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Abstract:We update a previous N3LL′+O(α3
s) determination of the strong coupling from

a global fit to thrust data by including newly available perturbative ingredients, upgrading

the renormalization scales to include a fully canonical scaling region, and implementing

the log resummation in a way which ensures the integrated cross section is unaffected by

the the leading 1/Q hadronization power corrections. Detailed discussions are provided

concerning the stability of the results under variations of the fit range and the importance

of summing up higher-order logarithmic terms for convergence and stability. We show that

high-precision results can be achieved even when carrying out a more conservative fit by

restricting the dataset to a region which is more clearly dominated by dijet events. This

leads to αs(mZ) = 0.1136±0.0012 with χ2/dof = 0.86, fully compatible with earlier results

using a larger fit range. We also demonstrate that a number of additional effects associated

to power corrections have a small impact on this fit result, including modifications to the

renormalon substraction scheme for dijet power corrections and the inclusion of three-jet

power correction models. The fit is also shown to provide very good agreement with data

outside the fit range.
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1 Introduction

High-energy electron-positron colliders offer a clean environment to study the fundamental

properties of the strong interactions described by Quantum Chromodynamics (QCD). In

this regard, differential observables such as event shapes play a central role, as they display

a high sensitivity to QCD dynamics and are infrared and collinear safe. Experimental

data for event shape distributions obtained at e+e− experiments [1–13] have been inves-

tigated extensively, in particular to determine the strong coupling constant αs with high

precision, see example Refs. [14–16] for reviews. Dijet event shapes such as thrust [17],

C-parameter [18, 19], and heavy jet mass [20, 21] enable a selection on events with two

back-to-back narrow jets, and the dominant portion of the experimental data is in this

dijet region. Since event shape distributions are not inclusive cross sections, in the di-

jet region there is an incomplete cancellation between the real- and virtual-radiation that

manifests itself as large double (Sudakov) logarithms. Theoretical methods are available

to handle the resummation of these large logarithms at high precision, as well as to handle

nonperturbative corrections in this region from first principles using quantum field theory.

Over the course of the last two decades, the theoretical description of these event-

shape distributions got significantly boosted in a number of ways. Fixed order pertur-

bative QCD calculations have been extended to include corrections up to O(α3
s), with

increasing numerical precision [22–29]. Resummation was originally carried out at next-

to-leading-logarithmic order (NLL) using the coherent branching algorithm [30]. With

the advent of Soft-Collinear Effective Theory (SCET) [31–35], resummation could be

pushed to N3LL′+O(α3
s) level for thrust, heavy-jet mass and C-parameter [36–39] and

to N2LL′+O(α2
s) precision for other event shapes [40]. Here the +O(αk

s) indicates the full

inclusion of fixed order corrections in a manner that is consistent with the resummation,

enabling a description with full O(αk
s) accuracy outside the dijet region. The coherent

branching method has also been automated to achieve N2LL accuracy [41, 42].

The leading hadronization power corrections in the dijet region were originally treated

with models [43–45], and later were shown to be related to non-perturbative vacuum matrix

elements of operators defined within quantum field theory, namely Wilson lines [46–50].

These corrections are related to large angle soft radiation. It was found that in the tail

dijet region (past the peak in the event-shape spectrum), hadronization corrections can

be expanded in an operator product expansion (OPE), whose leading O(ΛQCD) term is

denoted Ω1. This allows for a high precision prediction of the tail region of the cross

section with only two parameters, αs(mZ) and Ω1. The dominant large-order asymptotic

behavior of the pertubative series in αs involves factorially growing terms from infrared

renormalons [45, 51, 52], the leading term of which is associated to large-angle soft radiation

in the nonperturbative matrix element Ω1 [49]. It was realized that the bad behavior

due to these renormalons can be tamed by perturbative subtractions [53–55], which in

the field theory approach corresponds to a change of scheme for Ω1 [49, 56] (to so-called

gap schemes). This scheme change enables large logarithms appearing in the renormalon

subtraction series to be summed with R-evolution equations [56–58].

These developments have been crucial in improving the theoretical precision of event-
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shape predictions to approach that of the experimental measurements. The full set of theo-

retical advances listed above was used in global fits for thrust [50, 59] and C-parameter [39,

60], where both αs(mZ) and Ω1 were fit parameters. The largest uncertainty on these

two parameters occurs in a correlated direction, where an increase to αs(mZ) is accom-

panied by a decrease to Ω1. The outcome of these studies was a very precise value for

αs(mZ) ≃ 0.114 ± 0.001, which is however several standard deviations below the world

average αs(mZ) ≃ 0.118.

This discrepancy has caused some concern, and was responsible for the reanalysis of

various aspects of the theoretical description. In particular, there have been a number

of recent theoretical efforts to shed light into the nature of hadronization away from the

dijet region [61–65]. In Ref. [61] a parametric analysis of the structure of the leading non-

perturbative power corrections in the dijet and three-jet regions was carried out for the

C-parameter distribution, which is much more sensitive to hard splitting processes than

thrust. Using the assumption that the leading non-perturbative parameter for these two

regions are related, the model used in Ref. [61] indicates that the three-jet power corrections

can be about half the size of the dijet. Refs. [62, 63] developed a model for three-jet

hadronization corrections in thrust and other event shapes based on a computation of the

leading linear infrared sensitivity of the NLO QCD correction to the process e+e− → qq̄γ.

These developments have been used in an analysis of αs(mZ) determinations in Ref. [64].

One of the goals of this article is to carry out analyses addressing the concerns raised in

these publications. In addition, we refine our theoretical prediction using state-of-the-art

perturbative ingredients and upgrade our profile functions to the more canonical version

introduced in Ref. [39]. We also discuss a preferred way for setting the renormalization

scales such that the cross section is compatible with the total cross section OPE. We

present a new value of the strong coupling obtained from fits to experimental data in

a smaller dijet dominated region, compared to the larger default fit window considered

in Ref. [50]. Included in this result is an assessment of uncertainties from 3-jet power

corrections and other subleading hadronization effects. Finally, we compare our best-fit

theoretical prediction to the available datasets within, as well as outside the new default

fit range.

The paper is organized as follows: In Sec. 2, we define thrust and present the theo-

retical framework in which the differential cross-section is computed. The various ingredi-

ents entering the description are distributed in subsections: dijet factorization theorem in

Sec. 2.1, singular and non-singular partonic distribution in Secs. 2.2 and 2.3, respectively,

and dijet non-perturbative corrections and renormalon subtractions (cf. Secs. 2.4 and 2.5).

Our renormalization scale parametrization is discussed in Sec. 2.6, and an implementation

respecting the OPE for the integrated cross section is presented in Sec. 2.7. The next sub-

sections 2.8-2.11 are devoted to numerical studies of various theoretical aspects related to

resummation and normalization, and we also discuss hadron-mass and QED effects. After

presenting our dataset and fit procedure in Sec. 3, we study the stability of strong-coupling

determinations under variations of the fit range for various theoretical setups in Sec. 4.

Sec. 5 is dedicated to discuss at length the validity of dijet factorization, particularly in

what concerns hadronization. We devise a parametrization for deviations from the dijet
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treatment of power correction which permits assigning an uncertainty associated to our

lack of knowledge on those, and propose an alternative point of view based on EFT power-

counting arguments. The final results of our strong-coupling determination are contained

in Sec. 6, where a comparison to experimental data is presented, along with the list of

effects which have not been included due to their smallness. Our conclusions and outlook

are to be found in Sec. 7. We relegate to the appendix the comparison of our theoretical

prediction against experimental data for center-of-mass energies other than the Z-pole.

2 Thrust distribution

Thrust is defined in the center-of-mass frame of an e+e− collision as [17]

T ≡ max
n⃗

∑
j |p⃗j · n⃗|∑
j |p⃗j |

, (2.1)

where the sum is over all particles in the event and the maximum is over 3-vectors n⃗ of unit

norm. The vector n⃗ that maximizes thrust is known as the thrust axis. This axis splits the

event into two hemispheres. Conventionally one also defines τ = 1− T .

In this section we present a brief review of the thrust factorization formula we use for

our analysis and fits. We also highlight the most important improvements and differences

between the current analysis and the setup used in Ref. [50], which we also frequently refer

to as ‘the 2010 analysis’.

2.1 Factorization Formula

Our analysis is based on a factorization theorem for the e+e− thrust distribution in the

dijet region, which consists of three main parts

dσ

dτ
=

∫
dk

(
dσ̂s
dτ

+
dσ̂ns
dτ

)(
τ − k

Q

)
Fτ [k − 2∆̄(R,µs)] . (2.2)

Here Q denotes the e+e− center-of-mass energy.

The first contribution, dσ̂s/dτ , represents the so-called singular partonic distributions

and contains terms involving αk
sδ(τ) and those that diverge as αk

s log
n(τ)/τ for τ → 0.

These contributions themselves factorize according to the widely separated dynamical

phase space regions relevant for the dijet kinematics. A review of the resulting factoriza-

tion formula, that facilitates resummation of the associated large logarithms and the new

available theoretical ingredients (compared to the 2010 analysis) is given in Sec. 2.2. The

second contribution, dσ̂ns/dτ , encodes the remaining “non-singular” partonic cross-section

contributions explained in more detail in Sec. 2.3. Lastly, Fτ (k) is the so-called shape

function, which parametrizes the dominant source of soft non-perturbative hadronization

effects arising from large-angle soft radiation. It is defined from a vacuum matrix element

of soft Wilson lines [47–50]. We emphasize that the shape function has a well-defined field

theoretic definition in the dijet regime in analogy to, for example, the parton distribution

functions describing non-perturbative collinear dynamics. Thus, the model aspect of the

shape function and its content is merely related to its functional form. Outside the dijet
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regime, the concept of the shape function represents a true model for the non-perturbative

corrections. This aspect and its practical consequences are one among the important issues

we address in this article.

In the tail of the distribution —to the right of the peak in the dijet region in τ —

the shape function can be expanded in an operator product expansion based on the scale

hierarchy Qτ ≫ ΛQCD. The leading term linear in ΛQCD is tantamount to shifting the

distribution towards larger thrust values by 2Ω̄1/Q, where 2Ω̄1 =
∫
dk k Fτ (k) is the first

moment of the shape function. Therefore, in the tail region, up to first order in non-

perturbative corrections, one can replace Fτ (k) → δ(k−2Ω̄1)+O(Λ2
QCD/k

3). However, we

do not employ this approximation since it will miss important non-perturbative corrections

that are no longer subleading when Qτ ∼ ΛQCD, and we wish to have predictions for the

cross section for all τ , such that, for example, we can integrate over τ . More details are

given in Sec. 2.4.

The canonical standard is to consider the Ω1 and shape function as non-perturbative

matrix elements with UV divergences regulated by dimensional regularization, with d =

4 − 2ϵ, and minimally subtracted, which corresponds to the MS scheme. As always, this

same scheme choice must be made for the perturbative coefficient functions, which here

are the perturbative and nonsingular cross sections, since the full cross sections are scheme

independent. Since the final perturbative cross sections are infrared finite, this corresponds

to calculations with vanishing infrared cutoff. Note that this scheme choice for Ω1 is in-

dependent of the scheme chosen for the strong coupling αs(mZ). We refer to the first

shape-function moment in the MS scheme as Ω̄1. In this scheme, however, the pertur-

bative thrust distribution in the dijet region suffers from a u = 1/2 renormalon which is

associated to an O(ΛQCD) renormalon in Ω̄1. This renormalon can be eliminated by im-

plementing a perturbative IR subtraction, which can be achieved by a suitable redefinition

of the leading power correction Ω̄1 = Ω1(R,µs) + δ(R,µs), where δ(R,µs), called the gap

subtraction, is a perturbative series proportional to the scale R which is combined with

the perturbative corrections from large-angle soft radiation (indicated by the dependence

on the soft renormalization scale µs) [49]. It diverges in such a way that the leading renor-

malon is absent in Ω1(R,µs) and in the partonic distribution. This approach effectively

reintroduces an IR cutoff R for the partonic cross section for the dominant linear sensitiv-

ity to small momenta, and it implies that the shape function becomes also dependent on

the scales R and µs through a shift in the convolution over k by the function ∆̄(R,µs).

This shift is already shown in Eq. (2.2) and explained in more detail in Sec. 2.5.1. The

subtraction scale R represents an additional factorization scale and different schemes to

define δ(R,µs), called gap-schemes, can be devised. Furthermore, the introduction of the

subtraction scale R implies the need for additional RG summation to avoid the appearance

of large logarithmic higher order corrections. More details are given in Secs. 2.4 and 2.5.

2.2 Singular Partonic Distribution

For the singular partonic thrust distribution in the dijet region, considering all quarks

massless and for a given gap scheme, all perturbative contributions can be written down
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in terms of a factorization theorem of the form [36, 50, 66]

1

σ0

dσ̂s
dτ

(τ) = QHQ(Q,µH)UH(Q,µH , µ)

∫
ds ds′ Jτ (s

′, µJ)U
τ
J (s− s′, µ, µJ) (2.3)

×
∫
dk′ U τ

S(k
′, µ, µs)e

− 2δ(R,µs)
Q

∂
∂τ Ŝτ

(
Qτ − s

Q
− k′, µs

)
,

where σ0 corresponds to the tree-level Born cross section and Q denotes the e+e− center-

of-mass energy. The hard function HQ encodes corrections coming from the scale Q and is

accompanied by its evolution kernel UH , which is responsible for summing up large loga-

rithms of µ/Q. Its renormalization scale µH must be chosen of order Q, µQ ∼ Q, to render

HQ free or large logarithms. The thrust jet function Jτ encodes corrections from collinear

radiation associated to the typical jet invariant mass scale Q
√
τ . Its renormalization scale

µJ has to be of order Q
√
τ . The soft Ŝτ function contains the corrections from large-angle

soft radiation dominated by energy scales of order Qτ , which implies that for its renor-

malization scale µs we have µs ∼ Qτ . Both functions are defined from their more general

double-hemisphere counterparts

Jτ (s, µ) =

∫ s

0
ds′Jn(s− s′, µ)Jn̄(s

′, µ) , Ŝτ (k, µ) =

∫ k

0
dk′Ŝn(k − k′, k′, µ) , (2.4)

and appear along with their respective evolution kernels U τ
J and U τ

S . The factorization

theorem shown in Eq. (2.3) also contains an exponential derivative operator containing

the δ(R,µs) gap subtraction series which, order by order in the strong coupling expansion,

has to be consistently combined with the soft function series to remove the O(ΛQCD)

renormalon.

The jet and soft functions, as well as the exponential implementing the renormalon

subtraction, are also governed by renormalization group equations. For the jet and soft

functions these are made explicit in terms of the evolution factors U τ
J and U τ

S , respectively.

