shown both for the flavour basis (a)
and the evolution basis (b). The “QQ” channel includes all quark and anti-quark initiated contributions.

the different methodologies employed rather than the de-
tails of this calculation. The impact of the approximate
N3LO evolution is found to be small and well within the
PDF uncertainties.

Without the availability of NNLO grids, approxima-
tions were constructed based on NLO grids supplemen-
ted by NNLO K-factors that were obtained for a specific
choice of PDF,

σNNLO ≈ σNLO ×KNNLO
PDF , KNNLO

PDF ≡ σNNLO
PDF

σNLO
PDF

.

For this approximation to be valid, the relevant property
to inspect is not the total cross section but the K-factors
and how stable they are with respect to the choice of the
underlying PDF set used. In Fig. 5b we show theK-factors
for the same PDF sets as in Fig. 5a including in the top
panel a comparison of the (correlated) PDF uncertainties
against the size of the NNLO scale variation. With the
K-factors typically at the percent level, we observe that
variation of the K-factors under the change of the PDF
sets is very stable and only at the level of a few per-mille.
The final impact on the full NNLO cross section σNNLO

from the K-factor approximation is thus estimated to be
at the order of 0.01‰ and thus negligible.

3.3 K-factor approximation and PDF fits

Given the current claimed level of accuracy of PDF global
analyses (N3LO, albeit approximated) [65, 66] and the
uncertainty achieved in regions well constrained by data
(close to 1%) [16] it is critical to study and remove any
possible sources of bias in order to ensure the accuracy
and robustness of the PDFs and its associated uncertain-
ties. While the previous section supports the robustness
of the K-factor approximation for the DY process at the

level of the full cross section, it is important to also verify
the impact of this approximation on global PDF fits. This
is because PDF fits are sensitive to corrections for the
individual channels that are not correctly captured by a
global K-factor nor are partonic channels that only open
up at NNLO (such as gg and qq′).

Moreover, PDF analyses are among the main use-cases
of interpolation grids: Determining PDFs relies heavily on
comparing data and predictions for many observables and
varying inputs. This process involves evaluating hundreds
of differential cross-sections at the PDF fitting scale for
each step in the optimisation procedure. A global analysis
of PDFs requires computing predictions for approximately
5000 datapoints to NNLO [16]. Given the complexity and
the computational cost, handling this vast amount of data
without the speed-up that the grids provide is practically
infeasible.

Since grids include detailed information about scales
and orders, they can be convolved with evolution operat-
ors, to generate optimized Fast-Kernel tables. These tables
optimize away information about the orders and scales
such that they can be directly convolved with PDFs at
the fitting scale [11]. This makes them particularly well
suited for PDF determination. We have used the tools
outlined in Ref. [13] to prepare Fast-Kernel tables for all
grids provided together with this paper.

In order to examine the impact of theK-factor approx-
imation on state-of-the-art PDF analyses, we have utilised
the open-source NNPDF fitting framework [67] to perform
a series of fits under different assumptions: DY theory pre-
dictions are varied between the exact NNLO grids and the
K-factor approximation, and the data entering the fits
either include the full NNPDF4.0 dataset or a reduced
dataset based solely on collider DY measurements (“DY
only fit”). The latter fit based on the restricted data is in-
tended to act as the worst-case scenario where all datasets
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Figure 5: Comparison of different PDF sets for NNLO
cross sections (a) and K-factors (b) in units of % with
respect to the NNPDF4.0 set.

are impacted by the approximation in the theory predic-
tions. To closely mimic the procedure of an actual PDF
fit, we have computed the K-factor with the closest PDF,
in this case NNPDF4.0 [16].

Note that for the results presented in this section, aside
from the grids, all other conditions and settings are kept
identical between the two fits, including initialisation and
seeding of random numbers.

In Fig. 6 we compare the effect of the K-factor approx-
imation in the context of a global fit by explicitly showing
the gluon distribution at the fitting scale. We consider two
situations, a fit based exclusively on DY data from LHC
and Tevatron (top) and a fit using a global dataset (bot-
tom). In the first case the impact of the K-factor approx-
imation is visible even in the data region, with a small shift

10 5 10 4 10 3 10 2 10 1 100

x

0.5

1.0

1.5

2.0

2.5

3.0

xg
(x

)

g at 1.651 GeV

Exact NNLO predictions (DY only fit) (68% c.l.+1 )
K-factors (DY only fit) (68% c.l.+1 )

