
CERN-TH-2024-223

Fractional Hydrodynamic Transport from the Witten Anomaly

Joe Davighi

Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland∗

Nakarin Lohitsiri

Department of Mathematical Sciences,

Durham University, Upper Mountjoy, Stockton Road,

Durham, DH1 3LE, United Kingdom†

Napat Poovuttikul

High Energy Physics Research Unit, Department of Physics,

Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand‡

We study the physical consequences of ’t Hooft anomalies in the high-temperature

limit of relativistic quantum field theories with SU(2), or more generally USp(2N),

global symmetry. The global anomaly afflicting these symmetry groups results in

new transport phenomena akin to the chiral magnetic and chiral vortical effect,

predicting conductivities that are fractionally quantised in units of a half, reflecting

the 2-torsion in the bordism groups ΩSpin
5 (BUSp(2N)) ∼= Z2.

∗ joseph.davighi@cern.ch
† nl313@cantab.ac.uk
‡ napat.po@chula.ac.th

ar
X

iv
:2

41
2.

17
65

0v
1 

 [
he

p-
th

] 
 2

3 
D

ec
 2

02
4

mailto:joseph.davighi@cern.ch
mailto:nl313@cantab.ac.uk
mailto:napat.po@chula.ac.th


2

CONTENTS

I. Introduction 2

II. Methods and background material 4

A. Inflow, locality, and anomaly cancellation 5

B. Chiral fermion anomalies 7

III. Non-perturbative anomaly matching in thermal equilibrium 8

IV. Matching the Witten anomaly in thermal equilibrium 10

A. Clutching construction for SU(2) anomalies in hydrodynamics 11

B. Generalisation from SU(2) to USp(2N) anomalies 14

V. Consequences in transport phenomena 15

A. Review: non-abelian perturbative anomaly-induced transport 16

B. Fractional transport from the Witten anomaly 17

VI. Discussion and future directions 19

Acknowledgement 21

A. Evaluating the η-invariant via anomaly interplay 21

Application to the Witten anomaly at finite temperature 24

References 25

I. INTRODUCTION

In the game of building effective field theories (EFT), understanding the symmetry structure

is of paramount importance. This is particularly true when the symmetry is anomalous [1].

An anomalous symmetry encodes robust information that remains unchanged along the

renormalisation group flow from the ultraviolet (UV) to the infrared (IR). This means that

an IR EFT must have the same anomaly as the microscopic UV theory it descends from.

Important applications of this ‘anomaly matching’ idea date back to the early years

following the discovery of the chiral anomaly by Adler [2], Bell and Jackiw [3]. The Wess–

Zumino–Witten (WZW) term [4, 5] in the chiral Lagrangian EFT describing pions, that

was proposed to match anomalies in the underlying theory of quarks and gluons, has many

observable consequences: it is needed to explain the rapid decay of neutral pions to photons,

and that the ϕ meson can decay to both K+K− and π0π+π− final states. The phenomeno-

logical importance of WZW terms that match anomalies persists for quantum systems at

finite temperature, where the non-conservation of classically-conserved currents leads to the
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phenomena of anomaly induced transport. Examples that have been tested in the labora-

tory include the chiral magnetic effect and related phenomena [6–9]. We refer the reader to

Ref. [10] for a recent review, and [11, 12] concerning the experimental observation of these

effects.

All these finite-temperature examples concern the physics of perturbative anomalies (also

known as local anomalies), namely the violation of classical conservation laws associated

with continuous would-be Noether currents that can be computed from 1-loop Feynman

diagrams. Witten discovered that more subtle non-perturbative effects can also render a

symmetry anomalous [13], that cannot be seen at all in the perturbative Feynman diagram

expansion. Such a non-perturbative anomaly (or global anomaly) afflicts an SU(2) symmetry

in 3 + 1 dimensions with a massless Weyl fermion in the fundamental representation: the

partition function in this case flips sign upon certain SU(2) transformations [13, 14].

A global anomaly does not violate the conservation of continuous Noether currents;

rather, the partition function suffers from a discrete phase ambiguity. In the SU(2) case,

for instance, that ambiguity is a sign i.e. is Z2-valued. One might therefore expect that

global anomalies have no observable quantities in many classes of IR EFTs, such as chiral

Lagrangians or those describing thermodynamics and hydrodynamics, whose dynamics is

described only by continuous variables. This näıve assumption turns out to be incorrect.

Important examples of systems with this type of global anomaly have been found in 1+1 and

2 + 1 dimensions, corresponding to the phenomena of topological insulators and topological

superconductors (see [15, 16] for reviews), for which microscopic computations reveal that

the global anomaly puts non-trivial constraints on the IR physics.

Anomalies, both local and global, are now understood systematically through the idea of

anomaly inflow [17], which identifies anomalies with QFTs in one higher spacetime dimen-

sion and with certain non-generic properties such as the anomaly theory being invertible.

Anomaly theories are thence classified via a cobordism theory [18].1 The cobordism-based

classification of global anomalies applies equivalently (but in a shifted spacetime dimension)

to classifying so-called ‘symmetry protected topological (SPT) phases’ of matter [19, 20], of

which the topological insulators/superconductors mentioned above are examples.

The construction of effective actions that match anomalies in the IR has also been ad-

dressed more-or-less systematically, using the same tools of invertible field theory and cobor-

dism, at least for a class of chiral Lagrangian-like theories, in [21–23]. The same cannot be

said, however, for a broader class of EFTs that describe the thermodynamic and hydrody-

namic regimes of such systems. While intensive studies have been carried out for systems

with perturbative anomalies in the context of the chiral magnetic effect, only a few exam-

ples with global anomalies are known [24–28]. The development of general techniques for

analysing global anomalies in this context is warranted, especially given the universality of

1 In this paper, a bordism group is an Abelian group whose elements are equivalence classes of manifolds

equipped with certain structures (such as a spin structure), where two manifolds are equivalent if they

can be connected by an interpolating manifold in one dimension higher. Cobordism groups are dual to

bordism groups; in particular, we refer to the (shifted) Anderson dual, following Freed–Hopkins [18].
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the thermodynamic and hydrodynamic EFT limits, which are also believed to be applica-

ble even in (or rather especially in) the strongly coupled regime. Moreover, understanding

how anomalies affect such macroscopic descriptions could provide new pathways towards

detecting the presence of anomalies experimentally.

In this work we present a procedure for ascertaining when a global anomaly can be diag-

nosed in the high temperature, hydrodynamic limit of a relativistic theory in 3+1 dimensions,

and what consequences this has for transport phenomena. Such transport aspects are often

overlooked both in the condensed matter literature, that has considered the consequences

of global anomalies but primarily in lower dimensional systems, and in the quark-gluon

plasma community, where intensive studies have been done in 3 + 1 dimensions but only

for perturtubative anomalies. To illustrate our methods we focus on the Witten anomaly

for G = USp(2N) symmetry [13], including the case G = SU(2), in the high-temperature,

hydrodynamic regime. Of the classical simple Lie groups, it is only these that can exhibit a

global anomaly in 3 + 1 dimensions. Well-known examples of mapping tori that probe the

Witten anomaly [13, 14] are inconsistent with passing to the high temperature equilibrium

phase, and so a key challenge that we overcome is to find a background geometry that can

probe the global anomaly in this phase. We then demonstrate how the non-trivial anomaly is

manifest through fractionally quantised conductivity in response to an external non-abelian

magnetic field and/or vorticity - see Eqs (6.1). This can be understood through a fractional

Chern–Simons term being mandated in the EFT obtained by dimensionally-reducing on the

thermal cycle.