We refer to the renormalizaiton scale µH , µJ , µs, and R as the hard, jet, soft, and renor-

malon subtraction scales, respectively. The latter must be chosen of order µs, to avoid

large logarithms of R/µs. Because the physical collinear and large-angle soft dynamical

scales are τ -dependent, µJ , µs, and R each must be set to functions of τ called profile

functions [39, 50]. For our phenomenological analyses we use those introduced in 2015 in

Ref. [39]. These profile function incorporate essential improvements compared to those

employed in the original 2010 analysis of Ref. [50]. We will discuss the main aspects of

such improvements in Sec. 2.6. For a complete summary of all perturbative ingredients

contained in the factorized singular partonic distribution used in the analysis of Ref. [50]

we refer to the appendix of that reference. In the following we therefore only comment on

the additional ingredients we use in this work.

For the fixed-order hard function HQ, which contains short-distance QCD dynamics

and is obtained by matching the two-jet current in SCET to full QCD, there is no addi-

tional information compared to the analysis carried out in Ref. [50]. On the other hand,

the four-loop cusp anomalous dimension, which enters the renormalization group factors

UH , U τ
J and U τ

S at N3LL order, is now available [67–72]. The numerical result for nf = 5
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reads Γcusp
3 = 141.246 in the conventions of Ref. [50], see Eqs. (A26) therein, and is incor-

porated in our analysis. For the thrust jet function Jτ the new ingredient in our analysis

is the three-loop non-logarithmic coefficient. The latter has been recently computed in

position space for the hemisphere jet function Jn [73, 74] and the corresponding correction

reads j3 = −128.651. For the partonic soft function Ŝτ the new ingredients are an exact

value of the two-loop non-logarithmic coefficient, s2 = −40.6804 [75, 76] without a ±2.5

numerical uncertainty, and a value of the three-loop coefficient s3 = −1030.2166 [77]. For

the conventions we use to define s2, s3 and j3, see Eqs. (A.14) and (A.16) of Ref. [50],

respectively.

Together with the new ingredients we can now carry out a fully consistent and complete

N3LL QCD analysis for the thrust distribution. To achieve this resummation order, in

principle, only the single logarithmic plus distributions in the jet and soft function at

O(α3
s) would be required [78]. Including the full set ofO(α3

s) corrections for all factorization

functions together with N3LL anomalous dimensions, will be referred to as N3LL′ order,

which is the accuracy of our analysis. A final remark concerns QED and bottom mass

corrections to Eq. (2.2), which were accounted for in Ref. [50]. The impact of including

QED and bottom mass effects were shown to lead to a decrease in αs(mZ) by −0.0005 [50].

Since QED and bottom quark mass effects are not relevant for analyzing the robustness or

stability of the fit, we only discuss them briefly in this article.

2.3 Non-Singular Distribution

The non-singular partonic thrust distribution accounts for all perturbative corrections that

are power suppressed by additional powers in τ compared to the singular distribution. It

is obtained from the complete fixed-order corrections with the singular contributions being

subtracted.1 Including the contributions from the gap subtraction, which we implement

globally in the factorization formula of Eq. (2.2), we can write the complete non-singular

distribution in the form

1

σ0

dσ̂ns
dτ

(τ) = e
− 2δ(R,µs)

Q
∂
∂τ f(τ,Q, µns) . (2.5)

The global implementation of the gap subtraction dependent exponential derivative is asso-

ciated to the fact that the singular as well as the non-singular distributions are convolved

with the non-perturbative shape function Fτ , see also Sec. 2.4. This global treatment

ensures that outside the dijet regime (where the summation of logarithms is smoothly

switched of) the singular and non-singular distributions can properly combine to the com-

plete fixed-order result. This is an essential aspect of the matching of the singular distri-

bution with the full fixed-order results valid outside the dijet regime.2 We emphasize that

the gap subtraction implemented in Eq. (2.5) is motivated by the requirement of smoothly

matching the factorized treatment in the dijet limit to the fixed-order regime for larger

1To obtain the fixed-order singular cross section we set all scales equal, µi = µH = µ.
2In principle, for the non-singular distribution one could choose different values for the scales R and

µs for the gap subtraction series as long as they merge with the corresponding choice for the singular

distribution. Such alternative choices, however, only have a very small effect in the dijet region where the

singular distributions dominates.
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τ values outside the dijet regime. Its effects concerning the subtraction of the O(ΛQCD)

IR renormalon are power suppressed in dijet regime and do not upset the renormalon

subtraction in the singular contribution. Outside the validity of the dijet regime the gap

subtraction is part of the model treatment of non-perturbative corrections through the

shape function Fτ , see the discussion after Eq. (2.2). Later on we will assess the impact

of this assumption by modifying the power correction used for the non-singular part of the

distribution, see Sec. 5.4.

Compared to the treatment of the non-singular function in Refs. [50, 59], we have imple-

mented some improvements, which are discussed in the following. As already mentioned,

the function f(τ,Q, µns) denotes the partonic fixed-order distribution with the singular

terms subtracted. It is written as a fixed-order series in powers of the strong coupling

(with coefficients being functions of τ , Q and µns) and does not contain a summation of

logarithms apart from those contained in the strong coupling value:

f(τ,Q, µns) =
∑
n=1

[
αs(µns)

2π

]n n−1∑
i=0

fni(τ) log
i

(
µns

Q

)
. (2.6)

The functions fn,i>0(τ) can be expressed in terms of fn0(τ) ≡ fn(τ) and the coefficients of

the QCD beta function. Adapting Eq. (3.5) of Ref. [79] one can find the following compact

recursion formula:

fnk(τ) =
1

k

n−1∑
i=k

iβn−i−1

2n−i−1
fi,k−1(τ) , (2.7)

µ
dαs(µ)

dµ
= βQCD[αs(µ)] = −2αs(µ)

∑
n=1

βn−1

[
αs(µ)

4π

]n
,

where for completeness and to set up the notation followed in this article, we have also

shown the perturbative expansion of the QCD beta function.

We start with the O(αs) non-singular function. It can be written down analytically

and reads [80]

f1(τ) =
4

3τ

[
3(τ + 1)(3τ − 1) + 2

(
3τ − 2

1− τ

)
log

(
τ

1− 2τ

)]
θ(1− 3τ) (2.8)

+
4

3τ
[3 + 4 log(τ)] .

Whereas it is continuous at τ = 1/3, its derivative is not. The result for the cumulative of

f1 reads:

fΣ
1 (τ) ≡

∫ τ

0
dτ ′f1(τ

′) (2.9)

=
2

9

{
9τ(3τ + 4)− 24

[
Li2(1− τ) + Li2(2τ) + Li2(2τ − 1)

]
− 6 log(1− 2τ)[6τ + 4 log(2− 2τ)− 3] + 36τ log(τ) + 2π2

}
θ(1− 3τ)

+
2

9

{
6 log(τ)[2 log(τ) + 3] + 15− 2π2

}
θ(3τ − 1) ,
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Figure 1: Panel (a): O(αs) cumulative non-singular thrust distribution. Note that it is

continuous and smooth at the τ = 1/3 upper limit of O(αs) fixed-order result. For τ > 1/3

the sum of singular and non-singular cumulative contributions add to a constant. Panel

(b): Non-singular differential distribution at O(α2
s). Blue and green dots with error bars

show event2 data with linear and logarithmic binning, while the red curve is our O(α2
s)

nonsingular result.

which is continuous and smooth at τ = 1/3.

In Refs. [50, 59] the O(α2
s) non-singular function f2 was determined numerically from

event2 [22, 23] histograms. Here we have improved the parametrization of f2 by employing

much higher statistics, using logarithmic binning for τ < 0.1 and linear binning (with bin

size ∆τ = 0.001) for 0.1 < τ < 0.414214. We use runs with a total of 3× 1011 events and

an infrared cutoff y0 = 10−8. In the regions of linear binning, the statistical uncertainties

are quite small for τ ≳ 0.1. So for τ > 0.095 ≡ tcut we use a numerical interpolation

for f2(τ) without uncertainties, composed of 102 nodes which result from combining the

finer binning described above. For τ < 0.095 we use the ansatz ffit
2 (τ) = g(τ/τcut), with

g(τ) =
∑3

i=0 ai log
i τ + a4 τ log

3 τ and fit the coefficients from the event2 output taking

into account statistical uncertainties and including the constraint that the total fixed-order

cross section reproduces the known O(α2
s) coefficient, what permits expressing a0 in terms

of the rest of fit coefficients. Moreover, we fix a3 = −8/3 as determined by the leading

logarithms at next-to-leading power in the thrust distribution [81]. For the fit we discard

bins with τ < 6.8× 10−6 as otherwise cutoff effects become sizable, causing a rather large

reduced χ2 (even though the best-fit values are barely affected). After dropping these bins

we obtain χ2
min/d.o.f. = 1.22, obtaining as a final result for the O(α2

s) non-singular function

for τ < 0.095 the form

f2(τ < 0.095) = ffit
2 (τ) + ϵ2 δf

fit
2 (τ) . (2.10)

Here ffit
2 (τ) stands for the best-fit result and δffit

2 (τ) represents the 1-σ error function for

the fit. The variable ϵ2 is continuously varied in the range [−1, 1] during our theory scans

in order to account for the error in the non-singular function. The result is displayed in

Fig. 1b, where the error function is too small to be seen.
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Figure 2: Non-singular thrust distribution at O(α3
s). a) Fixed-order data from

CoLoRFulNNLO, given in blue and green for linear and logarithmic binning, respec-

tively, is shown with a bin size of 0.01 for the latter. The dashed red lines correspond

to the 1-σ error function for the fit, employed below τ < 0.315. b) Comparison of the

fixed-order data used in this analysis (blue) and in the 2010 extraction of Ref. [50] (red).

At O(α3
s) there are several computer codes available to determine the fixed-order distri-

bution: EERAD3 [25, 82], Mercutio [26, 27] and CoLoRFulNNLO [29]. In contrast to

Ref. [50] were EERAD3 was employed, in the current analysis we use CoLoRFulNNLO

since it has significantly smaller statistical uncertainties than the other two programs.3

To obtain f3(τ) we use the output of CoLoRFulNNLO for the thrust distribution as

provided by the authors of Ref. [29], which we display in logarithmic and linear bins in

Fig. 2a.4 Whereas the size of the CoLoRFulNNLO linear bins is ∆τ = 0.01, the loga-

rithmic binning used originally in Ref. [29] had a bin size ∆[log(τ)] = 0.1. Since for small τ

statistical errors are huge, we have reclustered neighboring bins, doubling the logarithmic

bin-size. The CoLoRFulNNLO numerical results at O(α3
s) yield larger statistical uncer-

tainties than the event2 results at O(α2
s). We therefore employ for τ < t1 = 0.315 two

different fit functions: a polynomial in powers of log(τ/t0) (to which we add the highest

logarithm at next-to-next-to-leading power) for τ < t0, and a polynomial in powers of

3In Ref. [65] a high-statistics sample of O(α3
s) data was created using the public EERAD3 code, and

it was pointed out that it does not reproduce the α3
s/τ term in the limit τ → 0, leading to a f3(τ) with

a mismatched singular term. Interestingly, the results from this high-statistic run are incompatible with

EERAD3 results in 2008 obtained form the authors of Ref. [24], even at τ = 0.3 where both statistical

uncertainties are small. The CoLoRFulNNLO results in this region are in better agreement with the

EERAD3 results from 2008. The reason for this is unknown to us. We thank C. Lee for providing us with

the numerical results of their high-statistic EERAD3 run.
4The CoLoRFulNNLO histograms (either linearly or logarithmically binned) cluster the thrust differen-

tial distribution times the thrust value event by event, therefore each bin τi < τ < τj corresponds to

bin(τi, τj) =
1

τj − τi

∫ τj

τi

dτ τ
dσ

dτ
(τ) ≈ τi + τj

2

dσ

dτ

(
τi + τj

2

)
. (2.11)

To obtain the best estimate for the differential thrust distribution we divide the value of the bin by the

average of the bin boundaries.
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τ − t0 for t0 < τ < t1, with t0 = 0.09, whereas for τ > t1 we use an interpolation with-

out uncertainties. The two fit functions smoothly join at τ = t0, adopting the following

parametrization:

ffit
3 (τ) = θ(t0 − τ)

[
5∑

i=0

ℓi log
i

(
τ

t0

)
+ ℓ6 τ log

5

(
τ

t0

)]
+ θ(τ − t0)

n∑
i=0

pi(τ − t0)
i , (2.12)

with p0 = ℓ0 and p1 = t0ℓ1 to guarantee the function and its first derivative being continuous

at τ = t0. Furthermore, we fix ℓ5 = −592/81, which can be determined from the known

expression for the leading logarithms at next-to-leading power in the thrust distribution at

this order [83, 84] (see also [85]). We also express the value of ℓ2 in terms of the rest of fit

parameters such that the known result for the fixed-order total cross section is reproduced

upon integrating the singular and non-singular terms. The other coefficients, namely ℓ3,

ℓ4, ℓ6 and pi with 0 ≤ i ≤ n are determined minimizing a χ2 function that compares the

fit function in Eq. (2.11) to logarithmic and linear CoLoRFulNNLO output as shown in

Fig. 2b. In both datasets, we do not consider values of τ < 0.0074 since these might be

severely affected by cutoff artifacts. Furthermore, for the logarithmically clustered results

we exclude from the fit data with τ > t0 since the resulting bin size is too large to be

well approximated by the corresponding differential distribution, see Eq. (2.12). We find

that choosing n = 6 for the second sum in Eq. (2.12) yields a reduced χ2 of the order of

χ̂2
min = 2.2, producing a smooth-looking result when transitioning from the fit function to

the interpolation. Varying the value of t0 by an amount O(0.01) or the parameter n by

one unit does not change the result in a significant way. All in all, the final result for the

three-loop non-singular cross section function can once again be written in the form

f3(τ < 0.315) = ffit
3 (τ) + ϵ3 δf

fit
3 (τ) , (2.13)

where ffit
3 (τ) is the best-fit function and δffit

3 (τ) gives the 1-σ error function for the fit,

rescaled such that the χ2
min/d.o.f. is exactly one.5 This is a conservative approach and

we find it justified because the CoLoRFulNNLO bins for small τ might suffer from

cutoff effects. The error function is also piece-wise, and if the uncertainties in the various

coefficients are carefully propagated, taking into account the full covariance matrix, it turns

out to be smooth at τ = t0. This is a sanity check on our determination of δffit
3 (τ). Exactly

as we did for the O(α2
s) distribution, ϵ3 is continuously varied to generate theoretical

uncertainty bands. Our final result for the O(α3
s) non-singular thrust distribution is also

depicted in Fig. 2a.

