
A
TL

-S
O

FT
-P

R
O

C
-2

02
5-

01
0

15
Ja

nu
ar

y
20

25

ATLAS Qualification Interface Refactoring Strategy

Ana Clara Loureiro Cruz1,∗, Rafaella Lenzi Romano1,, Carolina Niklaus Moreira da Rocha
Rodrigues1,, Gabriela Lemos Lúcidi Pinhão2,, Leonardo Mira Marins1,, Pedro Henrique
Goes Afonso1,, Rodrigo Coura Torres1,, José Manoel Seixas1,, and Natanael Nunes de Moura
Junior1,∗∗

1Signal Processing Lab, COPPE/EE - UFRJ (Federal University of Rio de Janeiro)
2Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa

Abstract. The ATLAS experiment involves over 6000 active members, includ-
ing students, physicists, engineers, and researchers, and more than 2500 mem-
bers are authors. This dynamic CERN environment brings up some challenges,
such as managing the qualification status of each author. The Qualification sys-
tem, developed by the Glance team, aims to automate the processes required
for ATLAS members to achieve author status. Recently, ATLAS modified the
policy behind it, and updates were necessary to put it into effect.
The system was developed on top of an outdated framework. In order to ease
the transition to the new ATLAS authorship qualification policy, the former
solution was updated to a Hexagonal architecture based on Domain Driven De-
sign philosophy. The access to the database has shifted from ORM - Object
Relational Mapper - to SQL repositories to align with the team’s development
stack. The system’s quality is ensured with automatic tests as part of an effective
refactoring process that is transparent to the end user. This refactoring strategy
intends to enhance the system to improve code maintainability, efficiency and to
increase flexibility to accommodate future changes in the qualification policy.

1 Introduction

1.1 Context

The European Organization for Nuclear Research (CERN) is home to the largest particle ac-
celerator in the world, the Large Hadron Collider (LHC). Established in 1954, CERN has
been at the forefront of groundbreaking discoveries and technological innovations. One of
the experiments conducted at CERN is ATLAS [1]. The primary goal of the ATLAS col-
laboration is to explore the fundamental particles and forces that make up the universe. The
experiment involves over 6000 active members, including students, physicists, engineers,
and researchers from numerous institutions across the globe [2]. Given this dynamic and
multidisciplinary environment, the collaboration faces challenges in coordinating numerous
working groups and efficiently managing the data related to the management of the exper-
iment. To address these management complexities, the Glance project [3] was launched in

∗e-mail: clara.cruz@cern.ch
∗∗Copyright 2025 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license



2003, introducing an automated system designed to streamline operations and improve data
management within the collaboration.

Currently, the Glance project implements and maintains systems designed to automate
the management of multiple LHC experiments, including ATLAS, ALICE, LHCb and CMS.
To minimize rework and ensure code uniformity across these diverse experiments, the project
employs a common software development stack. This unified approach not only simplifies
development but also allows collaboration between experiments by providing standardized
components that can be shared between them.

1.2 The modernization of the Qualification System

To become an ATLAS author, a member must complete the qualification process: a structured
workflow encompassing all necessary steps to be included on the ATLAS author list. This
process is managed by the ATLAS Glance Qualification system.

After the system was developed in 2014, ATLAS revised the qualification workflow pol-
icy. Those updates required modifications to the system to meet new requirements. Following
the Scrum methodology [4], the ATLAS Glance team proposed not only implementing the
policy updates but also modernizing the codebase. Recognizing that the system was built on
an outdated framework, the team identified this as an opportunity to align the system with
the current Glance technology stack, ensuring greater consistency and maintainability across
projects.

Refactoring is an important engineering practice within Scrum, enabling teams to improve
code quality while ensuring it remains maintainable and adaptable to future changes. This
approach minimizes technical debt, improves long-term maintainability, and simplifies future
development efforts. To ensure the success of this refactoring initiative, automated testing was
prioritized.

1.3 Project objectives

The primary objectives of the ATLAS Glance Qualification system’s refactoring are:

• Incorporate unmet requirements by adding features like detailed history logs and new
fields, addressing gaps in the system and enabling easier field expansion.

• Improve modularity, adaptability to support evolving requirements and system responsive-
ness.