The remainder of the manuscript is organised as follows. In Section II, we summarise the

modern picture for how global anomalies are classified and detected, and adapt this to the

hydrodynamic setting in Section III. We then use this method to determine the anomaly that

results in the phase ambiguity of the thermal partition function, starting from a fundamental

relativistic theory with the Witten anomaly, in Section IV. In section V, we determine the

hydrodynamic effective action that captures this anomaly as well as its observable effect in

transport phenomena. Open problems and future directions are discussed in Section VI.

II. METHODS AND BACKGROUND MATERIAL

Consider a relativistic quantum field theory on a d-dimensional spin manifoldX with sym-

metry group G that has global anomalies, and assume that the system at high-temperature

reaches thermal equilibrium. Following the approach in [27, 28], one can ask whether the

anomaly leaves physical effects in the gradient expansions of the thermal partition function

ZT [X;A], and what these effects are. There are three key steps in answering this question:

(i) Classifying the global anomaly via bordism. The global anomaly on X, with the

background gauge field A, is described via inflow by an invertible topological theory

ZI [Y ] in d+ 1 dimensions, and such theories are classified by the spin bordism group
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ΩSpin
d+1 (BG) [18]. Computing this bordism group will tell us if the theory can have a

global anomaly, and the finest possible phase ambiguity probed by ZT [X;A].

(ii) Detecting the global anomaly via a mapping torus. One needs to find a ‘map-

ping torus’ (Ytot, A) in d+1 dimensions that interpolates between field configurations

and geometries consistent with the high temperature limit and thermal equilibrium

assumption, and on which the invertible theory −i logZI [Ytot] evaluates to the smallest

(mod 2π) amount allowed by the bordism group – which means (Ytot, A) can be taken

as a generator for the bordism group. This step is needed to establish that the global

anomaly can indeed be probed in thermal equilibrium, and it is not a priori the case

given the existence of the global anomaly.

(iii) Matching the global anomaly via the effective action. Lastly, to track through

the consequences for transport phenomena, we need to express logZT [X;A] as a local

effective action Seff composed out of the background metric and gauge fields, that is

again compatible with thermal equilibrium [29] in the high-temperature limit. This

involves compactification on the thermal cycle. The action is usually organised order-

by-order in the derivative expansions. The Seff should be invariant under small gauge

transformations but not under the large gauge transformation and/or diffeomorphism,

as dictated by the global anomaly probed by the mapping torus in step (ii).

In the remainder of this section, we briefly review the bordism classification of global anoma-

lies that justifies step (i). The role of the invertible theory ZI in determining the anomaly is

discussed in Section IIA, specialised to chiral fermion anomalies in Section II B. A method to

evaluate the η-invariant for a global anomaly via anomaly interplay is discussed in Appendix

A, as it is a somewhat technical diversion. We then turn to steps (ii) and (iii), specialising

to the thermal EFT limit which is our focus, in Section III.

A. Inflow, locality, and anomaly cancellation

First we review how anomalies in the UV theory, in d spacetime dimensions, are captured

by an invertible field theory in d+ 1 dimensions.2 To start, fix the d-dimensional spacetime

manifold X. If a theory T has a ’t Hooft anomaly in G, this means that the partition

function ZT [X] is no longer a C-valued function on the space of background G gauge fields,

but is instead a section of a complex line bundle over that space. The curvature of that

bundle detects perturbative anomalies while, if this bundle is flat, the holonomy encodes

any residual global anomalies. For instance, if the anomaly is due to chiral fermions, then

2 Recall that an invertible field theory in k dimensions [30] is a functor that evaluates to a pure-phase when

evaluated on a closed k-manifold Y , and gives an element in a one-dimensional Hilbert space H(X) when

evaluated on a (k − 1)-manifold X.
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the curvature is the anomaly polynomial Φd+2, which is a particular closed (d+2)-form that

will play a key role in what follows.

Equivalent to this picture, if we fix also a choice of background gauge field A, then

ZT [X;A] is no longer a simple C-number, but must be regarded as a vector in a one-

dimensional Hilbert space H∗(X;A) because of the ambiguity in defining its phase:

ZT [X;A] ∈ H∗(X;A) (2.1)

This fact, that the putative partition function of the d-dimensional anomalous theory is a

vector in a Hilbert space, equivalently a section of a line bundle, means that ZT [X;A] can be

regarded as a state in a well-defined quantum field theory in one-dimension higher. We call

this the anomaly theory, denoted Id+1. The fact that the Hilbert space is one-dimensional

means the field theory is furthermore invertible, which in turn means the partition function

of the anomaly theory itself, when evaluated on a d+ 1-manifold, is a pure-phase.

One can then attempt to define the partition function for the UV theory by splitting it

into a modulus and an argument, where the latter is expressed via the anomaly theory. To

do so, we suppose there is a (d+ 1)-manifold Y whose boundary ∂Y = X and to which all

structures, including the gauge field A, smoothly extend.3 Then we define

ZT [X;A] = |ZT [X;A]| · ZI [Y ;A], where ∂Y = X , (2.2)

where we use the same symbol A to denote the extension of the original gauge field to

Y . In the case of chiral fermion anomalies the invertible theory is the exponential of the

Atiyah–Patodi–Singer (APS) η-invariant [34–36], which we return to shortly in §II B.
If the formula (2.2) depends on the choice of bulk extension Y , then the putative quantum

field theory that we attempted to define by T violates locality. So, to enforce locality is to

demand that the anomaly theory evaluated for any two choices of extension Y and Y ′ must

agree, i.e.

1 =
ZI [Y

′]

ZI [Y ]
= ZI [Ytot] , Ytot := Y ′ ∪X Ȳ (2.3)

where Y denotes the orientation reversal of Y , assuming for simplicity that every manifold is

equipped with an orientation, and the operation ∪X denotes that Y ′ and Y are glued along

their equal but oppositely-oriented boundary X, the result of which is a closed (d + 1)-

manifold Ytot := Y ′ ∪X Y . The first equality in (2.3) is our locality condition, while the

second equality follows from the cutting and gluing property of invertible field theories [20].

In the case of chiral fermion anomalies that is our main interest, this cutting and gluing

property is part of what has come to be known as the ‘Dai–Freed theorem’ [37].

3 It is possible that no such extension exists. In d = 4 this can occur even when there is no gauge group;

for instance, choosing X to be the K3 surface, the spin structure thereon cannot be extended to any

bulk 5-manifold. When a gauge group is included, say G = SU(n), instanton configurations also pose an

obstruction. The possibility for such ‘non-nullbordant’ spacetimes, which is probed by Ωd(·), does not

give rise to any further anomalies, but rather to ambiguities in the partition function [20, 31–33]. This

requires a choice of theta-angles be made for each generator in Ωd(·), including discrete factors.
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The locality condition (2.3) is clearly satisfied if the anomaly theory ZI [Ytot] = 1 on

all closed (d + 1)-manifolds Ytot with G-bundles and other appropriate structures, which is

equivalent to the anomaly theory being the trivial theory. It has been argued that ZI [Ytot] =

1 should indeed be taken as a fully consistent criterion for locality, that guarantees the theory

is well-defined on all manifolds equipped with the structures taken to define the theory. This

criterion moreover implies all (local and global) anomalies vanish in the more traditional

sense, because {Ytot} includes as a subset all manifolds of the ‘mapping torus’ form X ×S1,

obtained from an initial theory on (X,A, . . . ) by interpolating along the S1 direction to any

would-be-gauge-equivalent field configuration also on X. See e.g. the discussion in [38] for

a more pedestrian account of this perspective.