While the update on the O(α2
s) non-singular parametrization compared to that used

in Ref. [50] (which also employed quite high statistics in the corresponding event2 runs)

has very little effect on the differential cross section, the new parametrization of the O(α3
s)

non-singular contribution based on CoLoRFulNNLO analysis causes a more significant

change to the 3-loop nonsingular result, and the statistical uncertainty on the fit-function

is significantly reduced. Furthermore, the new central curve has a more natural behavior

5To be consistent, we apply this same rescaling at O(α2
s), which has very little impact on the uncertain-

ties.
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as compared to the fit function in Ref. [50] (see their Fig. 5c), which exhibited a very pro-

nounced dip into negative values for τ < 0.1. The new central curve follows the more precise

CoLoRFulNNLO binned results which show a less oscillatory behavior, see Fig. 2b. The

impact of the updated 3-loop non-singular parametrization on the extraction of the strong

coupling is ∆αs(mZ) = +0.0001 and +0.0006, where the former is for a fit in the range

τ ∈ [(6GeV)/Q, 0.33] and the latter for a fit in the range τ ∈ [(6GeV)/Q, 0.15]. These

changes are compatible with the discussed changes to the O(α3
s) nonsingular distribution,

which are predominantly in the small τ region.

2.4 Non-Perturbative Corrections

In this section, we briefly review the most important conceptual aspects on the treatment

of non-perturbative effects for the thrust distribution in the dijet regime.

It can be proven that in the dijet regime the leading non-perturbative effects arise

from the infrared dynamics of large-angle soft radiation which can be factorized from the

hard and the collinear dynamics [47, 49, 50]. The effects of large-angle soft radiation are

encoded in the thrust soft function which is defined in terms of a vacuum matrix element

momentum distribution function of soft Wilson lines of the form

Sτ (k, µ) =
1

Nc
⟨0|tr Y T

n̄Ynδ(k − i∂̂)Y †
nY

∗
n̄|0⟩µ , (2.14)

which contains perturbative as well as non-perturbative dynamics. The subscript µ on

the matrix element, indicates that renormalization is carried out in the MS scheme. In

particular, the scale-dependence of the thrust soft function is described by perturbation

theory for sufficiently large renormalization scales µ. Here

i∂̂ ≡ θ(in̄ · ∂ − in · ∂)in · ∂ + θ(in · ∂ − in̄ · ∂)in̄ · ∂ . (2.15)

To provide a convenient practical implementation of the perturbative and nonperturba-

tive aspects of the total soft function, one can consider the factorization ansatz [49, 86, 87]

Sτ (k, µ) =

∫ k

0
dk′ Ŝτ (k − k′, µ)Fτ (k

′) , (2.16)

which separates the partonic soft function Ŝτ , computable in perturbation theory, and the

non-perturbative shape function Fτ . This factorization can be derived from Eq. (2.14)

assuming a scale hierarchy between non-perturbative and perturbative soft radiation. The

model-character of the convolution in Eq. (2.16) lies in the functional form of the shape

function, which requires some parametrization. In the peak region of the thrust distri-

bution, where we have k ∼ Qτ ∼ O(ΛQCD), information on the entire form of the shape

function is needed. The canonical approach to define this factorization is to strictly expand

in the hierarchies and to use dimensional regularization and minimal subtraction to handle

UV divergences, thus defining coefficients and perturbative and non-perturbative matrix

elements in the MS scheme. Compatibility with the OPE implies the normalization∫ ∞

0
dk Fτ (k) = 1 . (2.17)
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The form of Eq. (2.16) is particularly useful to understand how the OPE arises when

moving into the dijet tail region characterized by the hierarchyQ
√
τ ≫ k ∼ Qτ ≫ O(ΛQCD).

Since the interval of the convolution exceeds the size of the non-perturbative momenta one

can multipole expand the shape function within the integral in the form

Fτ (k) = δ(k) +
∞∑
i=1

2iΩ̄i δ
(i)(k) , (2.18)

where Ω̄i are non-perturbative vacuum matrix elements, defined in the MS scheme, that

scale as O(Λi
QCD), and δ(i) is the i-th derivative of the Dirac δ-function. The factors of 2i

are conventional and motivated to quantify the non-perturbative effects arising from one

of the two hemispheres that are defined from the thrust variable.

The dominant non-perturbative correction is given by the matrix element Ω̄1, defined

as

Ω̄1 =
1

Nc
⟨0|tr Y T

n̄ (0)Yn(0)ÊT (0)Y †
n (0)Y

∗
n̄(0)|0⟩ . (2.19)

It is related to the first moment of the shape function, while the Ω̄i are related to higher

moments,

Ω̄i =

∫ ∞

0
dk

(
k

2

)i

Fτ (k) . (2.20)

The transverse energy flow operator ÊT appearing in Eq. (2.19), is defined by its action on

states [48]

ÊT (η)|X⟩ =
∑
i∈X

p⊥i δ(η − ηi)|X⟩ . (2.21)

where p⊥i and ηi are transverse momenta and pseudo-rapidities relative to the jet axis.

Upon insertion into Eq. (2.16) this provides the OPE of the total soft function in

the dijet tail region. Up to subleading terms suppressed by O(Λ3
QCD/k

3) this yields the

approximate relation

Sτ (k, µ) = Ŝτ (k, µ)−
dŜτ (k, µ)

dk
2Ω̄1 +O

(
Λ2
QCD

k3

)
= Ŝτ (k− 2Ω̄1, µ) +O

(
Λ2
QCD

k3

)
. (2.22)

This relation is also the basis of other approaches to implement non-perturbative corrections

to the thrust distribution, which are unrelated to the more rigorous shape function and

the factorization formula of Eq. (2.16).

A widely used model of this kind is the so-called dispersive or effective coupling

model [44], which is roughly related to constant effective QCD coupling effects for scales

below a cutoff adopted to be 2GeV. The effective coupling value integrated up to the cut-

off then adopts the role of the first linear power correction. Thus this dispersive coupling

approach is effectively equivalent to the implementation of an IR cutoff in the perturbative

QCD corrections (which also removes the running coupling effects, that are also respon-

sible for IR renormalons [55]). In fact, dijet QCD factorization properties of the thrust

distribution ensure that the leading linear sensitivity related to any modification of the per-

turbation thrust distribution on IR momenta can be parametrized in the form of Eq. (2.22),
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therefore also the dispersive coupling model can serve as a viable parametrization of non-

perturbative corrections in the dijet thrust region [16, 43–47, 49–52, 87, 88]. It should

be noticed, however, that the dispersive coupling approach or other implementations for

linear power models, can be unreliable for thrust values closer to the peak position since

there the OPE terms beyond O(ΛQCD) become important. Thus using the shape function

convolution in Eq. (2.2) to implement non-perturbative corrections in principle represents

the more dependable approach for high precision αs determinations, as it does not rely on

specifying τ dijet interval, where Eq. (2.22) provides a reliable approximation. We refer

to the end of Sec. 2.5.1, where we further elaborate on this aspect in the context of the

concrete analytic ansatz we use for the shape function in our analysis.

We note that sometimes in the literature (see e.g. Ref. [89]) the shape function for-

malism as well as the less rigorous dispersive linear power model have been collectively

called ‘analytic models for non-perturbative corrections’. We stress that the shape function

formalism is, however, more rigorous, and that its model character primarily refers to the

form of the shape function and the ansatz for its parametrization. This is in analogy to the

parton distribution functions. In contrast, for the dispersive coupling model the approach

itself has model character since it is conceptually inequivalent to the form of Eq. (2.16).

Furthermore, the shape function formalism only provides a description of non-perturbative

corrections for the observables where it can be derived from first principles, in contrast

to the dispersive model, which connects hadronization corrections among completely un-

related observables.

Let us now address the particular global form of the shape function implementation

shown in Eq. (2.2). From a rigorous field theoretic perspective, the convolution of the

perturbative contributions and the shape function can only be proven for the singular

perturbative thrust distribution dσ̂s/dτ given in detail in Eq. (2.3). The global convolution,

treating the non-singular distribution dσ̂ns/dτ on the same footing and yielding a ‘hadron

level’ non-singular contribution of the form

dσns
dτ

=

∫
dk

dσ̂ns
dτ

(
τ − k

Q
,
µns

Q

)
Fτ [k − 2∆̄(R,µs)] , (2.23)

is motivated by the practical requirement that in the far-tail region (outside the dijet-

dominated regime and where the resummation in the singular distribution is smoothly

switched off in our approach) the perturbative terms in the sum dσ̂s/dτ + dσ̂ns/dτ must

properly combine to exactly reproduce the fixed-order result. In the far-tail region, and in

particular close to the large τ endpoint, the cancellation between singular and non-singular

contributions is dramatic since the purely logarithmic terms contained in the former do

not contain any information on that endpoint region. This approach then also implies

the analogous global implementation of the O(ΛQCD) renormalon gap subtraction already

mentioned in Sec. 2.3. Interestingly, this global approach to implement the shape function

(and the gap subtraction) also has the merit that the shape function does not yield any

non-perturbative corrections to the total cross section obtained on integrating Eq. (2.2)

over all thrust values, up to higher order corrections. We will come back to this aspect in

Sec. 2.9.
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2.5 Renormalon Subtraction

The perturbative soft function in the MS scheme has infrared (IR) renormalons, which im-

ply an equal-sign factorially divergent growing behavior of the partonic soft function at large

orders of perturbation theory. Each of the IR renormalons is associated to one of the non-

perturbative MS matrix elements Ω̄i shown in Eq. (2.18) which compensates the partonic

soft function renormalon behavior through their order-dependent values. The most impor-

tant is the O(ΛQCD) renormalon, which is linearly sensitive to non-perturbative momenta

and associated to Ω̄1. To eliminate this IR renormalon, which is known to already affect

the stability of perturbation theory at lower orders, we switch to a renormalon-free scheme

for Ω1. This is achieved by redefining the MS-scheme Ω̄1 in terms of a renormalon-free Ω1

plus a perturbative series (called subtraction series) that exactly encodes the renormalon.

Upon shifting that series into the partonic soft function the latter (and the entire partonic

thrust distribution) is rendered O(ΛQCD) renormalon-free. The first consistent implemen-

tation of such renormalon-free schemes for Ω1 was proposed in Ref. [49] and called gap

formalism.

In Sec. 2.5.1 we review the gap formalism and revisit the relations presented in the

previous section, but considering a thrust soft function free from the leading renormalon.

In Sec. 2.5.2 we elaborate on technical details of the implementation of a particular choice

for the gap subtraction scheme and discuss different scheme choices.

2.5.1 Review of Gap Formalism

We start by considering a particular class of non-perturbative shape functions only having

support for k ≥ ∆, which is called the gap parameter. We can thus write a shape function

of this kind in the form Fτ (∆, k) ≡ Fτ (k − 2∆), where Fτ (k
′) has support for all positive

values k′ > 0. We note that Fτ (∆, k) should not be literally considered as a shifted version

of Fτ (k), but rather as a shape function form where the non-perturbative gap is made

explicit by the parameter ∆. Equality (2.20) for the first moment subsequently takes the

particular form

2Ω̄1 = 2∆+

∫ ∞

0
dk k Fτ (k) , (2.24)

where the O(ΛQCD) renormalon can be considered to be fully contained in the gap pa-

rameter and Fτ (k) is O(ΛQCD) renormalon-free. This can be made explicit by rewriting

∆ in terms of a non-perturbative contribution, ∆̄(R,µs), that is free of the O(ΛQCD)

renormalon and a perturbative (subtraction) series, δ(R,µs), which exactly contains the

O(ΛQCD) renormalon of the partonic soft function Ŝτ . Here µs is the renormalization scale,

which is the same as the one used for the partonic soft function series, and R is the subtrac-

tion scale of the series which has dimension of energy. In this context, the scale parameter

R can be interpreted as an IR cutoff scale for the perturbative calculation. Hence, we write

∆ = ∆̄(R,µs) + δ(R,µs) , (2.25)

so that we can define a renormalon-free matrix element

Ω1(R,µs) = Ω̄1 − δ(R,µs) . (2.26)
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Since the choice for an appropriated subtraction series is not unique, adopting a particular

form of δ(R,µs) implies a particular scheme for Ω1(R,µs). A discussion on different choices

of gap subtraction schemes is presented in Sec. 2.5.2. While the MS matrix elements Ω̄i

and the gap parameter ∆ are formally renormalization group invariant, the gap subtraction

series δ(R,µs) as well as the non-perturbative quantities Ω1(R,µs) and ∆̄(R,µs) do not

have this property, and their renormalization group equations (in R and potentially µs)

are related through the previous two equalities. Hence, the O(ΛQCD) renormalon-free first

moment of Fτ (k), which is R- and µs-independent, and the value of the gap parameter

∆0 ≡ ∆̄(R0, µ0) , (2.27)

at some reference scales R0 and µ0 also determines the reference power correction matrix

element Ω1(R0, µ0).

Considering Eq. (2.25), the factorized soft function of Eq. (2.16) can now be rewritten

in the form

Sτ (k, µs) =

∫
dk′ Ŝτ (k − k′ − 2δ, µs)Fτ (k

′ − 2∆̄) (2.28)

=

∫
dk′

[
e−2δ ∂

∂k Ŝτ (k − k′, µs)

]
Fτ (k

′ − 2∆̄) ,

where, for simplicity, the scale-dependence of δ and ∆̄ is suppressed. The exponential

operator introduced in the second line of Eq. (2.28) induces the perturbative subtractions

in the partonic soft function that cancels the corresponding O(ΛQCD) renormalon order-by-

order upon re-expansion of all terms in the brackets. As we have already pointed out in the

discussion of Eq. (2.23), to ensure the cancellation of the singular and non-singular terms

taking place in the far tail, also the non-singular partonic distribution is convolved with the

shape function. This then entails the analogous conversion for the non-singular distribution

leading to the expression in Eq. (2.5) appearing in the main factorization formula (2.2).

For the description of the thrust distribution all renormalization scales in the factor-

ization formula and thus also the renormalon subtraction scale R become τ -dependent

functions, which makes ∆̄(R,µs) and therefore also the shape function dependent on the

thrust value. To provide an unambiguous meaning to the shape function’s parameters it

is therefore mandatory to define the reference scales R0 and µ0 for which the concrete

functional parametrization of Fτ , which we refer to as Fτ (R0, µ0, k), is defined. To this end

we write

Fτ [k − 2∆̄(R,µs)] = Fτ [R0, µ0; k − 2∆̄(R,R0, µs, µ0)] , (2.29)

where

∆̄(R,R0, µs, µ0) ≡ ∆̄(R,µs)−∆0 , (2.30)

can be determined perturbatively from the R and µs evolution of the subtraction series

δ(R,µs). Thus we also have
∫
dk k Fτ [R0, µ0, k − 2∆̄(R,R0, µs, µ0)] = 2Ω1(R,µs) as well

as

Ω1(R,µs)− Ω1(R0, µ0) = ∆̄(R,R0, µs, µ0) . (2.31)
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Figure 3: Shape function used in our studies as given in Eq. (2.33), for three values of

Ω1: 0.55GeV, 0.3GeV and 0.215GeV in blue, red, and green, respectively. The dashed

vertical lines show the position of 2Ω1, which always lies to the right of the maximum.

Note that, since ∆̄(R,R0, µ, µ0) is perturbative, we can in principle also consider it as part

of the partonic distribution by rewriting the factorization formula (2.2) in the form

dσ

dτ
=

∫
dk

dσ̂

dτ

[
τ − k

Q
− 2∆̄(R,R0, µs, µ0)

Q

]
Fτ (R0, µ0; k) , (2.32)

where dσ̂/dτ = dσ̂s/dτ + dσ̂ns/dτ stands for the entire partonic differential thrust distri-

bution.