2 Methodology

The development process was organized using the Scrum framework, which facilitates it-
erative progress, continuous feedback, and adaptive planning. The ATLAS Glance team is
composed of cross-functional developers, enabling collaboration throughout the project life-
cycle.

The project was divided into three distinct phases, illustrated in Figure 1. Each iteration
represents incremental improvements and addresses specific aspects of the system.



Figure 1. Phases of the Qualification refactoring project.

The first phase was focused on implementing minor user-requested changes and refactor-
ing the visualization use cases. The refactoring effort was designed to improve the readability
and maintainability of the system, setting a solid foundation for subsequent developments.
The second phase is centered on the implementation of history tracking features. This phase
involves developing mechanisms to safely display history logs for authorized users. The third
and final phase will address the refactoring of write repositories (database adaptors [5]) and
the implementation of new fields requested by users. The refactoring of the code will be
simplified by the uniform structure established in previous phases, facilitating efficient inte-
gration of new features. This phase includes the design and implementation of new data fields
in a consistent manner, ensuring that the system’s flexibility and adaptability are improved.

Throughout the project, the Scrum framework provides iterative feedback loops and regu-
lar sprint reviews and retrospectives, allowing continuous refinement and alignment with user
requirements. This phased approach not only ensures that each requirement is thoroughly ad-
dressed but also enables the team to adapt to evolving needs effectively. Currently, the team
is developing the second phase.

3 Project Architecture

Before this project, the Qualification system was implemented with a fragmented architec-
ture. Read use cases were implemented using the legacy Fence framework [6], while write use
cases were managed through Doctrine Object Relational Mapper (ORM) [7]. This dual ap-
proach introduced inconsistencies, increased complexity in maintenance, and compromised
system scalability. The refactoring process involves the migration from Fence to a hexagonal
architecture [5], aiming at achieving a modular and testable structure that adheres to contem-
porary software development practices. Additionally, the project involves the replacement of
Doctrine ORM with Structured Query Language (SQL) [8] repositories, standardizing data
access, optimizing performance, and ensuring uniformity across the system.

3.1 Migration to hexagonal architecture

The replacement of the legacy Fence framework with a hexagonal architecture, as illustrated
in Figure 2, implements Domain-Driven Design (DDD) principles [9]. This architecture



promotes a clear separation of concerns by isolating the business logic in the domain layer,
positioned at the center of the structure. The domain is connected to external systems through
adaptors, which act as intermediaries between the core logic and the port. In this case, one
port interfaces with the Fence framework front-end, and another manages interactions with
the database. This design not only ensures modularity and testability but also simplifies the
addition of future features by decoupling dependencies, aligning with the team’s standard
development stack, and reducing technical complexity.

To provide a seamless transition for the end user, the existing Fence user interface was
preserved. Figure 3 shows the system organization: the Controller mediates between the
Repository and the Fence user interface. This design allowed the Controller to format data
from the newly implemented architecture to match the structure of the legacy system.

Figure 2. Hexagonal architecture of the Qualification System. The central domain layer encapsulates
the business logic, surrounded by adaptors connecting the system to external components. Two primary
ports are shown: one interfaces with the Fence framework for the user interface, and the other connects
to the Oracle relational database [10], facilitating efficient data management.

Figure 3. Qualification system’s overall structure.



3.2 Migration to SQL Repositories

The second phase of the project includes the migration from Doctrine ORM to SQL reposito-
ries. This eliminates the additional abstraction layer used to interface with the database. This
approach directly integrates SQL queries into the codebase, bypassing the need for interme-
diate configuration files. By doing so, data manipulation operations become more explicit
and transparent for developers, facilitating both debugging and the implementation of future
changes.

The adoption of the hexagonal architecture simplified this migration process. With the
domain logic already encapsulated in the Domain Layer, the refactoring required only tar-
geted updates to existing repositories. Reusing the pre-defined domain reduced the effort
needed to adapt database operations to the new architecture. This change aligns the Quali-
fication system with standardized Glance development practices, improving maintainability
and long-term adaptability.

3.3 Automatic Tests

By validating that the system’s functionalities remain consistent after modifications, auto-
mated tests were developed during each phase of the refactoring project. Comprehensive test
coverage ensured that modifications did not compromise existing functionalities, improving
the development process. The tests systematically evaluate each code change before integra-
tion, maintaining system integrity and stability.