B. Chiral fermion anomalies

This work concerns the hydrodynamic limits of theories containing chiral fermions. As

proven in Ref. [33], the invertible theory ZI [Y ] that precisely determines the phase of the

fermion partition function, and thence governs all anomalies, is the exponentiated APS

η-invariant [34–36] associated to a Dirac operator i /D extended to the bulk Y with APS

boundary conditions,4 that is obtained from the kinetic term of the UV fermions. The

anomaly theory is

ZI [Y ;A] = exp (−2πiηr(Y,A)) , (2.4)

where the η-invariant ηr(Y,A) is a sum of the signs of the eigenvalues λk of the Dirac

operator i /D on Y evaluated for the representation r of G, which must be regularised e.g.

via heat-kernel regularisation:

ηr(Y,A) = lim
ϵ→0+

∑
k

e−ϵ|λk|sign(λk)/2 . (2.5)

where k labels the eigenvalues. This invertible field theory carries complete non-perturbative

information about the chiral fermion anomaly [33].

As discussed in the previous section, the phase by which the partition function transforms

is expressed as the anomaly theory ZI evaluated on some Ytot, which is a closed (d + 1)-

manifold equipped with a spin structure and a G-bundle such as a mapping torus or a

mapping sphere. If this can be extended to a (d + 2)−dimensional manifold W whose

boundary is ∂W = Ytot, then one can use the APS index theorem to write the exponentiated

η-invariant in terms of the index density a.k.a. the anomaly polynomial Φd+2 that captures

all perturbative anomalies,

exp(−2πiηr(Ytot, A)) = exp

(
−2πi

∫
W

Φd+2(A, r)

)
, Φd+2(A, r) = Â(R) trr

[
exp

(
F

2π

)]
,

(2.6)

4 We do not go into the technicalities of defining APS boundary conditions here, but refer readers to [33].
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where Â(R) denotes the Dirac genus. Note that the contribution to the APS index theorem

from the index itself vanishes upon the taking the complex exponential.

Such an extension may not exist when the spin bordism group, which measures obstruc-

tions to extending Ytot to W , is non-trivial i.e. ΩSpin
d+1 (BG) ̸= 0. In this scenario, the

exponentiated η-invariant and hence the anomaly may still be non-trivial even when the

index density Φd+2 = 0 i.e. when perturbative anomalies vanish. In this case that Φd+2 = 0,

the APS index theorem tells us further useful information, namely that the exponentiated

η-invariant is trivial on all manifolds that can be extended, which together form the zero

element in the bordism group. Equivalently the anomaly, which is necessarily a global or

non-perturbative one now, becomes a bordism invariant under these conditions, and so is a

homomorphism from TorΩSpin
d+1 (BG) to U(1).5 An immediate corollary is that there can be no

global anomalies if TorΩSpin
d+1 (BG) = 0. More generally, when TorΩSpin

d+1 (BG) is not zero this

means that we only need to compute the η-invariant for Ytot being a finite-order generator of

the bordism group, and once we have done so for all such generators we will have obtained

complete information regarding the anomaly. For instance, TorΩSpin
5 (BSU(2)) ∼= Z2, mean-

ing there is a class of spin-manifolds equipped with SU(2)-bundles that cannot be realised

as boundaries, and we need to evaluate the η-invariant on one such manifold to compute the

SU(2) anomaly. We return to this example, adapted to the hydrodynamic limit, in §IV.

III. NON-PERTURBATIVE ANOMALY MATCHING IN THERMAL

EQUILIBRIUM

We wish to apply this general formalism for analysing global anomalies in the hydrody-

namic, high temperature limit, assuming that the UV theory is gapped when placed on the

background geometry with thermal cycle.6 This limit involves putting the system at finite

temperature, coarse-graining over all microscopic degrees of freedom, and imposing an equi-

librium condition which means the background metric admits a time-like Killing vector ∂t.

The hydrodynamic theory is assumed to be in the normal phase, which means the conserved

currents such as the stress-energy tensor Tµν are expressed as functions of thermodynamic

variables such as temperature T and fluid velocity uµ, as well as the background fields like

the metric and the background gauge field A for symmetry G.

We suppose the microscopic theory has global symmetry G, and consider coupling to a

background gauge field A as before that transforms as

A → g−1Ag + g−1dg , g = g(xµ) : X → G . (3.1)

5 The restriction to the torsion subgroup is because any non-trivial η-invariant associated to free factors

in Ωd+1 can be cancelled by an extra term in the partition function of the form Zct = exp
(
−i
∫
φ
)
[33],

where φ is a gauge-invariant differential form constructed from A and possibly the metric. This is simply

some characteristic class, which can only be non-trivial when d+ 1 is even i.e. when d is odd.
6 For microscopic theories of massless chiral fermions, anomalies can in fact present an obstruction to this

hypothesis, at least in the presence of instantons. We comment on this later.
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To go to the high temperature phase of this theory, we take the specific spacetime topology

X = S1
β ×M , (3.2)

equipped with a metric and gauge field that can be cast in the Kaluza–Klein form [29],

gµνdx
µdxν = e2σ(x)(dτ + αidx

i)2 + γijdx
idxj , A = −µu+A , where uµuµ = −1 . (3.3)

Here uµ plays the role of the fluid velocity such that u = uµdx
µ = −(dτ +αidx

i), µ := uµAµ

plays the role of the chemical potential valued in the adjoint representation, and A =

A + µu = Aidx
i only contains ‘spatial’ components orthogonal to uµ. The temperature is

encoded through 1/T = βeσ where β is the size of the thermal cycle. We then dimensionally

reduce the theory on the thermal cycle S1
β, with β assumed to be small compared to gradients

of the hydrodynamic variables at high temperature.

The resulting thermal partition function Z[g, A] is not invariant under all transformations

of type (3.1), but only under background gauge transformations of the form

Aτ → h−1Aτh , Ai → h−1Aih+ h−1dih , h = h(xi) : M → G , (3.4)

due to the hypothesis that the system is in equilibrium [29]. The absence of the time-

dependence in the transformation parameters signifies the breaking of boosts, and has been

exploited extensively in building EFTs for hydrodynamics [39, 40] (see also [41, 42] for

discussions from the correlation function perspective). Note that the ‘image’ of the unbroken

gauge transformations remains the full group G, so this should be viewed purely as the

breaking of a spacetime symmetry.7

The equilibrium partition function ZT [g, A] is defined, according to [29, 46], to be a trace

of a thermal density matrix, with the possible insertion of sources. One could think of

it as the partition function on the background X with timelike Killing vector uµ/T . The

assumption that the theory on S1 × M is gapped indicates that one can integrate out all

microscopic degrees of freedom and express the effective action in terms of the variables in

(3.3), as

− logZT [g, A] = β

∫
M

d3x
√
γ Leff[σ, αi, γij, µ,Ai] , (3.5)

If the theory is totally invariant under all diffeomorphisms and global symmetries described

by h : M → G in (3.4), then the Lagrangian at zeroth derivative level can only depend on the

temperature (through σ) and chemical potential µ that produce the ideal fluid constitutive

relations for T µν and Jµ.

When the system is anomalous, one must allow for non-invariant combinations of hydro-

dynamic variables (3.3) in such a way that the partition function of the theory on (X,A)

7 This statement can also be derived using holography. Such a holographic approach has been used to extract

hydrodynamics e.g. for a theory with U(1) symmetry [43], for anomalous and non-abelian symmetry [44],

and for 1-form U(1) and toric 2-group symmetry [45].
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and some transformed (X ′, A′) obtained by doing a background gauge transformation and

possible diffeomorphism satisfies the relation dictated by the anomaly:

ZT [X
′;A′]

ZT [X;A]
= ZI [Ytot] , (3.6)

where Ytot is a mapping torus that computes the anomaly in the fundamental theory, as

described in §II. This approach has been successfully applied to put constraints on the

anomalous transport coefficients which control specific non-invariant combinations in sys-

tems with perturbative anomalies [29, 47–49], where A and A′ are related by infinitesimal

gauge transformations. The case of global anomalies, where the index density Φd+2 = 0, is

more subtle as one would have to find specific mapping tori that not only probe the anomaly

but are also compatible with thermal equilibrium, as advertized in step (ii) in the previous

§II. This has been done in a handful of examples [24, 27, 28].