The concrete functional ansatz for the shape function we use in our analysis is the

same as employed in the previous analyses of Refs. [39, 50, 59, 60] and reads

Fτ (R0, µ0; k) =
128(k − 2∆0)

3 e−
4(k−2∆0)

λ

3λ4
θ(k − 2∆0) , (2.33)

where ∆0 = 0.05GeV. This yields

2Ω1(R0, µ0) = λ+ 2∆0 , (2.34)

as the expression for the first moment. Here λ is the floating parameter in our fits, and

directly yields a result for the desired fit parameter Ω1(R0, µ0). As the reference scales we

take

R0 = µ0 = 2GeV . (2.35)

The shape function ansatz, that can be visualized graphically in Fig. 3 for three values of

Ω1, corresponds to the leading term of a general expansion for an arbitrary shape function

first introduced in Ref. [87]. Since our analysis is focused on the tail region, where the

contribution of the leading OPE term Ω1 dominates, see Sec. 2.4, this truncated form is

sufficient. More terms in this expansion would, however, be mandatory to carry out a

proper theory description in the peak region.

Note that the partonic cross sections shown in Eqs. (2.3) and (2.5) were given within a

gap subtraction scheme, indicated by the exponential derivative involving the subtraction
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series δ(R,µs). The corresponding expression in the MS scheme for the shape function’s

first moment are obtained by simply setting δ = 0 as well as ∆̄(R,R0, µs, µ0) = 0 in the

expressions shown before. The ansatz function for the MS shape function is still given in

Eq. (2.33), dropping the scales R0 and µ0 and setting ∆0 = 0.

As already mentioned in Sec. 2.4 using the shape function convolution in phenomeno-

logical analyses provides in principle a more rigorous description of hadronization effects

in the dijet regime in comparison to the shape-function OPE series truncated after the

leading Ω1 correction. However, using the concrete functional one-parameter ansatz for

the shape function in Eq. (2.33) implies that all higher shape-function moments Ωn≥2 are

related to Ω1 in a definite way. Here, we have Ω2 = 1.25Ω2
1 − 0.5∆0Ω1 + 0.25∆2

0 for the

second shape-function moment, and we do not freely vary the Ωn≥2 in our fits. However,

their effect is also power-suppressed in the dijet regime and can be accounted for as an

uncertainty (since fitting also for Ωn≥2 in thrust tail fits is not feasible in practice anyway).

The effect of varying Ω2 independently was studied in Ref. [50], see their Secs. IV and

VII, where the range Ω2
1 ≤ Ω2 ≤ 1.5Ω2

1 was obtained from general properties of the shape

function having a generic shape as shown in Fig. 3. The uncertainty on a strong coupling

tail fit was found to be [∆αs(mZ)]Ω2 = 0.0002, which is much smaller than the perturbative

uncertainty.

2.5.2 Gap schemes

Our default gap scheme, which will be referred to simply as the R-gap scheme, was intro-

duced in Ref. [90] and employed in the analysis of Ref. [50]. In this scheme, the subtraction

series is defined from

δ(R,µs) =
R

2
eγE

d

d log(ix)

[
log S̃τ (x, µs)

]∣∣∣
x=(iReγE )−1

(2.36)

=
R

2
eγE

∑
i=1

[
αs(µs)

4π

]i i∑
j=0

( j + 1)si,j+1 log
j

(
µs

R

)
,

where S̃τ (x, µs) is the Fourier transform of the MS partonic soft function. It can be written

as

log S̃τ (x, µs) =
∑
i=1

[
αs(µs)

4π

]i i+1∑
j=0

sij log
j
(
ieγExµs

)
, (2.37)

with si = si0/2, and satisfies the following linear RG equation:

µs
d

dµs

[
log S̃τ (x, µs)

]
= −4Γcusp[αs(µs)] log

(
ieγExµs

)
+ 2γS [αs(µs)] , (2.38)

Γcusp[αs] =
∞∑
n=0

Γcusp
n

(αs

4π

)n+1
, γS [αs] =

∞∑
n=0

γSn

(αs

4π

)n+1
.

Here Γcusp and γS are the universal cusp and non-cusp soft anomalous dimensions, respec-

tively. It is convenient to define

dRij =
eγE

2
(j + 1)si,j+1 , (2.39)
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and worth noting that, since γS0 vanishes, we have dR10 = 0 such that δ(R,R) = O(α2
s) in

the R-gap scheme. All pieces needed to determine the gap subtraction up to 3 loops are

analytically known. In the R-gap scheme, δ(R,µs) has a linear anomalous dimension in R,

γR[αs(R)] =R
d

dR
δ(R,R) =

∑
n=0

[
αs(R)

4π

]n+1

γRn , (2.40)

γRn = dRn+1,0 − 2

n−1∑
j=0

(n− j)βjd
R
n−j,0 ,

and also has a non-zero logarithmic anomalous dimension in µ

γµ∆[αs(µs)] =
µs

R

d

dµs
δ(R,µs) = −2eγEΓcusp[αs(µs)] . (2.41)

This linear RG evolution in R is common to any gap scheme. We refer the reader to Sec. II F

of Ref. [50] and to Ref. [90] for further details. In order to avoid having large logarithms in

the gap subtraction, which is essential for a proper gap subtraction implementation, one

must choose µs ≈ R. Since the soft renormalization scale µs depends dynamically on τ and

monotonically increases until it becomes equal to the hard scale, R has to become equally

large and is therefore also τ -dependent. If these two scales are varied, the numerical

values of the gap parameter ∆̄(R,µs) and the matrix element Ω1(R,µs) vary according

to their respective anomalous dimensions with respect to the reference gap parameter

∆0 = ∆̄(R0, µ0). We reiterate that in order for the renormalon to cancel properly between

the subtraction series and the perturbative partonic soft function, one has to consistently

expand the partonic cross section including the subtraction series order-by-order in αs(µs).

As already pointed out in Sec. 2.5.1, the choice of the gap subtraction scheme is

not unique. In Ref. [91], a general classification was provided for possible gap subtrac-

tion schemes based on the partonic position-space soft function S̃τ (x, µs). The impact of

adopting different gap subtraction schemes within this classification was studied recently

in Ref. [92] for inclusive event-shape distributions involving boosted top quark production

in e+e− annihilation and the results provided valuable information concerning the pertur-

bative stability of the gap subtraction formalism. Their study followed the same guidelines

for the gap subtraction schemes we apply in this article and yielded excellent consistency

among the different renormalon-free descriptions within the remaining perturbative uncer-

tainties. In our analysis we also study the impact of using gap subtraction schemes that

differ from our default R-gap scheme defined above, see Sec. 2.9. Following the classifi-

cation of Ref. [91], we also consider the following class of non-derivative ξ-dependent gap

schemes:

δ̌(R, ξ) =
R

2ξ
log

[
S̃τ

(
ξ

iR
,R

)]
=

R

2ξ

∑
i=1

[
αs(R)

4π

]i i+1∑
j=0

sij log
j
(
eγEξ

)
. (2.42)

As for the R-gap scheme, we find it convenient to define

ďi0(ξ) =
1

2ξ

i+1∑
j=0

sij log
j
(
eγEξ

)
. (2.43)
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In contrast to the R-gap scheme, the one-loop term of these non-derivative schemes is not

zero. Furthermore, at O(α3
s) it also depends on the recently computed non-logarithmic

term of the soft function s3 [77]. Since δ̌(R, ξ → ∞) = 0, in this limit effectively one falls

back to a setup without renormalon subtractions, that is, the MS scheme. In contrast to

the R-gap scheme, these non-derivative ξ-dependent schemes are µs-invariant. To properly

cancel the renormalon of the partonic soft function, one has to express the perturbative

series of Eq. (2.42) in powers of αs(µs). This is achieved by expanding αs(R) in terms of

αs(µs) and log(µs/R), yielding

δ̌(R, ξ) =R
∑
i=1

[
αs(µs)

4π

]i i−1∑
j=0

ďij(ξ) log
j
(µs

R

)
, (2.44)

ďij(ξ) =
2

j

i−1∑
k=j

k ďk,j−1(ξ)βi−k−1 .

The last recursive relation generates all di,j>0 starting from the known di0. Relating the

renormalon-free leading-power matrix element Ω1 for different scheme choices is straight-

forward, and the relations read

Ωξ
1(R)− ΩR

1 (R,R) =
R

2

∑
i=1

[
αs(R)

4π

]i[
eγEsi1 −

1

ξ

i+1∑
j=0

sij log
j
(
eγEξ

)]
, (2.45)

Ωξ2
1 (R)− Ωξ1

1 (R) =
R

2

∑
i=1

[
αs(R)

4π

]i i+1∑
j=0

sij

[
logj

(
eγEξ1

)
ξ1

−
logj

(
eγEξ2

)
ξ2

]
.

Here we have expressed both series in powers of the strong coupling at the same scale

so that they are renormalon-free. The R-anomalous dimension for the non-derivative gap

scheme can be obtained from Eq. (2.40) replacing dRi0 → ďi0(ξ). For the non-derivative gap

schemes the µ-anomalous dimension vanishes.

Note that for the analyses carried out below, when comparing different gap subtraction

schemes along with the MS scheme, we always convert to the reference value given in the

R-gap scheme,

ΩR
1 ≡ Ω1(R0, µ0) , (2.46)

with the scales given in eq. (2.35). In this regard, we emphasize the fact that when

converting Ω1 from the MS scheme to the R-gap scheme the series has a renormalon. This

implies that the value for Ω1 depends more strongly on the scale at which the fixed-order

conversion is carried out and the order we are working at, in contrast with the conversion

between two different renormalon-free schemes.

It is useful to consider different values of ξ as independent gap schemes, and we shall

explore a few values of ξ to test the dependence of our results on the scheme used to

define Ω1. The phenomenological analysis of Ref. [91], which was based on the peak of the

distribution for boosted tops, employed ξ = 1. Ref. [92] studied the R-gap scheme and the

non-derivative schemes for ξ = 1 as well as ξ = e5γE for calibrating the top quark mass
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R-gap ξ1-gap ξ2-gap ξ3-gap

d10 0 −0.69 −2.21 −1.43

d20 −43.954 −26.96 −78.35 −47.93

d30 −1954.45 −1569.44 −2401.11 −4782.98

Table 1: Values of di0 for i = 1, 2, 3 in the different gap schemes we consider. All four

schemes have coefficients whose growth is consistent with a O(ΛQCD) renormalon.

parameters for different Monte Carlo event generators. For the massless quark tail analysis

carried out in this article, it turns out those values of ξ are too small, implying artificially

enhanced 1-loop subtraction and R-evolution.6 Here we explore the three (larger) values:

ξ1 = e10γE , ξ2 = e10γE/2 and ξ3 = e10γE/3. When comparing results between different

gap schemes below, we will use the convention: ξ1-gap, ξ2-gap, ξ3-gap denoting these three

values. The numerical values for the coefficients ďi0(ξ) for i = 1, 2, 3 in these three gap

schemes, together with the values for dRi0, are listed in Table 1.

In Ref. [65] the impact of adopting different gap subtraction schemes was first discussed

in the context of αs fits. They employed the R-gap scheme of Eq. (2.36) in two different

ways. One, called R-scheme in Ref. [65], follows our standard of systematically summing

all logarithms. The other is based on the µs-independent subtraction series

δ(R,R) =
R

2
eγE

∑
i=2

[
αs(R)

4π

]i
si1 , (2.47)

which is the R-gap subtraction series for µs = R. To cancel the renormalon one needs to

re-expand αs(R) in terms of αs(µs) and log(µs/R), which generates a single power of the

logarithm at O(α3
s). For this subtraction, the authors of Ref. [65] use a constant R scale in

the tail region, which leads to an increasing scale separation between R and µs for large τ .

This use of Eq. (2.47) together with the choice of the R(τ) profile was referred to as the

R∗-scheme in Ref. [65]. They considered this implementation of the R-gap scheme as a

viable alternative to avoid an apparent increase of the non-perturbative corrections in the

R-gap scheme with τ due to the (predominantly linear) R-dependence of ∆̄(R,R0, µs, µ0).

However, as also illustrated in the form of the factorization theorem displayed in Eq. (2.32),

this R-dependence is a completely perturbative feature emerging from the removal of the

soft-function renormalon through a scheme-dependent subtraction, and should not be con-

sidered as an R-dependence of the genuine non-perturbative QCD corrections. Formally,

the R-dependence cancels from the prediction up to higher order terms dropped by the

perturbative truncation. Within this R∗-scheme Ref. [65] found a quite sizable variation

of the theoretical predictions with respect to the R-scheme when using the 2010 profiles

introduced in Ref. [50], which, for reasons explained in the next section, we do not employ

in the analysis of this article. Therefore, for our analysis of scheme dependence we will stick

6This is because in the application to boosted top quark production in the resonance region the interplay

between large-angle soft and the ultra-collinear radiation differs from thrust in the dijet tail region for

massless quark production.
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to comparisons of the R-gap scheme with the three ξi-gap schemes. Since the summation

of large logarithmic terms is essential for a proper convergence of the theory description,

the R∗-scheme is in general disfavored as compared to our scheme choices.

2.6 Profile Functions

The factorization formula for the singular partonic thrust distribution is governed by three

renormalization scales: the hard µH , jet µJ , and soft µs scales. In order to avoid having

large logarithms in the peak and tail regions, while simultaneously maintaining the cancel-

lation of singular and non-singular terms in the far-tail region, the renormalization scales

must satisfy the following canonical scaling constraints

peak: µH ∼ Q, µJ ∼
√
ΛQCDQ, µs ≳ ΛQCD , (2.48)

tail: µH ∼ Q, µJ ∼ Q
√
τ , µs ∼ Qτ ,

far-tail: µH = µJ = µs ∼ Q .

For a given region, the phrase canonical scales refers to replacing the above ∼’s and ≳
by =, and ΛQCD by 1.1GeV. Note that there is very little freedom in these constraints;

they are not model dependent and any valid resummation approach must fulfill them with

τ -dependent renormalization scales µi(τ). However, to satisfy these requirements across the

entire thrust distribution, the three constraints must be smoothly combined, and there is

some freedom in how and where this joining is done, which introduces parameters and leads

to the concept of profile functions µi(τ). It is important to note that the resummed cross

section, even if formally renormalization-scale independent, exhibits residual dependence

on the details associated to the scale choices order-by-order in resummed perturbation

theory. To assess the perturbative uncertainty in the various regions, we therefore vary

both the absolute scales in canonical regions and the way in which we join canonical regions.

The history of profile functions in the literature includes Ref. [87] where they were used

to handle the peak-tail transition in B → Xsγ, and the thrust analysis in Ref. [50] where

the joining for all three regions was carried out. The original profiles of Ref. [50] suffered

from a deficiency, in that the canonical scaling in the tail region was only approximately

satisfied, at the benefit of having less joining parameters. This issue was rectified for the

thrust and C-parameter event shapes in Ref. [39], with the introduction of profile functions

that satisfy the canonical scaling constraints in all regions, and whose form we also use

here. In the following, we briefly review the functional form of the hard, jet and soft scales

encoded in Eq. (2.3).