The refactored system employs PHPUnit [11] to implement a comprehensive suite of
automated tests, divided into unit tests and integration tests. Unit tests validate individual
components, such as functions or classes, in isolation from the rest of the codebase. These
tests execute quickly and provide precise feedback, enabling developers to identify and re-
solve defects at a granular level during development. Integration tests were used to assess the
interactions between project components and the database, ensuring correct functionality in
real-world scenarios. Those tests validate dependency management and data flow integrity,
addressing issues that unit tests alone cannot detect.

Mocks and stubs [12] were used in unit tests to simulate dependencies and isolate testable
units. Integration tests, on the other hand, directly interact with the database to verify system-
wide behavior.

This dual testing strategy ensures thorough verification at both the component and system
levels. The automated tests have been instrumental in maintaining system integrity during the
refactoring process.

4 Conclusion and Next Steps

The team’s domain-driven strategy combined with an iterative development, a cornerstone of
Scrum, can be used to address immediate needs while simultaneously enhancing the overall
quality and scalability of the software.

The Qualification system’s fragmented codebase, resulting from inconsistent integration
with new technologies, needed a transition to a unified, modular architecture. This project
aims at consolidating the system by fully migrating to a consistent stack, enhancing maintain-
ability and coherence. The first phase, which involved minor changes and refactoring of read
use cases, has been completed. The remaining phases will focus on implementing history
features and refactoring writing use cases.



Acknowledgments

The authors would like to thank CNPq, CAPES, FAPERJ, and RENAFAE (Brazil), as well
as CERN and the ATLAS collaboration for providing financial support for this work.

References

[1] ATLAS Collaboration, JINST 3, S08003 (2008). DOI: 10.1088/1748-0221/3/08/S08003
[2] ATLAS Institutions(https://atlaspo.cern.ch/public/institutions/, Accessed 23-07-2024)
[3] C. Maidantchik, F. Grael, K. Galvão and K. Pommès (2008) Glance project: a database

retrieval mechanism for the ATLAS detector. J. Phys.: Conf. Ser.. DOI: 10.1088/1742-
6596/119/4/042020

[4] Scrum Framework Guide (https://www.scrum-framework.com/Library, Accessed 26-08-
2024)

[5] M. Noback (2020). Advanced Web Application Architecture. LeanPub.
[6] B. Lange et al. (2015) An object-oriented approach to deploying highly configurable

Web interfaces for the ATLAS experiment. J. Phys.: Conf. Ser. 664 062026. DOI:
10.1088/1742-6596/664/6/062026

[7] Doctrine Object Relational Mapper, URL https://www.doctrine-project.org/projects/orm.
html [accessed 04-Dec-2024].

[8] Oracle SQL for Accessing, Defining, and Maintaining Data, URL https://www.oracle.
com/database/technologies/appdev/sql.html [accessed 04-Dec-2024].

[9] E. Evans (2004). Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley.

[10] Oracle database, URL https://www.oracle.com/database/ [accessed 07-Jan-2025].
[11] PHPUnit, URL https://phpunit.de/index.html [accessed 04-Dec-2024].
[12] PHPUnit Test Doubles, URL https://docs.phpunit.de/en/10.5/test-doubles.html [ac-

cessed 04-Dec-2024]

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003
https://atlaspo.cern.ch/public/institutions/
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042020/meta
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042020/meta
https://www.scrum-framework.com/Library
https://iopscience.iop.org/article/10.1088/1742-6596/664/6/062026/meta
https://www.doctrine-project.org/projects/orm.html
https://www.doctrine-project.org/projects/orm.html
https://www.oracle.com/database/technologies/appdev/sql.html
https://www.oracle.com/database/technologies/appdev/sql.html
https://www.oracle.com/database/
https://phpunit.de/index.html
https://docs.phpunit.de/en/10.5/test-doubles.html

	Introduction
	Context
	The modernization of the Qualification System
	Project objectives

	Methodology
	Project Architecture
	Migration to hexagonal architecture
	Migration to SQL Repositories
	Automatic Tests

	Conclusion and Next Steps