In the case of chiral fermion anomalies, some further general comments are warranted

before we turn to the USp(2N) case:

• Our assumption that the UV theory is gapped, necessary to go to the hydrodynamic

limit, prevents us from considering instanton configurations for the background gauge

field A on X, since non-zero instanton number would imply by the Atiyah–Singer

index theorem that there are fermion zero modes.

• Zero gauge instanton number implies that [X] = 0 ∈ ΩSpin
4 (BG), in the case of interest

where G is a simple Lie group, provided we choose a spin structure that can be filled

in. This means the assumption that X can be extended to a bounding Y holds in

our context, and the ambiguities associated with assigning the partition function on

non-nullbordant X are not activated. In other words, the generalised theta-angles for

the gauge symmetry are in fact not physical in our hydrodynamical EFT limit.

• The reader might already be puzzled, given the previous two points, how we can hope

to derive consequences of e.g. the SU(2) global anomaly when we forbid instanton

configurations on X. The point will be, however, that one can still probe mapping tori

that are in the non-trivial 5th bordism group, for instance by wrapping an instanton

around the product of the spatialM with the auxiliary mapping torus direction (rather

than with the time-like coordinate in X). But, as we will see, this also requires a non-

trivial discrete holonomy wrapping the thermal cycle, which we will interpret as a

defect required to detect the presence of a global anomaly.

IV. MATCHING THE WITTEN ANOMALY IN THERMAL EQUILIBRIUM

Recall that global anomalies, which are discrete phase ambiguities in the partition

function, are determined by the bordism group TorΩSpin
5 (BG). The spin bordism groups
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ΩSpin
5 (BG) vanish for all G = SU(N) with N ≥ 3, for all G = SO(N), and for all the excep-

tional Lie groups i.e. G2, F4, and E6,7,8 [50]. The only simple Lie groups with non-trivial

degree-5 bordism groups and thus global anomalies are of course

ΩSpin
5 (BUSp(2N)) ∼= Z2 ∀N ≥ 1 , (4.1)

including the special case USp(2) ∼= SU(2). Being Z2-valued implies the most general

anomaly would be a sign flip of the partition function,

Z[A] → Z[Ag] = −Z[A] . (4.2)

The anomaly is indeed present for all USp(2N) including SU(2).

Taking G = SU(2) for concreteness and simplicity (but noting the same holds for any

USp(2N)), there are two standard mapping torus constructions in the literature that lie in

the non-trivial bordism class and that probe the global anomaly. The first is that originally

described by Witten in Ref. [13], in which the Euclideanised spacetime is assumed to be a

4-sphere, and a map g(x) : S4 → SU(2) in the non-trivial homotopy class is used to glue

together the ends of a mapping torus, starting from any SU(2) gauge connection on S4. The

second is described more recently by Wang, Wen and Witten in Ref. [14], whereby spacetime

S4 is equipped with an SU(2) background with odd instanton number, and the constant

gauge transformation g(x) = −1 is used to glue the ends of the mapping torus.

Neither of these descriptions are consistent with our hydrodynamic setup in which, for

instance, the 4-d Euclidean spacetime is required to be a circle fibration over a spatial 3-

manifold, and has no instanton (see §III). In this section we nonetheless show how SU(2)

gauge transformations can probe the SU(2) global anomaly on spacetime backgrounds that

are consistent with our hydrodynamic hypothesis (§IVA). The picture generalises with minor

modifications to any USp(2N) (§IVB).

A. Clutching construction for SU(2) anomalies in hydrodynamics

We consider a theory that in the UV has chiral fermions transforming in representation r

of a global SU(2) symmetry. For simplicity, let us assume that, at thermal equilibrium, the

underlying manifold is a trivial circle fibration with the spatial manifold being a 3-sphere,

X4 = S1
β × S3 . (4.3)

Compatibility with thermal equilibrium requires that any background gauge field on X4, as

well as any gauge transformation g, be independent of the thermal cycle direction. The par-

tition function receives a contribution ZI [Y,A] = exp(−2πiηr(Y,A)) from the exponentiated

η-invariant of a 5-d Dirac operator acting on our SU(2) representation, where we extend

spacetime X4 as the boundary of a 5-manifold

Y = S1
β ×D4, ∂D4 = S3 (4.4)
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with appropriate boundary conditions on the Dirac operator. Such an extension of the

spatial S3 to a disc is always possible because

π3(BSU(2)) ∼= π2(SU(2)) = 0 . (4.5)

As explained above, compatibility with equilibrium requires that any gauge transformation

g, which is in general a map from X4 = S1
β × S3 into SU(2), should be independent of S1

β.

Thus g reduces to a map from the spatial manifold only, i.e.

g(xi) : S3 → SU(2) , (4.6)

and so effectively implements a 3-d gauge transformation. Such maps are classified by their

homotopy class, which here coincides with the ‘degree’ n of a map from S3 to itself,

[g] = n ∈ π3(SU(2)) ∼= Z . (4.7)

Under such a gauge transformation A 7→ Ag, we track the variation of the partition function

phase through the invertible theory, which transforms from ZI [S
1
β×D4;A] to ZI [S

1
β×D4;Ag],

where the SU(2)-bundle over each D4 is trivial because D4 is contractible.

The anomalous phase variation can then be computed via

ZI [S
1
β ×D4;Ag]

ZI [S1
β ×D4;A]

= ZI [(S
1
β ×D4;Ag) ∪X (S1

β ×D4;A)] (4.8)

= ZI [S
1
β × S4;Aclutch] = exp

(
−2πiηr

(
S1
β × S4, Aclutch

))
where in the first equality we reverse orientation to move the factor in the denominator to

the numerator. The second equality is the crucial step: the S4 is obtained by gluing the two

D4 hemispheres together along their shared boundary X3, with the gauge fields A and Ag

glued together with the gauge transformation g at the equator S3, as shown in Fig. 1. The

S1
β factor is essentially a spectator to this procedure.

Gluing two hemispheres (here D4) with G-bundle in this way to form a sphere (here S4),

via a non-trivial gauge transformation g : S3 → G on the equator, is known in topology

as the clutching construction, with g being the clutching function. The resulting SU(2)-

bundle on S4, with connection Aclutch, is specified by the degree n of the clutching function

g : S3 → SU(2) used to glue the two 4-discs, which recall started life as an effective 3-d

gauge transformation consistent with our assumptions of thermal equilbrium. Precisely, the

integer n becomes the instanton number of the bundle over the S4, viz.

⟨[S4], p1(Fclutch)⟩ = deg(g) = n , (4.9)

where p1(Fclutch) is the first Pontryagin class of Aclutch. This identification can also be

understood from the long exact sequence in homotopy applied to G → EG → BG, using

the fact that EG is contractible, which yields the isomorphism π3(SU(2)) ∼= π4(BSU(2)).
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FIG. 1: The ‘clutching construction’ of a SU(2)-bundle on S1 × S4 = S1
β × (D4 ∪X3 D̄4).

Here we suppress the S1
β direction, and represent the manifolds D4 and S4 as 2-discs and

2-spheres, respectively. The resulting SU(2) bundle on S4 has instanton number equal to

the homotopy class in π3(S
3) of the 3-d gauge transformation g(xi) used in the gluing.

Thus, the anomalous phase variation is computed by evaluating the exponentiated η-

invariant on a product of the thermal cycle with an S4 equipped with an n-instanton. In

other words, we arrive at the same manifold with G-bundle as that formulated by Wang,

Wen, and Witten in [14]. While there it was formed as a mapping torus, here it is formed

as a ‘mapping sphere’, with the S1 direction not parametrizing the gauge transformation

but rather being the thermal cycle S1
β in the original X4. For this 5-manifold to be in the

non-trivial bordism class, we know that we need to arrange for the non-trivial (i.e. periodic)

spin structure around S1
β.