The hard scale is defined as

µH = eHQ , (2.49)

where eH is one of the parameters we vary when determining the perturbative uncertainty

in our analysis. The range of variation for eH , as well as the range of variation for all other

parameters encoded in the definition of our profile functions are summarized in Table 2.
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The soft scale obeys the functional form

µs(τ) =



µs(0) 0 ≤ τ < t0
ζ(µs(0), 0, 0, rsµH , t0, t1, τ) t0 ≤ τ < t1
rsµHτ t1 ≤ τ < t2
ζ(0, rsµH , µH , 0, t2, ts, τ) t2 ≤ τ < ts
µH ts ≤ τ < 0.5

, (2.50)

where the first, third, and fifth are canonical scaling regions, and the second and fourth

involving the function ζ are where the transitions occur. For our analysis we fix µs(0) =

1.1GeV. Here t0 defines the boundary between the non-perturbative region (where all of the

Ωi are important) and the beginning of the transition to the tail resummation region (where

an OPE for the Ωi corrections applies), and t1 denotes the end of this transition. In the

tail region t1 < τ < t2, the parameter rs corresponds to the linear slope with which the soft

scale rises. Here, t2 controls the start of the transition between the tail resummation and

fixed-order regions, and ts defines the value of τ where this transition ends and all renor-

malization scales become equal to a common scale. The function ζ(a1, b1, a2, b2, t1, t2, t),

whose definition can be found in Ref. [39], connects the canonical patches of the spectrum

in a smooth manner. This function smoothly joins two linear curves ℓ1 and ℓ2 defined

for t ≤ t1 and t ≥ t2 with slopes b1 and b2, and intersects a1 and a2. The connection is

achieved by means of two second-order polynomials with support on t1 ≤ t ≤ (t1 + t2)/2

and (t1 + t2)/2 ≤ t ≤ t2 which are smoothly connected to each other at (t1 + t2)/2 and to

the two linear curves at t1 and t2.

The functional form we use for the jet scale is

µJ(τ) =

{[
1 + eJ(τ − ts)

2
]√

µHµs(τ) τ ≤ ts
µH τ > ts

, (2.51)

where eJ is one of the parameters we vary when determining the theoretical uncertainty

in our fits. Due to its dependence on µs(τ) it also inherits the proper behavior for the

different regions shown in Eq. (2.50).

In addition to the three scales defined above, there are two additional scales that

require a description. The first is R(τ), which denotes the gap subtraction scale. It agrees

with the soft renormalization scale µs(τ) in the resummation region to avoid large logs in

the subtraction series given by the second line of Eq. (2.36), but it can differ from the soft

scale in the non-perturbative region. The corresponding profile function reads

R(τ) =


R(0) 0 ≤ τ < t0
ζ(R(0), 0, 0, rsµH , t0, t1, τ) t0 ≤ τ < t1
µs(τ) t1 ≤ τ ≤ 0.5

, (2.52)

with R(0) = 0.7GeV. The values of µs(0) and R(0) are kept fixed in our fit analysis since

they only affect the peak region, which is outside our fit window.

Finally, there is also the non-singular renormalization scale µns, whose dependence in

the cross section independently decreases order-by-order. In the far-tail region it must
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(a) (b)

(c) (d)

Figure 4: Comparison of the profile functions used in Ref. [50], panel (a), in Ref. [60],

panel (b), and in this article, panel (c), for the center-of-mass energy Q = mZ . To avoid

cluttering the figure, the variation of the scales induced by changing the hard scale param-

eter eH are only indicated by the vertical ↕ arrows. The range of variation for the various

profile parameters used in this article are given in Table 2. Panel (d) shows a comparison

between the N3LL′ resummed (solid red) and fixed-order (solid blue) cross sections in the

MS scheme including perturbative uncertainties. Also shown is the N3LL′ resummed cross

section in the R-gap scheme (dashed red curves).

be equal to the other scales to ensure the proper (large) cancellation between singular

and non-singular terms, which are thus treated as a common entity rather than distinct

contributions. In the peak and dijet tail regions the non-singular scale can differ from the

other scales, and its variation provides an estimate for missing higher-order perturbative

non-singular terms. We use

µns(τ) = µH − ns

2

[
µH − µJ(τ)

]
. (2.53)

Since it is relevant to our analysis, we elaborate further on the differences between

the profiles used in the 2010 [50] and 2015 [39] analyses, displaying a comparison between

the two in Figs. 4 for Q = mZ . The most relevant difference is that the 2015 profiles

implement canonical scale setting in the tail region of the distribution, with a slope fixed

by the rs parameter, which for this Q value occurs for τ between about 0.1 and 0.25, see

the second panel. This exact linear growth is absent in the 2010 profile functions shown
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parameter default value range of values

µs(0) 1.1GeV -

R(0) 0.7GeV -

n0 2 [1.5, 2.5]

n1 10 [8.5, 11.5]

t2 0.25 [0.225, 0.275]

ts 0.4 [0.375, 0.425]

rs 2 [1.5, 2.5]

eJ 0 [−1.5, 1.5]

eH 1 [0.5, 2.0]

ns 0 [−1, 1]

ϵ2 0 [−1, 1]

ϵ3 0 [−1, 1]

Table 2: Profile function parameters and corresponding ranges in which they are varied

during the random scan. Here the parameters t0 = (1GeV)n0/Q and t1 = (1GeV)n1/Q.

in the first panel, where the slope is instead determined by the parameters which specified

how the scales merge into the peak and far-tail canonical regions. The impact this has

on the stability of the predictions and the fits is discussed in Sec. 4.1. In addition, the

2015 profiles are in general more flexible compared to their predecessors, the parameters

that constitute the profile functions control different features of the profile functions in a

more independent way, and the scales merge already by the smaller value τ = 0.4 where a

fixed-order prediction is applicable rather than considering dijets. Note that even though

the variation bands overlap at certain values of τ , for a given set of profile parameters the

required scale hierarchy associated to the three renormalization scales is, by construction,

always respected. Also note that the bands shown in Figs. 4 do not include the hard scale

eH variation to avoid clutter. A variation of eH between 0.5 and 2, results in significant

vertical movement of the black µH line indicated by the up-down arrow, and also drags

with it the jet and soft scales. Since we consider simultaneous variations in our uncertainty

analysis this leads to a significant broadening of the variation bands.

At this point, a discussion on the variation intervals of the profile function parameters

we use in this article, and which are shown in Table 2, is in order. The only difference with

respect to the 2015 analysis in Ref. [39] is that we increase the interval for the canonical

slope parameter rs from [1.77, 2.26] to [1.5, 2.5]. We will refer to these as 2024 profiles.

This leads to increased variation bands visible in the third panel of Fig. 4 compared to the

second panel of the same figure. The increase is motivated by two reasons. Firstly, as can

be seen in Fig. 4, the 2015 profiles have smaller variation than the 2010 profiles, whereas the

increase obtained by the 2024 profiles represents a more conservative uncertainty estimate.

Secondly, an updated study of the perturbative convergence of the thrust distribution

normalized to the fixed-order total cross section shows that a wider variation of rs is

preferable (in comparison to using the integral over the thrust distribution for normalizing,
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which is our default and shows excellent convergence already with the smaller rs variation).

This is elaborated on below.

In Fig. 4d we display a comparison between the N3LL′ resummed cross section, based

on the 2024 profiles, and the O(α3
s) fixed-order cross section, both in the MS scheme. It

becomes apparent that already at τ∼ 0.25 both descriptions largely coincide, demonstrating

the smooth transition from the resummed prediction to the purely fixed-order based cross

section. In addition to the MS results, we also show the N3LL′+O(α3
s) resummed cross

section in the R-gap scheme, which yields a more precise cross section that sits in the upper

part of the uncertainty band of the MS result. This feature will become important when

analyzing the fit results in Sec. 4.2, as a larger cross section in the tail region yields lower

values for the strong coupling.

In Ref. [65] it was argued that an even wider scale variation may be mandatory to

achieve reliable perturbative uncertainty. They used a larger variation for the ranges of

profile parameters, by wishing to ensure that the same profiles could be employed to achieve

overlapping uncertainty bands for a wide range of angularity observables, which depend on

the continuous a and for which a thrust-like observable emerges for a = 0. Our view is that

it is appropriate to analyze the uncertainties for each value of a separately as angularities

for different a are observables on their own, in the same way that it is appropriate to

motivate the use of somewhat different profile functions and parameter variations for thrust,

C-parameter, and heavy jet mass. Note that the increased range that we motivate and

use for rs does go in the direction of increasing the perturbative uncertainties. Since we

advocate analyzing the convergence on an observable-by-observable basis, and the bands

for thrust overlap well and yield uncertainties that are appropriate to the very high order

N3LL′+O(α3
s) analysis being performed, we choose not to increase the range of variations

further to avoid artificially inflating the perturbative uncertainties without any justification

particular to thrust.

2.7 Total Rate OPE Compatible Implementation of Profiles

As discussed in the previous subsection, in order to sum up large logs, the renormalization

scales µH , µJ , µs and R become τ -dependent profile functions. Since this yields an addi-

tional source of τ -dependence in the convolution with the non-perturbative shape function

Fτ , see Eq. (2.32), one has to make a decision on how to treat the profile function’s τ de-

pendence in this convolution. To explain this issue, let us write the partonic cross section

of Eq. (2.32), which contains all the renormalization and gap subtraction scale dependence

of the factorization theorem, as

dσ̂

dτ

(
τ ; {µi, R}

)
≡ dσ̂

dτ

[
τ − 2∆̄(R,R0, µs, µ0)

Q

]
, (2.54)

making all renormalization scales {µi, R} = {µH , µJ , µs, R} it depends on explicit. The

analogue definition for the MS scheme reads

dσ̂

dτ

(
τ ; {µi}

)
≡ dσ̂

dτ
(τ) . (2.55)
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The first option is to treat the implicit τ -dependence from the profile functions µi(τ)

independent of the explicit τ -dependence, i.e. the profile functions are employed after the

convolution, already at the hadron level. This choice was used in Refs. [39, 50, 59, 60] and

various other analyses. It yields

dσ

dτ
=

∫
dk

dσ̂

dτ

[
τ − k

Q
; {µi, R}(τ)

]
Fτ (R0, µ0; k) , (2.56)

within a gap scheme, and

dσ

dτ
=

∫
dk

dσ̂

dτ

[
τ − k

Q
;µi

(
τ
)]
Fτ (k) , (2.57)

in MS. However, this choice violates the property that all τ dependence of the partonic

cross section is convolved with the shape function. In effect, one should recall that the

τ -dependent scales are together responsible for yielding the correct τ dependence in the

partonic cross section, in particular its large logarithms of τ , and this places the implicit

and explicit τ dependence at the same level. When they are treated separately for the

inclusion of hadronization effects, as in Eq. (2.56), this means that the normalization

condition in Eq. (2.17) is no longer sufficient to yield exact independence of the integrated

total cross section on the shape function form. Predominantly this implies that there will

be a residual dependence on the value of the first moment Ω1, that signals a residual linear

infrared sensitivity.

In Fig. 5a we show the total integrated cross section obtained using Eq. (2.56) for our

N3LL′ +O(α3
s) thrust distribution in the R-gap scheme for αs(mZ) = 0.1142 and Q = mZ

as a function of the shape function’s first moment Ω1. (We obtain completely analogous

results for the other gap schemes.) The yellow solid line corresponds to the result for the

default profile functions and the dashed green lines indicate the perturbative uncertainty

estimate from the profile function variations. The dashed red line is the result for the fixed-

order total cross section at O(α3
s). The integrated total cross section is compatible with the

more precise fixed-order cross section within uncertainties at N3LL′ + O(α3
s) order. This

was also the case in Refs. [50, 59], which had similar uncertainties for the integrated cross

section using the 2010 profiles, but where only the fit value of Ω1(2GeV) = 0.323GeV was

examined. In Fig. 5a we observe a clear dependence on Ω1. This residual shape function

dependence is consistent within the perturbative uncertainty, but it is still undesirable

since the total hadronic e+e− cross section is known to have a more strongly suppressed

quartic infrared sensitivity.

The alternative entails that the implicit τ -dependence be treated just like the explicit

one, and yields a strictly shape-function independent integrated total cross section. The

implementation of such a choice is, however, not quite practical when scanning over a large

number of profile function sets. There is, however, an approximate implementation of this

alternative by replacing the convolution over the implicit τ -dependence by a shift of the

shape function’s first moment. For the MS scheme this leads to

dσ

dτ
=

∫
dk

dσ̂

dτ

[
τ − k

Q
, µi

(
τ − k

Q

)]
Fτ (k) ≃

∫
dk

dσ̂

dτ

[
τ − k

Q
, µi

(
τ − 2Ω̄1

Q

)]
Fτ (k) , (2.58)
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(a) (b)

Figure 5: Comparison of the total integrated cross section at N3LL′+O(α3
s) order in

the R-gap scheme (solid yellow) to the fixed order cross section at O(α3
s) (red dashed) as

a function of the first moment Ω1. These are normalized by the Born cross section σ0.

The yellow solid line uses the default values for the profile function while the yellow band

displays the perturbative uncertainty associated to varying profile function parameters. In

the left panel we use the older method of Eq. (2.56), while the right panel uses the improved

approach from Eq. (2.59).

which eliminates at least all linear sensitivity of the total integrated cross section on the

shape function. The generalization of this approximation when using a gap scheme reads

dσ

dτ
=

∫
dk

dσ̂

dτ

[
τ − k

Q
; {µi, R}

(
τ − 2[Ω1(R0, µ0) + δ(R0, µ0)]

Q

)]
Fτ (R0, µ0, k) . (2.59)

This is the choice to treat the τ -dependence of the profile function for the convolution with

the shape function we adopt in the analyses we carry out in this article.