10 5 10 4 10 3 10 2 10 1 100

x

0.5

1.0

1.5

2.0

2.5

3.0

xg
(x

)

g at 1.651 GeV
Exact NNLO predictions (68% c.l.+1 )
K-factors (68% c.l.+1 )

Figure 6: Comparison of the gluon PDF between two PDF
fits, one with exact NNLO grids and the other based on
the K-factor approximation. The fit is repeated using only
DY data (top) and the global dataset (bottom).

in the data region which however is below a percent and
safely well within the uncertainties of the determination.
In the global fit instead we consider the NNPDF4.0 set-
tings, i.e., all DIS data is exact up to NNLO and double-
hadronic data instead uses the K-factor approximation.
The better constraints introduced by the global dataset
make it so that when using exact grids for the DY data,
the effect is completely negligible and only visible in the
extrapolation region, where instabilities introduced by the
small numerical differences between the K-factor and ex-
act approximation won’t be compensated by the fit. While
we only consider the gluon in Fig. 6, the same is true for
other partons.

In Fig. 7 we display a comparison of the qq luminosity
in the same scenarios as Fig. 6. We observe how the impact
of the K-factor approximation affects the entire range of
the phase space in a DY only fit, while the inclusion of
the rest of the datasets commonly considered in a global
fit eliminates the impact (note the different range on the
y-axis).

From the comparison of the different fits presented in
this section, we can conclude that the K-factor approx-
imation is a valid and safe approximation for the DY pro-
cess in the context of PDF fits. Even in the specially



8 Juan Cruz–Martinez et al.: Fast interpolation grids for the Drell–Yan process

101 102 103

mX (GeV)

0.96

0.98

1.00

1.02

1.04

Ra
tio

 to
 K

-fa
ct

or
s (

DY
 o

nl
y 

fit
)

qq luminosity
s = 13 TeV

Exact NNLO predictions (DY only fit) (68% c.l.+1 )
K-factors (DY only fit) (68% c.l.+1 )

101 102 103

mX (GeV)

0.98

0.99

1.00

1.01

1.02

Ra
tio

 to
 K

-fa
ct

or
s

qq luminosity
s = 13 TeV

Exact NNLO predictions (68% c.l.+1 )
K-factors (68% c.l.+1 )

Figure 7: Comparison of the qq luminosity between two
PDF fits, one with exact NNLO grids and the other based
on the K-factor approximation. The fit is repeated using
only DY data (top) and the global dataset (bottom).

tuned scenario where the impact of the approximation
was maximised by restricting the fit data only to hadron-
collider Drell–Yan measurements, the impact on the res-
ulting PDFs was found to be minimal and well within
uncertainties.

4 Conclusions and outlook

In this note we have reported on a new interface between
the PINEAPPL interpolation grid library and the NNLO
parton-level Monte Carlo generator NNLOJET. This in-
terface was used to produce interpolation grids for a wide
range of DY measurements performed at Tevatron and the
LHC that commonly enter global PDF analyses.

These grids were used to gain further insights into the
accidental cancellations that occur in the Drell–Yan pro-
cess at NNLO, where strong correlations induced by the
DGLAP evolution within the singlet sector were identified
as a main driver of the cancellations. We further performed
a detailed study of the K-factor approximation that was
employed in the PDF fits so far. While few-% variations
are found from the variation of PDF sets in the NNLO

cross section, the K-factor is found to be very stable with
only changes at the per-mille level. A set of PDF fits based
on varying theory predictions as well as fit data further
support the conclusion that the impact of theK-factor ap-
proximation is minimal and well below the quoted PDF
uncertainties.

The independence of PDF fits on the K-factor approx-
imation for the DY data is a non-trivial consequence of the
observations detailed in sections 3.1 and 3.2. While there
are big channel-by-channel cancellations, these are dom-
inated by DGLAP evolution. While PDF determinations
might differ widely in data and methodology, at a fixed
order the evolution is fixed, and so the pattern of cancel-
lations is preserved regardless of the PDF in use.

The grids provided in this work not only allowed to es-
tablish the validity of the K-factor approximation for DY
at NNLO but also paves the way towards incorporating
N3LO predictions into PDF fits in the future. Full N3LO
grids are still beyond reach due to computation costs, how-
ever, the NNLO grids provide one ingredient to construct
approximate N3LO predictions based on N3LO K-factors.
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D. A. Kosower and D. Maitre, Comput. Phys. Commun.
185 (2014) 1443–1460, arXiv:1310.7439.
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