The APS η-invariant on this manifold is well-known, and can be arrived at through a

variety of methods, for instance via a mod 2 index theorem [51], or via the more pedestrian

method of ‘anomaly interplay’ [52–54] that we review in Appendix A. Perhaps the most

direct way is to use the following ‘factorization’ property that holds for the Dirac operator

under consideration [55, Lemma 2.2]

exp 2πi
[
η(S1

β × S4)
]
= exp 2πi

[
η(S1

β)× Ind(S4)
]
, (4.10)

as described for example in [50, 56], and recently in Ref. [57] in the context of the 3+1d

SU(2) anomaly we consider here. The η-invariant on S1
β is determined by the spin structure

of the fermion. For the AP spin structure, there is no zero mode on S1
β and thus 2η(S1) = 0

mod 2. For the P structure, there is a zero mode and direct computation using (2.5) results

in 2η = 1 mod 2, which verifies that S1
β with P structure is non-trivial in spin bordism. This

implies

exp
(
−2πiηr

(
S1
β × S4, Aclutch

))
=

1, S1
β has AP spin structure,

(−1)
∫
S4 Φ4(Aclutch,r), S1

β has P spin structure.
(4.11)
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Here Φ4 is the degree-4 anomaly polynomial appearing in the Atiyah–Singer theorem,∫
S4

Φ4(Aclutch, r) = − 1

8π2

∫
S4

Trr(F
2
clutch) = −T (j)

∫
S4

p1(Fclutch) , (4.12)

where the Dynkin index T (j) = 2
3
j(j+1)(2j+1), which is defined by Tr (taj t

b
j) =

1
2
δabT (j),

is odd for j ∈ 2Z + 1
2
and even otherwise, and

∫
p1(Fclutch) = n is the instanton number of

the SU(2) bundle over S4 that we obtained via the clutching construction.

Thus, the thermal partition function changes sign under the SU(2) gauge transformation

g : S3 → SU(2) that we started with iff:

1. The degree n of the spatial gauge transformation map g is odd;

2. The thermal cycle S1
β is equipped with periodic spin structure;

3. There is an odd number of chiral fermions transforming in representations with j ∈
2Z+ 1

2
.

The final condition is of course the usual one for the fundamental theory to exhibit the

SU(2) anomaly.

The first two conditions constitute our main finding of how the SU(2) anomalous trans-

formation can be seen in thermal equilibrium. In particular, the second condition tells us

that, when the S1
β has anti-periodic spin structure, the effective description in the thermal

state is indistinguishable from the anomaly-free one. Thus, to see the effect of the SU(2)

anomaly, one needs to insert an operator into the thermal partition function that flips the

fermion boundary condition from anti-periodic to periodic. For example, we may consider

the twisted partition function

Ztwisted
thermal = tr

[
(−1)F e−βH

]
or tr

[
Uπe

−βH
]
, (4.13)

where Uπ is the central element of SU(2) that flips the sign of, for instance, a fundamental

fermion as it passes through this operator when going around the thermal cycle. It should

be emphasised that this possibility depends on the representation of the fermion microscopic

constituents. For integer isospins j ∈ Z, the representation is of course real and there is no

unpaired zero mode on S1
β rendering 2η(S1) to vanish mod 2 (in our conventions). This can

also be understood from the fact that the central element Uπ ∈ SU(2) acts trivially on all

integer j representations and therefore the spin structure cannot be flipped from the AP to

the P one by inserting Uπ. For half-integer j, however, there can be zero mode upon the

centre insertion and the regulated sum of eigenvalues in (2.5) yields 2η(S1) = j mod 1.

B. Generalisation from SU(2) to USp(2N) anomalies

Our clutching construction argument, with which we build a non-trivial ‘mapping sphere’

that consistently probes the SU(2) anomaly in thermal equilibrium, can be generalised to the
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case of global symmetry G = USp(2N), which we know suffers from the same microscopic

global anomaly [13]. Throughout this section we quote various homotopy groups of USp(2N)

up to degree 5, which were computed by Bott [58]. See also [59].

Our starting point is again a USp(2N)-bundle over X4 = S1
β × S3, which can again be

extended as the boundary of a 5-manifold Y = S1
β ×D4, because

π3(BUSp(2N)) ∼= π2(USp(2N)) = 0 (4.14)

for any N . We consider a purely spatial 3-d gauge transformation g : S3 → USp(2N),

consistent with the assumption of thermal equilibrium. This is now classified up to homotopy

by an element

[g] = n ∈ π3(USp(2N)) ∼= Z . (4.15)

Again, to compute the change in the partition function phase for Ag vs. A backgrounds,

we evaluate the anomaly theory on a 5-d mapping sphere obtained by gluing together the

two 4-discs with USp(2N)-bundle along their equator via the clutching function g. The

clutching construction tells us that the resulting bundle on S4 is classified by an element

in the homotopy class of maps [S4, BUSp(2N)] ∼= π4(BUSp(2N)) ∼= Z equal to n = [g].

Repeating the same argument as for SU(2), the anomalous phase variation is then computed

by the mapping sphere, giving the same result (4.11).

The difference is only in performing the trace over the fermion representation, which

is a little more involved for general USp(2N). Now a representation is labelled by N

Dynkin labels or equivalently N ‘isospin’ quantum numbers j1, . . . , jn, and T (j) is re-

placed by the Dynkin index T (j1, . . . , jn) which is again defined via Tr (taj1,...,jN t
b
j1,...,jN

) =
1
2
δabT (j1, . . . , jN). For the fundamental 2N representation, this is again equal to unity in

our convention. More generally, as for the SU(2) case, the global anomaly is only probed

when there is an odd number of chiral fermions in total that transform in representations

for which T (j1, . . . , jn) is odd.

V. CONSEQUENCES IN TRANSPORT PHENOMENA

In its simplest form, hydrodynamics is defined by a set of gradient expansions of the

conserved quantities in terms of their conjugate variables. See e.g. [60] for a modern review.

The consequences of perturbative ’t Hooft anomalies in transport phenomena have been

derived, for example using the positivity of entropy production [61] or by matching the

variation of the thermal partition function [29, 48]. The form of the conserved current Jµ

and its response due to vorticity and magnetic field are constrained by the anomaly.
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A. Review: non-abelian perturbative anomaly-induced transport

A generalisation to non-abelian global symmetries in hydrodynamics has been carried

out in the last few decades.8 There the density and chemical potential are promoted to

matrix-valued quantities that transform in the adjoint representation of a group G. Consider

the case where the covariant current J i
a := 2tr[J iTa] obeys the following anomalous Ward

identity

DµJ
aµ =

1

8
CabcϵµνρσF

µν
b F ρσ

c , Cabc =
1

4π2
tr
[
T(aTbTc)

]
(5.1)

with {Ta} are the generators of G. It can be shown, by demanding the positivity of the

entropy production and CPT symmetry, that the stress-energy tensor and the current must

contain the following terms [70]9

T i
t = −

(
1

3
Cbcdµ

bµcµd + 2βbµ
bT 2

)
ωi +

(
1

2
Cabcµ

bµc + βaT

)
Bai ,

J i
a =

(
1

2
Cabcµ

bµc + βaT
2

)
ωi + Cabcµ

bBci

(5.2)

where βa are constants that depend neither on the temperature nor on the chemical potential

components µa := 2tr[µTa]. The same conclusion follows from the consistent variation of

the equilibrium partition function [49].

