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ABSTRACT

Intermediate-mass-fragment multiplicity distributions for a variety of reactions at
intermediate energies are shown to be binomial and thus reducible at all measured
transverse energies. From these distributions a single binary event probability can be
extracted that has a thermal dependence. A strong thermal signature is also found
in the charge distributions. The n-fold charge distributions are reducible to the 1-
fold charge distributions through a simple scaling that is dictated by fold number and
charge conservation.

1. Introduction

At low excitation energies, complex fragments are emitted with low probability by
a compound nucleus mechanism [1,2]. At increasingly larger energies, the probabil-
ity of complex fragment emission increases dramatically, until several fragments are
observed within a single event [3-5]. The nature of this multifragmentation process
is at the center of much current attention. For example, the time-scale of fragment
emission and the associated issue of sequentiality versus simultaneity are the objects
of intense theoretical [3-8] and experimental [9-17] study.

Recent experimental work [18,19] has shown that the excitation functions for the
production of two, three, four, etc. fragments give a characteristically linear Arrhenius
plot, suggesting a statistical energy dependence.



2. Reducibility

A fundamental issue, connected in part to those mentioned above, is that of re-
ducibility: can multifragmentation be reduced to a combination of (nearly) indepen-
dent emissions of fragments? More to the point, can the probability for the emission
of n fragments be reduced to the emission probability of just one fragment?

Recently, it has been experimentally observed in many reactions that for any value
of the transverse energy FE, the n-fragment emission probability P, is reducible to
the one-fragment emission probability p through a binomial distribution [20]

pr=__™

n

mpn(l -p)" " (1)

This empirical evidence indicates that multifragmentation can be thought of as a
special combination of nearly independent fragment emissions. Thc binomial combi-
nation of the elementary probabilities points to a combinatorial structure associated
with a time-like or space-like one-dimensional sequence. It was also found that the
log of such one-fragment emission probabilities (log p) plotted vs 1//E; (Arrhenius
plot) gives a remarkably straight line. This linear dependence is strongly suggestive
of a thermal nature for p,

p=efT | (2)

under the assumption that the temperature T « /E* where E* is the excitation
energy. Examples of the binomial decomposition of the n-fragment emission proba-
bilities P, into a one-fragment emission probability p, and the resulting Arrhenius plot
for p is given in Fig. 1. The extraordinary quantitative agreement between the calcu-
lations and the experimental data confirms the binomiality of the multifragmentation
process.

The more directly interpretable physical parameter contained in this analysis is
the binary barrier B (proportional to the slope of the Arrhenius plot in Fig. 1). One
may wonder why a single binary barrier suffices, since mass asymmetries with many
different barriers may be present. Let us consider a barrier distribution as a function
of mass asymmetry z of the form B = By +az™, where Bp is the lowest barrier in the
range considered. Then,

1/n
p= --F— = /e—B"/Te_aIn/Td:c ~ (Z> ¢ Bo/T (3)

hwo a

Thus the simple form of Eq. (2) is retained with a small and renormalizable pre-
exponential modification.

One possible interpretation of the reducibility discussed above is sequential decay
with constant probability p. Assuming that the (small) fragments, once produced
do not generate additional fragments or disappear, the binomial distribution follows
directly. In this framework. it is possible to translate the probability p into the mean
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Fig. 1: For the 12°Xe induced reactions at E/A=50 MeV (left figure) and the 36 Ar+1%7Au reactions
at E/A=50, 80 and 110 MeV (right figure): (left panel) the reciprocal of the single fragment emission
probability 1/p as a function of 1/v/E;; and (right panel) the parameter m (number of the throws
in the binomial distribution) and the probability P(n) of emitting n intermediate mass fragments
(IMF, 3 < Z < 20) as a function of the transverse energy E:. The solid lines through the excitation
functions correspond to binomial distributions calculated with the given values of m and p. (See

Eq. (1))



time separation between fragments. In other words, we can relate the n-fragment
emission probabilities to the mean time separations between fragments. The validity
of this interpretation is testable by experiment.

We have tried to find alternative explanations to the sequential description for
the binomial distributions with thermal probabilities. An obvious model is a chain
of m links with probability p that any of the links is broken. The probability that n
links are broken is given by Eq. (1). This result is, of course, strictly dependent on
the dimensionality of the model, and its relevance to multifragmentation is unclear.
Nevertheless, it stresses again the fundamental reducibility of the multifragmentation
probability to a binary breakup probability p.