In Fig. 5b we show the total integrated cross section obtained in our modified OPE-

compatible approach in Eq. (2.59), using otherwise the same setup as in the left panel. The

result shows a substantially improved shape function independence which is now negligible

from the perspective of the remaining perturbative uncertainties. For all practical purposes

the shape function dependence of the integrated total cross section can thus be ignored for

all aspects of our analyses. The fixed-order O(α3
s) cross section σ/σ0 = 1.038 also agrees

very well with our central prediction for the integrated N3LL′ + O(α3
s) cross section and

is well within the uncertainty band. The recent calculation for s3 significantly contributes

to this improved agreement, giving the displayed σ/σ0 = 1.04± 0.01. Note that if we had

instead used s3 = 0±500 as in Ref. [50] then the agreement from the integrated cross section

would be less accurate, σ/σ0 = 1.06±0.02. In what follows we self-normalize our differential

cross section, which ensures that the normalized cross section integrates to unity. (We

remark that using the fixed-order cross section for normalization, rather than the integrated

cross section, would lead to a value of αs that is larger by only ∆αs(mZ) = 0.0002, well

within our other uncertainties.)
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2.8 Impact of Resummation on the Cross Section

The systematic resummation of large logarithms with matching based on the factorization

theorem in Eq. (2.2) is essential in the dijet region, where τ is small, as has already been

pointed out by detailed analyses in Refs. [39, 59]. However, recently in Ref. [64] the need

and even the reliability of summing up higher-order logarithmic corrections in the tail

region for τ ≳ 0.1 was questioned, and it was argued that fixed-order results should be

employed in that region. Within our factorization approach the transition of the dijet to

the three-jet region occur in the interval t2 < τ < ts (with default values t2 = 0.25 and

ts = 0.4 for the two transition points) where the profile functions approach the hard scale,

see Fig. 4. In the analysis of Ref. [64], it is assumed that the three-jet region reaches much

lower τ values and that the resummation of logarithms is potentially unreliable already for

τ > 0.1, advocating for the use of fixed-order. We come back to analyze the arguments

given in Ref. [64] in more detail in Sec. 5. In view of recent results provided in Refs. [61–63]

we also believe a more detailed estimate of the impact of the three-jet configurations in

hadronization is warranted. However, we also stress that currently there is no coherent

physical understanding of the non-perturbative corrections in the transition between the

dijet- and three- or multijet-dominated thrust regions. A discussion along these lines was

also not provided in Ref. [64]. Such an understanding is, however, mandatory, both for

a restricted dijet or a dedicated three-jet analysis, since it is practically unavoidable that

thrust data used for these analyses covers this transition region either on the upper or

on the lower side of the respective fit ranges. Nevertheless, we believe that the level of

perturbative convergence of either using our resummed factorization approach or a purely

fixed-order treatment should be able to tell us about the reliability, as least from the

perspective of the perturbative contributions.

In this section we therefore provide a renewed analysis of the convergence properties

of our resummed approach based on Eq. (2.2) using our updated setup, compared to pure

fixed-order. In Fig. 6 the thrust distribution in different approaches (and at different or-

ders) is displayed normalized by the N3LL′+O(α3
s) resummed distribution. Panels (a) and

(b) show fixed-order results with two different ranges for the scale variation µ = eHQ, while

panel (c) shows resummed results. Panels (a), (b) and (c) use Ω̄1 in the MS scheme and

are normalized to the default N3LL′+O(α3
s) result with Ω̄1 (corresponding to the dashed

black horizontal line). Panel (d) shows resummed results with ΩR
1 in the R-gap scheme,

normalized to the default N3LL′+O(α3
s) result in the R-gap scheme. For the fixed-order

distributions, the uncertainty bands arise from varying the single renormalization scale in-

volved in the range µ ∈ [Q/2, 2Q] in panel (a), and µ ∈ [Q/4, Q] in panel (b), respectively.

For the cross sections including resummation, the profile function parameters are varied

according to the ranges displayed in Table 2. The results in (c) and (d) exhibit a very sta-

ble perturbative behavior with systematically order-by-order overlapping and decreasing

uncertainty bands. As anticipated, the renormalon-free R-gap scheme yields smaller uncer-

tainty bands. For the fixed-order cross sections we observe that all the uncertainty bands

are quite similar regardless of the order and that all higher-order corrections constitute

positive contributions. Furthermore, for large parts of the region displayed in Fig. 6, no
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(a) (b)

(c) (d)

Figure 6: Ratios of the fixed-order (top panels) and resummed (bottom panels) differential

distributions at various orders for Q = mZ . In the top panels fixed-order scale uncertainties

are obtained by varying eH = µ/Q in two different ranges, while in the bottom panels the

resummed scale uncertainties arise from varying the profile function parameters. In panels

(a), (b) and (c) we use Ω̄1 = 0.3GeV and normalize with the N3LL′+O(α3
s) resummed

distribution in MS, while panel (d) removes the leading renormalon ambiguity with R-

gap subtractions, uses ΩR
1 = 0.3GeV, and is normalized with the N3LL′+O(α3

s) R-gap

resummed distribution.

overlap of the uncertainty bands is visible for both µ-variation intervals. Interestingly, we

see that the O(α3
s) fixed-order distribution is closer to the N3LL′+O(α3

s) resummed result

for the lower µ-variation interval eH ∈ [0.25, 1], indicating that this choice reduces the

effects of the higher-order logarithms involving the separated soft, jet and hard scales. The

behavior of the uncertainty bands in comparison to the default N3LL′+O(α3
s) resummed

prediction (corresponding to the dashed black horizontal line) implies that the yet unknown

full O(α4
s) fixed-order corrections may very likely again provide another positive shift that

provides an even better agreement with the N3LL′+O(α3
s) resummed result. It is also likely

that this happens for τ values up to 0.3.7

7We note that the discrepancy between the O(α3
s) fixed-order results and the N3LL′+O(α3

s) resummed

distribution in the R-gap scheme shown in panels (a) and (b) of Fig. 6 varies with Q and is relevant for αs

extractions from thrust data for different c.m. energies. In addition, we emphasize that the conclusions one

can draw from both Figs. 6 and 7, are independent of the choice of αs(mZ) and Ω̄1.
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(a) (b)

Figure 7: Ratios of the resummed cross section in the R-gap scheme using both fixed-

order normalization σFO (left panel), and self-normalization σ (right panel), at various

orders, over the default self-normalized N3LL′+O(α3
s) resummed distribution. In order to

obtain these results we use αs(mZ) = 0.114 and ΩR
1 = 0.3GeV.

In any case, based on Fig. 6, a strong-coupling determination based on fixed-order

perturbation theory alone yields large order dependence already based on the known cor-

rections up to O(α3
s). In contrast, the resummed predictions exhibit an ideal order-by-

order convergent behavior, irrespective of considering the cross section in the MS or R-gap

schemes. We observe order-by-order decreasing uncertainty (estimate) bands and very

nice stability of the central prediction. Following the same pattern, this can be expected to

yield a significantly more stable order-by-order behavior for strong coupling determinations.

This will be reconfirmed explicitly by carrying out fits presented in Sec. 4.1. Furthermore,

the ratio of the O(α3
s) fixed-order predictions over the N3LL′+O(α3

s) resummed result is

flat across the entire τ range up to 0.3 without any indication of an anomalous behavior

of the resummation effects for increasing τ values. Overall, no patterns of instabilities are

visible for the entire relevant range of τ values, reinforcing the conclusion that resummed

predictions are reliable and favored over fixed-order results.

2.9 Normalization Choice and Gap Scheme Dependence

As already stated at the end of Sec. 2.7, in the following sections we self-normalize our

factorization based prediction for the differential distribution, which ensures that at each

order it integrates to unity, which is also true for the experimental data to which we will

eventually compare. In this section we investigate further aspects of our normalization

choice focusing, once more on the perturbative convergence, and on the gap subtraction

scheme dependence, and explaining our motivation for the increased rs variation range

mentioned at the end of Sec. 2.6.

In Fig. 7 we display our resummed distribution in the R-gap scheme at various or-

ders normalized by the corresponding fixed-order total cross section (left panel) and by

the integrated differential cross section (right panel). Each of the distributions is divided

again by our default self-normalized N3LL′+O(α3
s) resummed distribution in the R-gap

– 31 –



Figure 8: Ratios of self-normalized N3LL′+O(α3
s) resummed distribution in four dif-

ferent gap schemes and in MS, over self-normalized N3LL′+O(α3
s) resummed distribu-

tion in the R-gap scheme. We use αs(mZ) = 0.114 and ΩR
1 = 0.3GeV. The corre-

sponding values for Ω1 in the other three other schemes read: Ωξ1
1 (2GeV) = 0.31GeV,

Ωξ2
1 (2GeV) = 0.34GeV, Ωξ3

1 (2GeV) = 0.37GeV. At O(α3
s) the moment in the MS scheme

reads Ω̄1 = ΩR
1 + 0− 0.04− 0.04 = 0.22GeV, where we have shown the subsequent terms

in the conversion series in αs which contains an O(ΛQCD) renormalon.

scheme (corresponding to the dashed-black horizontal line at unity). The colored bands

are the perturbative uncertainties estimated from our profile function variation. We ob-

serve order-by-order convergent behavior for both normalizations, but a significantly better

convergence pattern can be attributed to the self-normalized distributions. This feature

also arises when using the 2015 profiles with the smaller rs variation range, but the overlap

of the uncertainty bands for the fixed-order normalization is larger with the variation of rs
used in the 2024 profiles. This same conclusion favoring self normalization was also drawn

in the 2010 analysis [50].

At this point it is prudent to also examine the gap-subtraction scheme dependence of

our resummed distribution. In Ref. [65], a sizable variation of the resummed predictions

was found for the 2010 profile functions (which we do not use in our current analysis)

between the R-gap and R∗ schemes. As we already explained at the end of Sec. 2.5.2, we

do not consider the R∗ scheme as a viable implementation for subtracting the O(ΛQCD)

renormalon arising from the perturbative large-angle soft radiation as it leaves large log-

arithms associated to the renormalon subtraction unresummed. However, the study of

the gap subtraction scheme dependence advocated by Ref. [65] is certainly warranted to

scrutinize the stability of the results, so we analyze this scheme dependence in detail here.

In Sec. 2.5.2 we discussed four different gap subtractions, the R-gap scheme, which was

already employed in Ref. [50] and is our default, and the three non-derivative ξ1,2,3-gap

schemes. Stability with respect to the choice of gap subtractions should yield predictions

that are consistent within the respective uncertainties (for values of Ωξi
1 and Ω̄1 which

have been obtained by scheme conversion starting from a common ΩR
1 ). In Fig. 8 the self-
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normalized N3LL′+O(α3
s) resummed distributions with perturbative uncertainty bands in

the four gap schemes are shown, again divided by the default N3LL′+O(α3
s) distribution

in the R-gap scheme. We also display the result in MS where the renormalon is not

subtracted. We first observe the significant reduction of the perturbative uncertainty bands

for all the renormalon subtracted predictions (by a factor of two or more) compared to the

MS scheme. This improvement, which was already discussed at length in Ref. [50] (and

even earlier in Ref. [55]), represents one of the main reasons for the high precision of our

cross section and highlights the advantage of employing the renormalon subtraction over

the unsubtracted MS scheme. Furthermore, the results in the four gap schemes show

very good mutual consistency. Interestingly, the ξ2- and ξ3-gap schemes exhibit somewhat

smaller uncertainty bands compared to the R- and ξ1-gap schemes, but this should be

considered accidental. The larger uncertainty bands obtained in the ξ1- and R-gap schemes

are essentially equivalent, and reconfirm that adopting the latter as our default is adequate.

2.10 Hadron Mass Effects

For partonic final states it is justified to use massless final state particles since the gluon

is massless, and light quarks have a mass much smaller than ΛQCD. (For a discussion of

heavy quark mass effects we refer the reader to the next section.) In contrast, for the

experimentally accessible hadronic cross sections, it is never justified to neglect the mass of

the hadrons, since this is entangled with the ΛQCD hadronization effects that one is aiming

to capture. For example, one can compare τ in Eq. (2.1) with the following observables

τ2 = min
n⃗

∑
j

(
Ej − |p⃗j · n⃗|

)
Q

, τE = min
n⃗

∑
j Ej

(
1− |p̂j · n⃗|

)
Q

, (2.60)

where Ej is the energy of the final-state particle j and p̂j = p⃗j/|p⃗j | a unit 3-vector pointing

in the direction of p⃗j . For massless partons all three observables are identical, whereas all

three differ for massive hadrons.

The effect of hadron masses on event-shape distribution was first pointed out in

Ref. [93], and later studied using a quantum-field formalism in Ref. [94]. For very en-

ergetic hadrons the difference between Ej or |p⃗j | is small. The hadronization effects for

collinear particles correspond to a subleading power correction of O(Λ2
QCD/(Q

2τ)), which

we neglect. On the contrary, the hadron mass effects for soft particles with momenta

∼ ΛQCD are the same order as the leading hadronization corrections at O(ΛQCD/(Qτ)),

causing the dominant difference between measuring τ , τ2, or τE .

Thus hadron mass effects in the dijet region are captured by nonperturbative contri-

butions to the soft function, that is the shape function in eq. (2.16). One of the advantages

of having an operator definition for Ω1 is that relations for different observables τi in the

dijet region can be derived from first principles in QCD. In Ref. [48] it was shown that the

boost and rotational symmetry of the matrix element defining Ω1 enable the universality

of this parameter among different event shapes to be established. These symmetries play

a crucial role when accounting for hadron masses and enable one to match observables τi
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to the appropriate universality class definition of Ω1 [94].8 Note that this theoretical treat-

ment of hadron mass effects has not yet been properly incorporated in dispersive model

based approaches. Since we consider a single event shape with a unique universality class

in our study, the differences between hadron mass effects in different universality classes is

not relevant to us here.9

In the tail region in which the OPE is applicable the treatment of hadron masses in

measurements will fix the appropriate definition of Ω1 and hence, provided all experiments

use the same treatment, the dominant hadron mass effects are absorbed when fitting for

this parameter. The fact that such hadron mass scheme dependence can be absorbed

into the definition of Ω1 was confirmed for the first moment of event shapes generated

in both the Pythia and Herwig Monte Carlos in Ref. [94]. We will assume that the

hadron mass dependence for τ as defined in Eq. (2.1) are correctly accounted for across

the experimental measurements used in our analysis, and therefore we do not assign any

additional uncertainty for these effects.

2.11 QED, Electroweak, and Bottom Mass Corrections

In this section we briefly review the known theoretical effects that will be neglected in our

analysis, and comment on the impact they would have in the determination of the strong

coupling. All of these have been studied in Ref. [50], but in subsequent analyses have

mostly been ignored.

We start with perturbative contributions. Like the vast majority of phenomenological

analyses carried out for event shapes, our theoretical expression accounts only for QCD

effects and assumes massless primary and secondary quarks. While electroweak corrections

are quite small [95], QED effects are more important. In Ref. [50] QED effects were ana-

lyzed, properly accounting for the distinction between virtual effects, initial state radiation,

and final state radiation in accordance with the experimental treatment. It was found that

these QED effects lead to a decrease of αs(mZ) by ∆αs(mZ)QED = −0.0005, see their

Fig. 14. This can be understood intuitively since the inclusion of soft and collinear final

state photons adds a bit of strength to the QCD radiation, and thus lowers the value of

αs(mZ) in the fit. We will take the attitude that this is a known effect that can included if

higher precision is desired. However, to make our results easier to compare with others in

the literature that perform fits purely based on QCD corrections, we will leave them out

in our default analysis. We also remark that the size of this correction is less than half of

our total uncertainty in αs(mZ). If this shift was taken as an additional uncertainty and

added in quadrature, our total uncertainty would only increase by 0.0001.