From the perspective of the dimensionally-reduced effective action (3.5), the undeter-

mined coefficients βa originate from mixed Chern–Simons term involving the Kaluza–Klein

gauge field α defined in (3.3) and the gauge field A that appears at high temperature,

−i logZ ⊃ n

2π

∫
M

α ∧ tr[dA] . (5.3)

Observe that the other possible Chern–Simons terms involving only α or only A, namely∫
M

CS3[α] :=

∫
M

αdα ,

∫
M

CS3[A] :=

∫
M

tr

[
A ∧ dA+

2

3
A ∧A ∧A

]
(5.4)

with properly quantised coefficients, generically violate 4d CPT symmetry and are therefore

omitted from the analysis [28, 29]. See the table below for the transformations of hydrody-

namic variables under CPT.

8 To our knowledge, the earliest formulation of hydrodynamics with non-abelian global symmetry used the

kinetic theory framework [62] (see [63] for a review). Early macroscopic approaches can be found in [64, 65]

with applications in (iso)spin transport [66]. Our approach in this section more closely follows those in

[67–69], which can be derived from gauge/gravity duality as well as being supported by the results of

relevant classical simulations.
9 The result we quote follows from the analysis of [70] but without imposing the ‘Landau frame’ where

Tµνuν = −εuµ and Jµ
a u

µ = −na with ε, na being the energy and non-abelian charge density in equilibrium.
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Discrete transformations in 3+1 dimensions

T P C CPT

xµ (−x0, xi) (x0,−xi) (x0, xi) −(x0, xi)

uµ (u0,−ui) (u0,−ui) uµ uµ

αi −αi −αi αi αi

ωi ∼ ϵdα −ωi ωi ωi −ωi

Aµ (A0,−Ai) (A0,−Ai) −Aµ −Aµ

B. Fractional transport from the Witten anomaly

When the symmetry group G is SU(2), or more generally USp(2N), the perturbative

anomaly coefficients Cabc of course vanish, and the tracelessness of the generators also implies

that the terms corresponding to βa vanish also. At first glance, one might be tempted to

conclude that there can be no effect due to the global anomaly for these groups, both at the

level of the conserved currents and the equilibrium partition function. However, this would

contradict the ’t Hooft anomaly matching argument. Therefore, either the normal phase is

not compatible with the ’t Hooft anomaly, which we explicitly demonstrated is not the case

in Section IV by constructing an appropriate mapping sphere, or one has to circumvent the

näıve constraints coming from CPT invariance and cook up terms in logZ that can match

the global anomaly.

The SU(2) global anomaly is related to the mod 2 reduction of the Pontryagin class

p1(F ) for non-trivial SU(2)-bundles, and we know that
∫
p1(F ) is in turn related to the 3d

Chern–Simons term CS3[A] via inflow, which suggests CS3[A] could play a role in matching

the anomaly. Having just argued that CS3[A] is CPT-odd, the only way to include such a

term in the effective action is if its quantised coefficient is also CPT-odd. Recall also from

§IVA that the mod 2 anomaly is probed in the high temperature limit only if the thermal

cycle S1
β has periodic spin structure, with the anomaly theory being proportional to η(S1

β)

as in (4.10).

With this guidance, we introduce the following fractional Chern–Simons term into the

effective action for our hydrodynamic theory reduced on the thermal cycle S1
β:

−i logZ ⊃ 2η(S1
β)

∫
M

1

2

q(j)

4π
CS3[A] , q(j) ∈ Z . (5.5)

The coefficient of the 3-d Chern–Simons term, proportional to η(S1
β)q(j), does indeed flip

sign under CPT which sends η(S1
β) → −η(S1

β).
10 This CPT-odd nature of the coefficient

is reminiscent of the flip θ 7→ −θ under charge conjugation imposed in e.g. [71], which is

10 For the 1-d Dirac operator on S1, CPT just sends t → −t and thus flips the sign of the Dirac operator,

thence flips the sign of all of its eigenvalues λk, thence flips the sign of η(S1).
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needed for the θ−term to preserve CPT. Notice that
∫

1
4π
CS3 would be an integer level

Chern–Simons term; the mod 2 fractional level is activated for P spin structure i.e. when

2η = 1 mod 2.

With our candidate effective action (5.5) in hand, one can then proceed to demand that

it matches the anomaly, which requires

exp

(
2η(S1

β)
iq(j)

8π

∫
M

(
CS[Ag]− CS[A]

))
= exp

(
−2πiηj(S

1
β × S4, Aclutch)

)
, (5.6)

where Ag is related to A by a transition function g, characterized by its class [g] in π3(G),

and recall Aclutch is the gauge field on S4 obtained using g as a clutching function. Evaluating

the left-hand-side, namely the variation of the 3-d non-abelian Chern–Simons action, is a

standard computation (see e.g. [72]), and gives

exp

(
2η(S1

β) iπq(j)

∫
M

Tr (g−1dg)3

24π2

)
= (−1)2η(S

1
β) q(j)[g] . (5.7)

Recall from §IVA that the anomalous variation exp 2πiηj(S
1
β ×S4) is non-trivial only when

the three conditions

[g] ∈ Zodd , (5.8)

2η(S1
β) = 1 mod 2 (P spin structure) , (5.9)

T (j) ∈ Zodd (5.10)

are all satisfied. Thus, to match the anomaly we have the following condition on the coeffi-

cient of the fractional Chern–Simons term:

q(j) = T (j) mod 2 . (5.11)

Equivalently, q(j) must be odd for j ∈ 2Z + 1
2
, and even otherwise. We emphasize that

the integrality of q(j), which means the fractional Chern–Simons term (5.5) evaluates only

to ±1 depending on the choice of background and of representation, means it is invariant

under CPT.

The generalisation to other USp(2N) is straightforward. Now the coefficient of the frac-

tional Chern–Simons term q(j1, ..., jN) must be an odd integer iff the fermion transforms in

a representation |j1, ..., jN⟩ whose Z2 central element acts nontrivially and that the Dynkin

index T (j1, ..., jN) is odd.

To see how this fractional Chern–Simons term in the effective action affects the conserved

currents, we consider the variation with respect to αi and Ai in the Kaluza–Klein coordinate,

similar to the variations considered in [29]. From this, we conclude that the consistent

conserved currents T t
t and J i

a in the anomalous theory must contains the terms

T i
t =

q(j)

8π
µaTBi

a +
q(j)

8π
µaµaTω

i ,

J i
a =

q(j)

8π
TBi

a +
q(j)

8π
µaTω

i ,

(5.12)
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which are not present in the corresponding analysis of fluids with perturbative ’t Hooft

anomalies, as in [70]. Thus, we derive new transport effects akin to the chiral magnetic

effect and its cousins, that arise not due to a perturbative anomaly but due to a more subtle

global anomaly.

It should be emphasised that the global anomaly matching only determines the value of

the transport coefficient q modulo 2, i.e. whether it is an even or odd integer. For example,

in the case of a fluid with SU(2) global symmetry for which the microscopic degree of

freedom is a massless fermion in the fundamental j = 1/2 representation with, we require

q(j) = 2k + 1 , k ∈ Z (5.13)

The integer k is not fixed by the anomaly, but rather is determined by the microscopic

details. The fractional part of q(j)/2 is fixed by the ’t Hooft anomaly matching. This

‘fractionally-induced transport’ mirrors that derived from global anomalies involving Z2

global symmetries in [27, 28]. See [73] for similar arguments related to 3-d QFTs at zero

temperature.