In summary: 1) The multifragment emission probability has been found to be
binomial and reducible to an elementary binary probability. Thus, multifragmenta-
tion is empirically reducible to single fragment emission. 2) This binary elementary
probability is observed to have a “thermal” energy dependence under the assumption
that the excitation energy is proportional to the transversal energy.

3. Charge Distributions

These aspects of reducibility and thermal scaling in the integrated fragment emis-
sion probabilities lead naturally to the question: Is the charge distribution itself re-
ducible and scalable? In particular, what is the charge distribution form that satisfies
the condition of reducibility and of thermal dependence?

Let us first consider the aspect of reducibility as it applies to the charge distri-
butions. In its broadest form, reducibility demands that the probability p(Z), from
which an event of n fragments is generated by m trials, is the same at every step
of extraction. The consequence of this extreme reducibility is straightforward: the
charge distribution for the one-fold events is the same as that for the n-fold events
and equal to the singles distributions, 1.e.:

Puy(2) = Pny(2) = Piingles(Z) = p(Z). (4)
We now consider the consequences of the thermal dependence of p [20] on the

charge distributions. If the one-fold = n-fold = singles distributions is thermal, then

P(Z) x e~ 2F (5)
or Tln P(Z) «x —B(Z). This suggests that, under the usual assumption F; x E~
[20], the function

VE.nP(Z) = D(2) (6)

should be independent of F..

In the *®Ar+'%Au reaction, which we now consider here, as in other reactions
[21,22], the charge distributions are empirically found to be nearly exponential func-
tions of Z
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Fig. 2: The exponential fit parameter @, (from fits to the charge distributions, see Eq.(7)) is plotted
as a function of 1/v/E;. The solid lines are a fit to the values of an, using Eq. (9).
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In light of the above considerations, we would expect for @, the following simple
dependence

1
VE

for all folds n. Thus a plot of a, vs 1/4/E; should give nearly straight lines. This is
shown in Fig. 2 for *Ar+'%"Au at E/A=110 MeV.

The expectation of thermal scaling appears to be met quite satisfactorily. For each
value of n the exponent «, shows the linear dependence on 1/ V' E; anticipated in Eq.
(8). On the other hand, the extreme reducibility condition demanded by Eq. (4),
namely that a; = a; = ... = a, = a, is not rigorously met. Rather than collapsing
on a single straight line, the values of ay, for the different fragment multiplicities are
offset one with respect to another by what appears to be a small constant quantity.

In fact, one can fit all of the data remarkably well, assuming for an the form:

LK
n \/E

(8)

1
Q, X = X
T

+ nc (9)
which implies:

a, = — +nc (10)



or more generally, for the Z distribution:
Po(Z) x e~ 27 neZ (11)

Thus, we expect a more general reducibility expression for the charge distribution of
any form to be:

n P.(Z) + ncZ)\JE, = F(Z) (12)

for all values of n and E;. This equation indicates that it should be possible to reduce
the charge distributions associated with any intermediate mass fragment multiplicity
to the charge distribution of the singles.

What is the origin of the regular offset that separates the curves in Fig. 27 The
general form of Eq. (11) suggests the presence of an entropy term that does not
depend explicitly on temperature. The general expression for the free energy (in
terms of enthalpy H, temperature T and entropy S)

AG =AH(Z)-TAS(Z) (13)
leads to the distribution
P(Z) x e~ 2FE+8S, (14)

Typically, AS is of topological or combinatorial origin. For instance, a factor of
this sort would appear in the isomerization of a molecule involving a change of sym-
metry. In our specific case AS may point to an asymptotic combinatorial structure
of the multifragmentation process in the high temperature limit. As an example, we
consider the Euler problem of an integer to be written as the sum of smaller integers,
and calculate the resulting integer distribution. Specifically, let us consider an integer
Zo to be broken into n pieces. Let nz be the number of pieces of size Z. l'he most
likely value of nz can be obtained by extremization of the function [23]

6—[ — GZ[nzlnnz—nz]+K2nzZ+'yan (15)

where the Lagrange multipliers K and ~ are associated with the constraints

> nzZ = Zo; an = n. (16)