8In our formalism the hadronization effects incorporated in moments Ωn are formulated on the asymp-

totic celestial sphere at ∞, which implies that we assume that all particles that are unstable under strong

interactions have decayed. This properly incorporates the mass gap ΛQCD that is present in real QCD. In

this context, the decay scheme that replaces massive QCD hadrons like the p and π by massless final state

particles is not related to any theory of nature, and should not be considered for estimating uncertainties

in αs fits.
9Ref. [94] also showed that the leading power correction has a non-trivial, hadron-mass-dependent anoma-

lous dimension. The running of Ω1 was studied phenomenologically in Ref. [60] and it was concluded that

for thrust (and C-parameter) the effect is very small. Therefore, we do not implement it in this article.
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The effect of primary massive bottom quarks was also studied in Ref. [50], accounting

for such effects at N2LL+O(αs).
10 This effect is also rather small since electroweak factors

dampen the production of bottom quarks, rendering its influence on αs(mZ) at the per-mil

level. As shown in Table 5 of Ref. [50] this effect slightly increases αs(mZ) by ∆αs(mZ)mb
≈

0.0001. Inclusion of the bottom mass has a larger effect on the value of Ω1, causing a shift

of ∆Ω1 = −0.022GeV. However, when including both bottom masses and QED radiation,

the combined shift is only ∆Ω1 = −0.009GeV, which is also negligible when compared to

the total uncertainty on extractions of Ω1.

Even though top quarks cannot be produced at LEP energies, they enter through

virtual diagrams. These appear for the first time at O(α2
s) in the form of the axial-anomaly

due to the large bottom-top mass splitting and modify both the hard function and the non-

singular distribution. In Ref. [50], these corrections have also been studied and were found

to be smaller than the b-mass effects, see their Sec. II.C.

All in all, we can conclude that given the accuracy of both experimental data and our

theoretical description, it is safe to neglect the majority of the corrections discussed in this

section, and to include the ∆αs(mZ)QED ≃ −0.0005 shift from including QED corrections

only when one wants to add the dominant electroweak correction beyond a pure QCD

analysis.

3 Data Selection and Fit Procedure

Experimental data for the thrust distribution exist for different values of center-of-mass

energies in the range Q ∈ [14, 207]GeV. The datasets, corresponding to a certain value of

Q, have been obtained from the following experimental collaborations:11 TASSO with Q =

{35, 44}GeV [1], JADE with Q = {35, 44}GeV [2], AMY with Q = 55.2GeV [3], SLC

with Q = 91.2GeV [4], L3 with Q = {41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1,
161.3, 172.3, 182.8, 188.6, 194.4, 200, 206.2}GeV [5, 6], DELPHI with Q = {45, 66, 76,
89.5, 91.2, 93, 133, 161, 172, 183, 189, 192, 196, 200, 202, 205, 207}GeV [7–9], OPAL with

Q = {91, 133, 161, 172, 177, 183, 189, 197}GeV [10–12] and ALEPH with Q = {91.2, 133,
161, 172, 183, 189, 200, 206}GeV [13].

For our analysis we will restrict the choice of datasets to the range Q ∈ [35, 207]GeV.

Lower energies are excluded, as we defer from including bottom mass corrections (along

with QED final-state radiation) in our theory description, and lower energies would require

a more refined treatment of these effects (see Ref. [97] for a detailed discussion). As will be

argued in Sec. 4.1, our default dataset is (6GeV)/Q ≤ τ ≤ 0.15, where we exclude bins that

extend more than 50% outside the fit range on either side. We proceed in the exact same

manner for every fit range chosen throughout our analysis. Carrying out a global fit to the

available data for all Q ≥ 35GeV is important given the strong degeneracy between αs

10The analysis of Ref. [50] made the assumption that the momenta of heavy hadrons is not reconstructed,

that is, assuming the 2-jettiness measurement can be used on heavy-quark momenta. This corresponds to

making measurements on heavy hadron decay products. If the standard thrust measurement is used on

heavy-quark momenta, the effect on b-quark masses on the cross section is even smaller, see Refs. [96, 97].
11This is the same dataset used in Ref. [50].
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and Ω1 in the tail region of the thrust distribution, which is lifted when including multiple

values of Q at the same time into the fit.

To perform our fits, for a given set of profile parameters we construct a χ2 function

which includes both the statistical and systematic experimental errors. As there is no

available information on the correlation for the systematic experimental uncertainties we

rely on a model. As in Ref. [50], we implement the minimal overlap model [10, 13], which

yields a positive correlation of these systematic uncertainties:

δσsys
ij = min[σsys

i , σsys
j ]2δQi,Qjδexpi,expj , (3.1)

that is, the correlation is zero among different experiments and also within the same exper-

iment for different values of Q. Adding up both statistical (uncorrelated) and systematic

(correlated) experimental errors yields the experimental covariance matrix for the fit pa-

rameters for a given dataset. From this matrix one can infer the experimental uncertainties

and the correlation between αs and Ω1.

To obtain the perturbative theoretical error for a given dataset we proceed as follows.

We select 500 random sets of profile function parameters, which will be referred to as

carrying out a random scan for the remainder of this article, and perform one fit per

random point. The ranges for the individual profile function parameters are shown in

Table 2 and the random points are generated with a flat distribution. The theoretical (or

perturbative) error is obtained by taking half of the difference between the maximum and

minimum best-fit value of the 500 random points. The theoretical correlation between

αs and ΩR
1 is computed as that of the 500 pairs of best-fit values. From this correlation

coefficient and the theoretical errors, the theoretical covariance matrix is built up. Each

of the 500 fits yields a different (experimental) 2× 2 covariance matrix. From the average

of each of the entries of these matrices we obtain the overall experimental covariance

matrix, out of which the experimental uncertainties of the fit parameters, along with their

experimental correlation, are obtained. The total covariance matrix is obtaining adding

up the theoretical and experimental ones. Using this matrix, the total error ellipse can

be drawn using the best-fit values for αs and Ω1 as its center, which are obtained as the

average of the maximum and minimum best-fit values obtained in the random scan for

each parameter.

All of the analyses carried out are based on a new C++ [98] code, which we cross-checked

against the former Fortran 77 [99] program used in Refs. [50, 60] and the updated Fortran

2008 version employed in Ref. [92]. We have checked that the new and old codes agree on

the differential and cumulative thrust distributions up to seven decimal places. The new

C++ code uses the gsl library [100] for numerical integration (based on QUADPACK [101], same

set of routines already used in the previous codes), interpolation and special functions, and

has several advantages. Since we are able to access the code using a Python [102] wrapper

(generated using SWIG [103]), it is easy to use and suitable for parallelized runs on computer

clusters. Due to the efficient implementation in a fast computer language, we have been

able to restrict the performance capacities needed for our analysis to the Cluster of the

Particle Physics Group at the University of Vienna.
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4 Stability of the Predictions in Fits to Data

In Secs. 2.8 and 2.9 we have discussed the impact of resummation and gap-scheme choice

on the theoretical prediction for the thrust distribution for particular values of the strong

coupling and ΩR
1 . However, in fits to experimental data the values of αs and Ω1 themselves

are order-dependent and may depend on the way in which fits are carried out. We therefore

examine in this section whether the observations we could make in these previous sections

are also imprinted on the fit results. In particular we investigate the impact of resummation

on the fit outcome focusing on variations of the dataset (i.e. the thrust intervals used in

the fits) and on the choice of the gap subtraction scheme. Furthermore, we discuss the

improvements in stability concerning variations of thrust ranges used for the fits employing

the improved 2015 profile functions [39, 60] compared to the ones used in the original 2010

thrust analysis of Ref. [50]. We emphasize that the discussions in this section do not yet

constitute our final strong coupling determination, which is presented in Sec. 6. They are

still conceptual, focusing primarily on the overall stability and reliability of our resummed

approach with gap subtractions and the 2015 profiles (with increased rs variation) and

without yet specifying the uncertainties from profile function (or renormalization scale)

variations.

4.1 Stability of Results and Impact of Resummation

In the analysis of Ref. [50], using the old 2010 profile functions, a sizable dependence for the

αs and ΩR
1 fit results on the τ intervals employed for the fits was observed. In this analysis

different fit-ranges [τmin, τmax] with τmin = (5, 6, 8)GeV/Q and τmax = 0.25 − 0.38 were

considered, and a marginal consistency was found if only the experimental uncertainties

were accounted for; see Fig. 17 in Ref. [50], where the small ellipses represent only the 68%

CL (1-σ) experimental uncertainties for αs. (This 68% CL for one dimension corresponds

to 39% CL for two dimensions, in the αs-Ω
R
1 plane.)12 The origin of this variation was

considered of theoretical nature, since a perfect theory prediction valid for the considered

τ values would yield equivalent results. Thus, the fit range variation can be seen as a

representative of the theoretical uncertainty. Indeed, including theoretical uncertainties,

the different results for αs were statistically consistent at the 68% CL.

We reanalyze in this subsection the τ interval dependence of the fit results using the

2015 profile functions (with the increased rs variation range). These new profiles are an

improvements over the 2010 ones, as the jet and soft renormalization scales exhibit a more

consistent canonical scale behavior for the dijet tail region above the peak. In Fig. 9 we

show the fit outcome for αs(mZ) and ΩR
1 for different intervals in analogy to Fig. 17 of

Ref. [50]. All results (and in particular the center of the ellipses) are obtained with full

profile function (or renormalization scale) variations as outlined in Sec. 3, but following

the discussion of Fig. 17 in Ref. [50] only the experimental uncertainties representing 69%

CL (1-σ) for αs are displayed.

12The purpose of not showing the theoretical and in particular the renormalization scale uncertainties

was to better expose the stability aspects of the fit results.
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(a) (b)

Figure 9: Comparison of the stability of the fit results with respect to variations of

the dataset. Only experimental uncertainty ellipses are shown, which correspond to 39%

confidence level in two parameters, and 68% confidence level when projected onto one

parameter. Panel (a) depicts the results using the 2010 profile functions of Ref. [50],

whereas panel (b) utilizes the more canonical set of profile functions based on Ref. [39].

The intervals represent the τ range of a given dataset, being the reduced χ̂2 = χ2/dof

shown as a superscript: [τmin, τmax]
χ̂2
.

In Fig. 9a results for different τ intervals, with τmin = (5, 6)GeV/Q and τmax =

0.15−0.38, are shown for the 2010 profile functions based on our N3LL′+O(α3
s) resummed

distribution in the R-gap scheme. We reproduce the sizable dataset dependence, with the

ellipses covering αs(mZ) values between 0.111 and 0.114 located along the degeneracy line

in the αs-Ω
R
1 plane already observed in Ref. [50]. In Fig. 9b the corresponding results are

shown with our updated theory expressions, with the difference being entirely caused by

the use of the 2015 profile functions (other changes, such as the new α3
s non-singular, use

of the constants s3, j3, Γ4, and OPE compatible implementation of the profiles, play no

role in this discussion of fit-range stability). We observe a significant improvement in sta-

bility and fit quality. The latter can be inferred from the general reduction of the minimal

reduced χ2 shown as the superscript of the fit-range information in the panel’s legends.

With the 2015 profile functions all error ellipses are perfectly compatible and centered at

αs(mZ) around 0.1133, ranging from 0.1128 to 0.1137. This improvement demonstrates

the importance of resummation with the proper choice of the profile functions. Taking

the fit-range dependence as indicative of the expected theoretical uncertainty, we obtain

∆αs(mZ) = ±0.0005, which is compatible with the theoretical uncertainty assessed by

scale variation, which gives ∆αs(mZ) = ±0.0008. In Sec. 6 we will discuss this fit range

analysis further in the context of our final αs extraction.

It should be pointed out that in the results displayed in Figs. 9a and 9b, we also show
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(a) (b)

Figure 10: Comparison of the stability of the fit results with respect to variations of the

dataset. Only experimental ellipses are shown, which correspond to 39% confidence level

in two parameters. Here we show the outcome of the fits when using a pure fixed-order

theoretical description with shape function in the MS scheme with different ranges for the

renormalization scale variation µh in panels (a) and (b). The intervals represent the τ range

of a given dataset, being the reduced χ̂2 = χ2/dof shown as a superscript: [τmin, τmax]
χ̂2
.

two fit-ranges which were not considered in Ref. [50], [5GeV/Q, 0.15] and [6GeV/Q, 0.15],

which are clearly dominated by the dijet resummation region. With the 2010 profiles, the

[5GeV/Q, 0.15] fit-range gives a particularly small αs(mZ). With the 2015 profiles this

fit-range yields a result which is perfectly consistent with all other fit ranges, including

those having larger τmax.

Overall, with the 2015 profile functions we see no sign of instability concerning the

dataset choice and also obtain consistent results if we restrict the data to be more dijet

dominated. The fact that this consistency is observed even without considering any of

the theoretical uncertainties, which of course are included in the final analysis of Sec. 6,

underlines the improvement achieved using the 2015 profiles rather than the 2010 profiles.

As already mentioned, in Ref. [64] the need and the reliability of summing up higher

order logarithmic corrections in the tail region for τ ≳ 0.1 was questioned, and it was argued

that fixed-order results should be employed in that region. However, from the analysis

shown in in Fig. 6 and conducted in Sec. 2.8 we already found that up to O(α3
s) the fixed-

order results at consecutive orders consistently approach the highest order N3LL′+O(α3
s)

resummed results [which are fully matched to the O(α3
s) fixed-order distribution] for τ <

0.3. This indicates that the yet unknown O(α4
s) fixed-order corrections yield even better

agreement with the resummed predictions in this region. In any case, there is no evidence

that the resummed distributions may yield inconsistent predictions for this range of τ .

As an additional response to the claim of Ref. [64] we consider it warranted to explore
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the stability of fits that are based on the pure fixed-order predictions with respect to the

data range. In Fig. 10 we show the results obtained using the O(α3
s) fixed-order theoretical

prediction in the MS scheme.13 The fits account for scale variation with µ = ξQ in the range

ξ ∈ [0.5, 2] in Fig. 10a and ξ ∈ [0.25, 1] in Fig. 10b. In contrast to our analysis based on the

N3LL′+O(α3
s) resummed distribution, we only employ fit-ranges with a larger lower bound,

i.e. τmin = (9, 11, 13)GeV/Q, such that τ > 0.1 for the Z-pole data following Ref. [64] and

their argumentation concerning the potential irrelevance of resummation in that regime.

Overall, due to the reduced statistics, the experimental error ellipses are somewhat larger.

The important observation is that we see a very large fit interval dependence, where the

best-fit αs(mZ) values range between 0.1150 and 0.1229 in Fig. 10a. Furthermore, there is

a tendency for lower αs(mZ) when τmin is increased, but the best-fit value of αs(mZ) can

also depend significantly on the τmax value. For the lower renormalization scales used in

Fig. 10b, where the fixed-order description is closer to the resummed cross section, with

best-fit αs(mZ) values between 0.1133 and 0.1190, indicating somewhat improved stability.

This again goes in the direction of supporting our conclusion of having improved stability

with the inclusion of resummation.