Before concluding, we point out a few subtleties. First, note that the currents in (5.2)

and (5.12) are of different nature: the former is known as the covariant current,11 obtained

by attaching the anomalous theory on X = ∂Y to a bulk Chern–Simons theory on Y that

cancels the anomaly via inflow, whereas the currents we use in (5.12) are derived from

the anomalous partition function with no bulk attached. Moreover, we emphasize that the

thermal partition function that would result in (5.12) requires the P spin structure on the

compactified thermal cycle, which can be implemented by ‘twisting’:

Ztwisted
thermal = tr

[
(−1)F e−βH

]
or tr

[
Uπe

−βH
]
.

Had there been no twist, it follows that the partition function is invariant and there is no

anomaly induced current as one would have anticipated from the result of [70].

VI. DISCUSSION AND FUTURE DIRECTIONS

In this paper we have shown that the Witten anomaly associated with SU(2) global

symmetry can be detected in the hydrodynamic phase at high temperature through the

momentum and current response to the vorticity ωi and applied external (non-abelian)

magnetic field Bi
a. This phenomenon can be captured via the relations(

J i
a

T i
t

)
=

(
σ
(BB)
ab σ

(Bω)
a

σ
(ωB)
b σ(ωω)

)(
Bi

b

ωi

)
(6.1a)

11 Here, we use the terminology of covariant and consistent partition functions, following [74]. A modern

review of these concepts can be found in e.g. [48]. Curiously, the conserved currents (5.12) can also be

obtained from covariant currents for a theory with perturbative U(2) anomaly [54] via (5.2), for which

the anomaly coefficients Cabc are zero except for the component C1bc which we take to equal q(j) (where

a = 1 labels the U(1) generator by which we extend SU(2) to get U(2)), provided one also restricts the

value of Jµ
1 = 0, µ1 = πT and B1i = 0.
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with a, b the Lie algebra indices, where the anomalous conductivities take the following

non-zero values when the partition function is twisted by Z2:

σ
(BB)
ab =

q(j)

4π
Tδab , σ(Bω)

a = σ(ωB)
a =

q(j)

4π
µaT , σ(ωω) =

q(j)

4π
(µaµa)T , (6.1b)

where anomaly matching dictates that

q(j) = T (j) mod 2 (6.1c)

in the SU(2) case, given a fundamental theory with a microscopic Weyl fermion transforming

in the isospin j representation. From the perspective of the effective action, these relations

follow from a fractional Chern–Simons term that is activated when the fundamental 4-d

fermions are compactified on the thermal cycle S1
β with a periodic spin structure (which

corresponds to the aforementioned twist of the partition function).

It would be valuable to confirm these results via microscopic computations, which could

be obtained by extrapolating the free fermion limit (as done for a global anomaly in [28]).

An important future direction is to explore how this fractional anomalous transport can

be tested experimentally, as in e.g. [11]. One class of promising systems for probing these

phenomena include multi-Weyl semi-metals which have an emergent SU(2) symmetry, albeit

with a different anomaly structure [75].

Our analysis of the hydrodynamic consequences of the Witten anomaly started with

a formulation of an appropriate mapping torus (or ‘mapping sphere’) that is in the non-

trivial bordism class that is furthermore consistent with passing to the hydrodynamic, high

temperature limit with the assumption of being in thermal equilibrium. A simple clutching

construction was used to build this bundle and compute the anomaly theory thereon. We

performed a computation that was similar in spirit for a theory with U(1) × Z2 global

symmetry, that features a Z4-valued global anomaly, in [28]. In future work it would be

interesting to ask whether there are global anomalies for which this general strategy would

be expected to fail. For example, consider a theory in which the spacetime and internal

symmetries are intertwined to form a so-called SpinG(4) structure

SpinG(4)
∼=

Spin(4)×G

Γ

with the Γ ∼= Z2 quotient identifying (−1)F ∈ Spin(4) with a central subgroup in G. This

type of symmetry can furnish ’t Hooft anomalies [14, 76–78], for which the bordism generator

– examples of which include the ‘Wu manifold’ SU(3)/SO(3) or the Dold manifold CP2⋊S1

– cannot be näıvely related to a thermodynamic configuration.

A second obstruction to our analysis would occur when the global anomaly cannot be

saturated by the hydrodynamic degrees of freedom; this may be the case when the anomaly

is captured by domain walls, such as for those anomalies in [79].

A final obstruction to our formalism, and arguably the most interesting, occurs when our

assumption that the QFT at high temperature is in the normal phase is violated. There
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is a growing class of models that are known to exhibit spontaneous symmetry breaking

that persists at high temperature due to an anomaly involving a 1-form global symmetry

[80–85]. This would contradict our assumption that the high temperature system is in the

normal fluid phase. These scenarios do not seem to be mutually exclusive and it would be

an interesting direction to investigate them further.

Going further in this direction, it is known that gauging a non-anomalous subgroup of

an anomalous theory is one pathway to obtaining a more intricate generalised symmetry

structure, such as higher-group symmetry or non-invertible symmetry [86] (see also [87–

89] for reviews). Naturally, one could wonder whether the macroscopic EFTs relevant for

thermodynamics and hydrodynamics can probe these rich symmetry structures. So far, the

answer seems to be affirmative but the examples are limited to symmetry structures obtained

by gauging subgroups of symmetries afflicted by perturbative anomalies [45, 90]. This is

largely because hydrodynamic EFTs are typically formulated in terms of local currents,

while global anomalies are not seen with this language. There are related constructions at

zero temperature in systems of anyons [91] and for those with the global symmetry of the

Standard Model [92] where fractionally quantised transport is observed, and it would be

interesting to understand the response of such systems at finite temperature. We hope that

the methods presented here might provide a small step forward in this direction.
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Appendix A: Evaluating the η-invariant via anomaly interplay

In this Appendix, we briefly summarise the technique we call ‘anomaly interplay’ for

evaluating η-invariants that probe global anomalies. Our computations will amount to

calculating the exponentiated η-invariant on the mapping sphere of §II.
The idea is to relate a global anomaly associated with a unitary symmetry group G to

a perturbative anomaly of another group G′ ⊃ G, where G has no perturbative anomalies

(Φd+2 = 0) and G′ has no global anomalies. This allows us to relate the global anomaly to

the integral of a closed differential form, as in (2.6). The idea goes back to Ref. [5], wherein

Witten showed that the mod 2 global anomaly in SU(2) can be obtained from perturbative

anomalies by embedding SU(2) in SU(3). It was further expanded upon by Elitzur and

Nair in Ref. [52], albeit couched in the language of homotopy groups. This notion was
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reformulated in [93, 94] in terms of cobordism in accordance with the modern classification

of anomalies, which we review here.

The global anomaly of interest is detected by the exponentiated η-invariant being non-

trivial on a (representative of a) non-trivial generator (Ytot, A) of the bordism group

ΩSpin
5 (BG). This means one cannot extend (Ytot, A) as a boundary of a 6-manifold W

with all the structures extended, and so one cannot use for instance the APS index theorem

to simplify the η-invariant expression further.