From the extremization we obtain

—af-zlnnz+1{z+7=0 (17)
Inz

or

ng = e KZ, (18)



The constraints now read

Zo = Z ZG_KZ_’Y ~ F (19)
=YK 20
from which:
2
ng = %—6_7% = cnfe™ Y. (21)
)

This expression has the correct asymptotic structure for T — oo required by Eq. (11).
The significance of this form is transparent: First, the overall scale for the fragment
size is set by the total charge Zy. Second, for a specific multiplicity n, the scale is
reduced by a factor n to the value Zy/n.

In summary, we have found for multifragmentation produced in the **Ar+'%7Au
reaction at E/A=110 MeV:

1) strong evidence for a thermal scaling of the Z-distributions,

2) reducibility of the n-fold distributions to the 1-fold distributions by Eq. (11).

3) The structure of the reducibility equation is essentially given by a simple rescal-
ing associated with the multiplicity and the source size.

4. Phase Coexistence

While Eq. (21) obviously implies charge conservation, it is not necessary that
charge conservation be implemented as suggested by it. In fact it is easy to envisage
a regime where the quantity ¢ should be zero. Sequential thermal emission is a case
in point. Since any fragment does not know how many other fragments will follow
its emission, its charge distribution can not reflect the requirement of an unbiased
partition of the total charge among n fragments. We have in mind a liquid drop
evaporating fragments of different size and binding energy. “Charge conservation”
will affect the distribution minimally, unless evaporation consumes the entire system,
and even then, not in the sense of an unbiased partition. A simulation in which
fragments with different barriers are allowed to be emitted sequentially according to
the binomial scheme of ref. [20] yields indeed c=0 if a residue survives.

On the other hand, in a simultaneous emission controlled by a n-fragment transi-
tion state [24,25], fragments would be strongly aware of each other, and would reflect
such an awareness through the charge distribution.

The question then arises whether ¢ = 0 or ¢ > 0, or even better, whether one
can identify a transition from a regime for which ¢ = 0 to a new regime for which
¢ > 0. In order to answer this question, we have studied the charge distributions as a
function of fragment multiplicity n and transverse energy E; for a number of systems
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Fig. 3: Top panel: the n gated charge distributions P,(Z) for the reaction 36 Ar+1%7Au at E£/4=110
MeV. The charge distributions were constructed from events with E,=650+20 MeV and n=1-5.
Middle panel: the “reduced” charge distribution [26] for the same data using the indicated value of
c. (The data here are normalized at Z=3). Bottom panel: the log of the ratio of P2(Z)/Ps(Z). The
slope corresponds to ¢ for n=2 (see Eq.(22)). The statistical error bars are shown for errors larger
than the symbol size.
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Fig. 4: Plots of the coefficient ¢ versus E; for the reactions 12961197 Ay at E/A=50 and 60 MeV
(top panel) and 36Ar+197Au at E/A=80 and 110 MeV (bottom panel). The error bars are statistical.

and excitation energies. Specifically, we will present data for the reaction 36 Ar4-197Au
at E/A=80 and 110 MeV and the reaction **Xe+'%"Au at E/A=50 and 60 MeV.

Several approaches were used to extract ¢ from the charge distributions. If the
charge distributions are exponential (as is sometimes the case, P.(Z) x e7%), it is
sufficient to extract from them the exponential coefficient ¢,. From the n dependence
of an, the quantity c is readily extracted [26]. A more general approach which does
not depend on any specific form for the charge distribution is to construct at each F;
the ratio

Pn(Z) — 2
Pn+1(Z) .

A value of ¢ can be extracted for each n by taking the log of this ratio and finding the
slope of the resulting graph (see bottom panel of Fig. 3). A weighted average (over all
IMF multiplicities n) for ¢ can then be constructed at all E;. Alternatively, a x? can
be constructed in terms of the differences in F(Z) (see Eq. (12)) between any pairs of
n values and minimized as a function of ¢. These procedures yield essentially the same
results. These results are reported in Fig. 4 for the 12°Xe+'%"Au and *Ar+'%7Au
reactions.