To explain how the anomaly interplay strategy provides a way forward in this situation,

we first take a closer look at properties of the η-invariant. The η-invariant ηr, computed for

a Dirac operator i /D of fermions in a particular representation r of the symmetry group G,

defines a map from the space of spin manifolds equipped with a G-bundle, which we denote

by M(G), to R, i.e., it is an element of Hom (M(G),R). Going a step further, we can see

that η maps a representation of G to an element of Hom (M(G),R):

η : RU(G) → Hom (M(G),R) :

r 7→ ηr , (A1)

where RU(G) is the unitary representation ring of G. For our purpose, we forget the multi-

plicative structure onRU(G) and regard it as a free abelian group generated by (isomorphism

classes of) irreducible representations (irreps) of G. Formally, an element of r ∈ RU(G) can

be written as

r =
⊕
i

airi , ai ∈ Z , (A2)

where the sum is over all irreps ri of G. When ai > 0, this is the usual direct sum. When

ai < 0, we define it formally by saying that (−ri)⊕ ri is the trivial representation.12

We next embed G as a subgroup of G′, π : G ↪→ G′, chosen such that there is no global

anomaly in G′. This embedding induces an injection π∗ from the space of spin 5-manifolds

with G-bundles, M(G), to the space of spin 5-manifolds with G′-bundles, M(G′). More

explicitly, since G is a subgroup of G′, we can view A as a background gauge field for G′

(albeit not the most general background for G′), which we will denote by A′. In other words,

(Ytot, A
′) = π∗(Ytot, A) . (A3)

This, in turn, induces a pullback on the space of homomorphisms M(G) → R:

π∗ : Hom (M(G′),R) → Hom (M(G),R) :

f 7→ π∗f = f ◦ π∗ . (A4)

Similarly, π induces a pullback on the representation ring:

π∗ : RU(G′) → RU(G) :

r′ 7→ π∗r′ . (A5)

12 Physically, one can think of η−ri as evaluated for the fermion in the irrep ri of G in the opposite chirality.
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where π∗r′ is r′ decomposed into direct sums of irreps of the subgroup G. Two η-invariants,

η : M(G) → R and η′ : M(G′) → R, are related to each other by the naturality property of

the η-invariant [95, 96], that is, the diagram

RU(G) Hom (M(G),R)

RU(G′) Hom (M(G′),R)

η

η′

π∗ π∗ (A6)

is commutative. Equivalently, it means

ηπ∗r′ = π∗η′r′ = η′r′ ◦ π∗ . (A7)

In categorical terms, we say that η is a natural transformation from the functor RU(•) to
the functor Hom (M(•),R), where both are functors from the category of groups to the

category of abelian groups.

We can now use the naturality of the η-invariant to rewrite the global anomaly in G as a

perturbative anomaly in G′. Using Eq. (A7), the partition function for the invertible theory

I on (Ytot, A) corresponding to free fermions in the representation r of G can be evaluated

as

ZI [Ytot;A] = exp (−2πiηr(Ytot, A)) = exp (−2πiη′r′ ◦ π∗(Ytot, A)) (A8)

= exp (−2πiη′r′(Ytot, A
′)) , (A9)

where we pick r′ such that π∗r′ = r. Recall that G′ is chosen such that there are no global

anomalies, i.e. ΩSpin
5 (BG′) = 0.13 This means (Ytot, A

′) can be extended as a boundary of a

6-manifold W , with all the structures appropriately extended. In particular, W is equipped

with a G′-bundle with background gauge field Ã
′
such that Ã

′ |∂ = A′. This extension is only

possible because we allow a more general G′-bundle instead of restricting to G-bundles over

the bulk W . Since (Ytot, A
′) = ∂(W, Ã′), we can apply the APS index theorem to express

the η-invariant on (Ytot, A
′) in terms of the anomaly polynomial,

ZI [Ytot;A] = exp (−2πiη′r′(Ytot, A
′)) = exp

(
−2πi

∫
W

Â(R)trr′

[
exp

(
F̃ ′

2π

)])
, (A10)

where F̃ ′ is the field strength of Ã′ on W . This expression provides the sought-after differ-

ential form version of global anomalies that we can then apply to analyses of anomalies in

hydrodynamics.

It is worth remarking that, in order to have the differential form expression (A10) for the

exponentiated η-invariant, we do not strictly require that ΩSpin
5 (BG′) = 0. This is rather a

convenient shortcut which, when available, implies that any closed (Ytot, A
′) must be null-

bordant. But even if ΩSpin
5 (BG′) ̸= 0, if we can nonetheless construct an explicit extension

(W, Ã′) such that (Ytot, A
′) = ∂(W, Ã′), we can of course use the APS index theorem to

arrive at (A10).

13 Similar ideas, exploiting the naturality of the η-invariant, were used in [94] to relate global anomalies

associated with non-abelian finite groups to other global anomalies, for instance in abelian finite groups.
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Application to the Witten anomaly at finite temperature

We now apply this formalism to offer an alternative calculation for the η-invariant per-

taining to the Witten anomaly, adapted to the hydrodynamic setting as in §IVA. This is a

more pedestrian way to evaluate η(S1
β × S4) than the factorization property (4.10) that we

invoked in the main text, and is in essence reproduced from the calculation in [93].

Consider the SU(2) gauge field configuration on S1
β ×S4 with holonomy µ/T around the

thermal cycle S1
β, which just corresponds to the system being at finite chemical potential, and

furthermore twisted by (−1)F , which coincides with the central element in Z(SU(2)) ∼= Z2.

Recall the gauge field on the S4 factor is in an instanton configuration, obtained by gluing

two hemispheres via the clutching construction Aclutch. In terms of patches, we can express

Aclutch = A on the upper hemisphere and Aclutch = Ag on the lower hemisphere respectively.

This configuration of G = SU(2) can be embedded inside G′ = U(2) ∼= (SU(2) ×
U(1))/Z2, for which ΩSpin

5 (BU(2)) = 0 [54, 97, 98], as

A′ = −η̃πTu1− µu+ Aclutch . (A11)

The first term is a component of the gauge field in the direction U(1) ⊂ U(2) by which we

centrally extend the original SU(2) to get U(2). We see that the charge η̃ ∈ Zodd corresponds

to the centre element that results in the fundamental fermion gaining phase eiπ as it goes

around the thermal cycle, i.e.

exp

(
i

∫
S1
β

A′

)∣∣∣∣∣
µ=0

= −1 . (A12)

This U(1) ⊂ U(2) charge η̃ is moreover related to the isospin j of the microscopic fermion

representation, by the ‘isospin-charge’ relation

η̃ = 2j mod 2 . (A13)

Since ΩSpin
5 (BU(2)) = 0, one can evaluate the η-invariant via the 6d anomaly polynomial on

W with W = D2 × S4 via the APS index theorem. We choose the extension of A′ to A′(r)

on W to be

A′(r) = −(η̃πTu1− µu)r + Aclutch (A14)

such that the gauge field on r = 1 corresponds to that on ∂W = S1
β × S4. Then

η(S1
β × S4) =

1

3!

1

(2π)3

∫
D2×S4

tr
[
F ′(r)3

]
,

= − η̃

16π2

∫ r=1

r=0

dr

∫
S1
β

uT

∫
S4

tr(Fclutch ∧ Fclutch) ,

= −1

2
η̃T (j)

∫
S4

p1(Fclutch) .

(A15)
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Here, T (j) = 2
3
j(j + 1)(2j + 1) is the Dynkin index of the representation j as in the main

text. To relate this to the result in the main text, the value of the U(1) charge η̃ plays the

role of 2η(S1
β), whose values agree modulo 2. It is non-trivial only when the spin structure

flips from AP to P upon the centre insertion for j ∈ Zodd. Had we turned off the defect

operator, Uπ or (−1)F in (4.13), there will be no anomalous phase.

Similar to how we embedded SU(2) inside U(2), one can embed the group USp(2N)

inside

G′ =
USp(2N)× U(1)

Z2

. (A16)

The Z2 quotient relates the U(1) charge and the analogue of ‘isospin’ of the representation of

USp(2N). One can then apply the anomaly interplay procedure to express the exponentiated

η-invariant of the mapping sphere, even though we have not actually evaluated the bordism

groups ΩSpin
5 (BG′). In this more general case, one can still use the U(1) direction in the

extended gauge group to revert back to AP spin structure on S1
β which can be explicitly

filled in to a 2-disc in spin bordism, again with a U(1) monopole field at the centre of that

disc whose charge is fixed modulo 2 by the Dynkin labels of the USp(2N) representation

(and in particular whether the central Z2 ⊂ Z(USp(2N)) element is non-trivial in that

representation). The calculation then proceeds as for the SU(2) case.
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