It is interesting to notice that for all reactions and bombarding energies the quan-
tity c starts at or near zero, it increases with increasing E; for small E; values, and

(22)
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Fig. 5: A plot of cZ, versus the percentage of broken bonds py from a percolation calculation [27]
for three systems Zo=97 (circles), Zo=160 (squares) and Zo=400 (diamonds). The statistical error
bars are shown for errors larger than the symbol size.

seems to saturate to a constant value at large E;.

This behavior can be compared to that of a fluid crossing from the region of
liquid-vapor coexistence to the region of overheated and unsaturated vapor. In the
coexistence region, the properties of the saturated vapor cannot depend on the total
mass of fluid. The presence of the liquid phase guarantees mass conservation at all
average densities for any given temperature. A change in mean density (volume)
merely changes the relative amount of the liquid and vapor, without altering the
properties of the saturated vapor. Hence the vapor properties, and, in particular, the
cluster size distributions cannot reflect the total mass or even the mean density of
the system. In our notation, ¢ = 0.

On the other hand, in the region of unsaturated vapor, there is no liquid to insure
mass conservation. Thus the vapor itself must take care of this conservation, at least
grand canonically. In our notation, ¢ > 0.

This description should not be taken too literally, for a variety of reasons, one of
which is the finiteness of the system. The ¢ = 0 regime may signify an evaporative-like
emission from a source which survives as a charge conserving residue (liquid), while
the ¢ > 0 regime may signify the complete vaporization of the source.

In order to test these ideas for a finite system, percolation calculations [27] were
performed for systems of Zo=97, 160 and 400 as a function of the percentage of bonds
broken (py) in the simulation. Values of ¢ were extracted (using Eq.(22)) as a function
of Pb-

The results are shown in Fig. 5. Guided by the insight gleaned from the approxi-
mate solution to Euler’s problem (see Eq.(21)) we have scaled the extracted values of

10



¢ by the source size Zy in order to remove this leading dependence and to evidentiate
the true finite size effects. For values of p, smaller than the critical (percolating)
value (p{™ ~ 0.75 for an infinite system), we find ¢ = 0. This is the region in which
a large (percolating) cluster is present. As p, goes above its critical value, the value
of ¢ increases, and eventually saturates in a way very similar to that observed exper-
imentally. Due to the finiteness of the system the transition is smooth rather than
sharp and can be made sharper by increasing the size of the system.

Before proceeding, let us remind ourselves that charge conservation is not a finite-
size effect. For instance, the chemical potential, introduced in statistical mechanics
to conserve mass, survives the thermodynamical limit and retains its meaning for an
infinite system, despite the fact that the extensive thermodynamic quantities go to
infinity. In our case, while it is true that c goes to zero or that 1/c goes to infinity, it
is also true that the product ¢Zp tends to a finite limit nearly independent of Zo.

The significance of the actual experimental value of ¢ in the region where it seems
to saturate is unclear. In Eq.(21), ¢ takes a direct meaning for the Euler problem:
¢ =1/Z,. It should be noted that our analysis is not directly comparable to the Euler
solution (Eq.(21)) since we have restricted ourselves to a limited region (3 < Z < 20)
of the total charge distribution for our study of how the source is partitioned into
different IMF multiplicities. It must also be appreciated that Eq. (21) and the as-
sociated dependence of ¢ upon Z; are characteristic of a one-dimensional percolation
model. In light of the points mentioned above, it is not unexpected that c appears
to be proportional, but not equal, to 1/Z; in the three-dimensional percolation cal-
culation reported in Fig. 5. An interpretation of ¢ in terms of the source size may
be possible when more data and a better understanding of the percolation of finite
systems are available.

In conclusion:

1) We have presented extensive evidence for an n dependence of charge distribu-
tions of the form given by Eq.(12).

2) We have shown that the parameter ¢ increases from near zero at low E, (exci-
tation energy) to a saturation value at high E,.

3) Using the analogy of liquid-vapor equilibrium we have argued that ¢ = 0 may
indicate the presence of two phases (liquid-vapor) while ¢ > 0 may indicate the
presence of one phase (unsaturated vapor).

4) We have shown that a percolation calculation carried out for finite systems can
be analyzed in the same way as the data, and portrays the same dependence for ¢ as
one moves from the region where a percolating cluster is present to one where such a
cluster is absent.
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