Since the fit-range dependence can be taken as indicative of the expected theoreti-

cal uncertainty, this leads to an estimate of ∆αs(mZ) ≃ ±0.0028 for the O(α3
s) fixed-

order results using µ = Q/2. This can be compared with the result from scale variation

µ ∈ [Q/4, Q], which gives a compatible estimate ∆αs(mZ) ≃ ±0.0026. This factor of

five increase in theoretical uncertainty compared to the resummed result should be at-

tributed to the lack of important higher-order logarithmic contributions, even for datasets

where dijet events may be less dominating. Averaging the central results in Fig. 10b gives

αs(mZ)
∣∣
FO atO(α3

s)
≃ 0.1160± 0.0026, which is consistent with the world average, but also

equally consistent with smaller values of αs(mZ).

4.2 Gap Scheme Dependence of Fit Results

In Fig. 8 we showed the excellent compatibility of our N3LL′+O(α3
s) resummed thrust dis-

tribution with respect to different choices of the gap subtraction scheme. We also observed

that all gap scheme predictions accumulate within the much larger MS uncertainty band.

We now examine if this behavior is also imprinted on the results obtained in fits. In Fig. 11

we show the outcome for the fit-range τ ∈ [(6GeV)/Q, 0.15] based on the N3LL′+O(α3
s)

resummed distribution in the R-gap, ξ1,2,3-gap and MS schemes for Ω1, including experi-

mental and theoretical uncertainties as described in Sec. 3. In all cases, the best-fit values

for Ω1 are converted to the reference R-gap ΩR
1 (with R0 = µ0 = 2GeV), as described in

Sec. 2.5.2, at O(α3
s). If variations of the gap subtraction scheme lead to consistent results

(with the scheme choice as a subdominant uncertainty), we should obtain consistent results

for αs(mZ) and ΩR
1 from these different fits.

13If we use renormalon subtractions in the fixed-order cross section, i.e. ΩR
1 in the R-gap scheme, we

find that ellipses are centered at smaller values, αs(mZ) ≃ 0.114, but with a similar spread in results,

showing sensitivity to the fit range. In this case, the fit range yielding the rightmost ellipse stretches up to

αs(mZ) ≃ 0.118, while the fit range for the leftmost ellipse reaches down to αs(mZ) ≃ 0.110.
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Figure 11: Best-fit results in the αs(mZ)-2Ω
R
1 plane for different gap subtraction schemes

and in MS. Ellipses show the combined experimental and perturbative theoretical uncer-

tainties at the 39%-confidence level in two dimensions. The best-fit values for Ω1 in the

various schemes considered have been converted to the R-gap scheme ΩR
1 .

We see in Fig. 11 that this is indeed the case as very little variation is observed

on the fit results in the αs(mZ)-Ω
R
1 plane, having ellipses centered at (αs(mZ),Ω

R
1 ) ≈

(0.1135, 0.32GeV), each with uncertainties (δαs(mZ), δΩ
R
1 ) ≈ ±(0.0013, 0.10GeV). The

variation of the best fit results among the four gap subtraction schemes corresponds to an

uncertainty in αs(mZ) of 0.0003. Even fits with the N3LL′+O(α3
s) resummed distribution

for the MS Ω1 (converted perturbatively to the ΩR
1 scheme at O(α3

s)), yield a result for

ΩR
1 fully consistent with those obtained with gap subtractions. In MS the best-fit value

for αs(mZ) is located at αs(mZ) ≈ 0.1145 with an uncertainty of δαs(mZ) ≈ 0.0025. We

see that the results follow precisely the pattern observed in the theoretical distribution

shown in Fig. 8. The result in Fig. 11 shows in particular that we can get reliable results

using solely the R-gap scheme and that uncertainties from variations in the gap scheme

are already covered by the profile-function variations, which thus properly quantify the

perturbative uncertainty.

5 On the Validity of the Dijet Factorization Approach

In the previous sections we have reviewed and made improvements to the N3LL′+O(α3
s)

factorized and resummed description of the thrust distribution. The resummation of log-

arithms and the treatment of the non-perturbative corrections are based on the leading

power factorization of the collinear and large-angle soft dynamical modes that emerge in

the small τ dijet region. We have made a particular effort to combine all known ingredi-

ents (resummed singular jet, soft and hard matching functions, non-singular contributions,

non-perturbative corrections, renormalon subtractions) such that our best prediction can
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be applied for the description of the entire thrust spectrum even including τ > 0.3, which

are away from the dijet regime. In Sec. 6.2 we demonstrate that the resulting theoretical

description provides an excellent description of the experimental data, not only within the

thrust ranges used for the αs fit analysis, but also for all thrust values and for all energies Q.

This was the spirit of the 2010 analysis in Ref. [50] using the interval τ ∈ [(6GeV)/Q, 0.33]

as the default fit range, and we note that similar ranges were used in other thrust fits such

as Refs. [55, 104–106]. An essential aspect of our default formalism is that the effects of re-

summation are smoothly switched off for τ ≳ 0.25 and that the description becomes purely

fixed-order for τ ≳ 0.4. In Secs. 2.8 and 4.1 we have also addressed the concern brought

forward in Ref. [64] that the resummation of logarithms based on the dijet factorization

may be unreliable for τ ≳ 0.1, finding no evidence for any untrustworthy behavior of the

resummed plus fixed-order distribution, relative to the purely fixed-order results, for all τ

values up to 0.3, i.e. covering the range of thrust values typically used for αs determina-

tions. In fact, for τ < 0.3 the fixed-order results up to O(α3
s) clearly converge towards the

N3LL′+O(α3
s) resummed distribution, and it seems quite likely that this will continue to

happen at even higher orders in the fixed-order expansion, see the upper panels of Fig. 6.

Apart from their reservation concerning the reliability of the summation of logarithms,

Ref. [64] also expressed serious doubts concerning the validity of the parametrization of the

hadronization corrections based on the dijet factorization (in terms of a shape function)

for thrust values τ ≳ 0.1. They argued that the impact of hard three-jet configurations

would render the dijet treatment of non-perturbative corrections —and the associated error

estimates— invalid. This section is dedicated to address these concerns. Their objections

concerning hadronization corrections is of course tightly connected to their criticism of

the summation of logarithms as both arise from the dijet factorization theorem, but we

find it useful to discuss both aspects separately. First, in Sec. 5.1 we review arguments

concerning the validity of the dijet factorization approach based on scaling arguments and

based on the concrete structure of the fixed order series in αs. In Ref. [64], building

on earlier work carried out in Refs. [62, 63], a parametric calculation of three-jet non-

perturbative power corrections was presented to support their concern. In Sec. 5.2 we

therefore discuss the general structure of linear power corrections, putting in perspective

the model results of Ref. [64] for the thrust distribution accounting for the dijet, the three-

jet and the transition regimes. This allows to see more clearly the assumptions made in

Ref. [64] for these calculations. We reveal that their interpretation of the results for small

τ values close to 0.1 is tied to the implicit assumption that non-perturbative modes can

resolve hard three-jet configurations for any thrust value, including τ ≪ 0.1. However,

this assumption is in sharp contradiction to the existence of the dijet region and even the

validity of Monte Carlo generators like Pythia, Herwig and PanScales, which are based on

summing the same leading power logarithms, and we disagree strongly.

However, in view of the recent insights provided in Refs. [61–63], we do acknowledge

that it is possible that a strict dijet treatment of hadronization effects misses hadronization

corrections from three-jet events at larger values of τ . Such three-jet events can yield ad-

ditional sources of hadronization corrections, whose uncertainty should be assessed, which

we will do below. Currently there are no concrete first-principles insights on how to treat
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the transition of non-perturbative effects between the dijet and the three-jet regions, or on

the dominant non-perturbative parameters in the transition or three-jet region of thrust

(effectively we lack the analog of the QCD matrix element defining Ω1 and higher-order

matrix elements that are derived using field theory for the dijet region). So far these effects

have been assessed in models that only have a single hadronization parameter. The pre-

dictions from these models imply concrete relations between the hadronization corrections

in the dijet, transition, and trijet regions which, however, have no clear justification from

QCD.

In view of all relevant aspects in our discussion, which are summarized in Sec. 5.3, for

our final αs extraction in this article, we develop a modified treatment of the hadronization

corrections to account for additional uncertainties related to the potential deviations with

respect to the strict dijet treatment in our default factorization approach. This includes

uncertainties from both three-jet hadronization corrections and also subleading power dijet

non-perturbative corrections (which were not estimated in Refs. [64]). We also discuss how

to reduce the thrust dataset so that dijet events clearly dominate. This is the content of

Sec. 5.4.

5.1 Range of the Dijet Region

We start by discussing the validity of the dijet factorization approach of Eq. (2.2) from

the parametric point of view. In the dijet region, apart from the (local) hard modes with

momentum scaling14 pµhard ∼ Q(1, 1, 1), we have the dynamical n- and n̄-collinear modes

with momenta pµc,n ∼ Q(τ, 1,
√
τ) and pµc,n̄ ∼ Q(1, τ,

√
τ), respectively, and the large-angle

soft perturbative modes with pµs = Q(τ, τ, τ). These dijet modes are distinct and represent

the relevant modes to consider for the validity of Eq. (2.2) as long as the hierarchy

τ ≪
√
τ ≪ 1 , (5.1)

holds. The leading hadronization effects when the inequality (5.1) and thus the dijet fac-

torization approach are valid, arise from the thrust hemisphere constraints imposed on

non-perturbative large-angle soft modes with momenta pµs,np ∼ ΛQCD(1, 1, 1). These lead-

ing hadronization effects are fully encoded in the shape function Fτ . For Qτ ∼ ΛQCD, which

is associated to the peak region, the detailed form of the shape function Fτ is mandatory

for the theoretical distribution, while for Qτ ≫ ΛQCD, i.e. in the dijet tail region, the OPE

description mentioned in Sec. 2.4 is valid. There are also non-perturbative collinear modes

with momenta pµnp,n ∼ ΛQCD(
√
τ , 1/

√
τ , 1) and pµnp,n̄ ∼ ΛQCD(1/

√
τ ,
√
τ , 1). However, their

leading contributions are only quadratically sensitive to ΛQCD and furthermore suppressed

compared to the non-perturbative large-angle soft modes due to the larger virtuality Q
√
τ

of the perturbative collinear modes. The effects arising from the non-perturbative collinear

modes can therefore be neglected. This has been reconfirmed recently in Ref. [107] by com-

putations of the thrust distribution in the large-β0 approximation, and in Refs. [108, 109]

through an analytic and numerical examination of the parton shower cutoff dependence

14We use the usual light-cone momentum decomposition pµ = (p+, p−, p⊥) = p+n̄µ/2 + p−nµ/2 + pµ⊥,

with nµ = (1, n⃗), n̄µ = (1,−n⃗), where n⃗ is the thrust axis.
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Figure 12: The size of the singular (blue solid line) and non-singular (blue dotted line)

components of the O(α3
s) fixed-order cross section for µ = Q = mZ . The red numbers

denote the relative size of the non-singular contributions to the total differential fixed-

order cross section at τ = {0.05, 0.1, 0.15, 0.2, 0.25}.

of the thrust distribution obtained from the angular-ordered parton shower of the Herwig

event generator.

It is now natural to ask what in practice is the upper bound on τ so that the inequal-

ity (5.1) is satisfied. Assuming that the inequality a ≫ b concretely means a > 3b we

obtain

τ < 0.11 , (5.2)

which is consistent with our examinations concerning the validity of the resummation

of logarithms in Secs. 2.8 and 4.1. Nevertheless, if correct, it should also be true that

the singular contributions in the known fixed-order corrections of the thrust distribution,

obtained from dσ̂s/dτ in Eq. (2.3) upon expansion, should largely dominate over the non-

singular contributions obtained from dσ̂ns/dτ in Eq. (2.5). This is analyzed in Fig. 12

where the singular (blue solid line) and the (modulus of the) non-singular (blue dashed

line) contributions in the fixed-order thrust distribution up to O(α3
s) are displayed for

µ = Q = mZ . The solid black line represents the total fixed-order result.15 At τ = 0.1

the non-singular contributions only amount to 10% of the total result, i.e. the singular

contributions are 11 times larger than the non-singular ones. At τ = 0.2 the non-singular

contributions amount to 25% of the total result, i.e. the singular contributions are still 5

times larger than the non-singular ones. We believe that this refutes any claim that the

dijet factorization were unreliable and untrustworthy in the region around τ = 0.1. This

strongly favors the conclusion that the dijet treatment of non-perturbative corrections is

perfectly valid and important not only for τ < 0.11, but even for thrust values up to

0.2. Thus, once again, we do not find any evidence that would support the claims made in

15A similar figure is shown in Fig. 7 of Ref. [50], however there the singular N3LL′+O(α3
s) resummed

thrust distribution was compared to the fixed order non-singular contribution. This contrasts to the plot

shown here where both components are fixed order.
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Ref. [64] regarding the dijet treatment of non-perturbative corrections (and the summation

of logarithms) becoming invalid in the region around and above τ = 0.1.

For our analysis we consider the thrust range τ < 0.11 as the region where the dijet

treatment of non-perturbative corrections is strictly valid beyond any reasonable doubt.

For τ > 0.11 the dijet treatment is still valid, but modifications on the parametrization of

non-perturbative effects (that increase with τ) could arise due to the growing size of the

non-singular contributions.

5.2 Model for Three-Jet Power Corrections

In Ref. [62–64] a model for the dominant non-perturbative power correction in the thrust

tail region was devised. It was based on a computation of the leading linear infrared

sensitivity of the NLO QCD corrections to the process e+e− → qq̄γ due to a fictitious

gluon mass λ and the additional assumption that the corresponding corrections arising

from (anti)quark-gluon dipoles for e+e− → qq̄g, which involve the triple gluon interaction,

can be obtained by a modification of the color factor for e+e− → qq̄γ.16 For a given τ

value of the hard qq̄g configuration the model quantifies the leading linear non-perturbative

correction. Their analysis differs from the previous discussions in the literature on the

leading linear non-perturbative power correction for the thrust tail region that were based

on the pure dijet qq̄ final state [46, 48, 52, 94]. In this subsection we explain the connection

between both approaches, an issue not discussed in Ref. [64], and we also clarify why their

model cannot be used to make any statements on the validity of the dijet treatment of

non-perturbative corrections.

As already mentioned before, in the dijet factorization theorem the dominant non-

perturbative corrections arise from low-momentum large-angle soft radiation acting on the

(unresolved) harder perturbative dijet configuration that determines the plane between the

two thrust axis hemispheres. It should be remembered that the definition of jet depends

on specifying an angular jet size, the so-called jet radius, and that the same final state

particles can be resolved as a dijet event with a larger jet radius, or as a trijet event

with a smaller jet radius. These harder configurations, described by the perturbative

collinear and soft radiation, mostly constitute two jets, but may sometimes also have

three or even more visible jets arising from the collinear and harder soft dynamics. This

does not contradict the dijet treatment of the non-perturbative effects, since the essential

point is that the non-perturbative large-angle soft modes, in most cases, cannot resolve

such multijet configurations if they are collimated together within one hemisphere, see

e.g. Ref. [110] for the theoretical description of collinear subjects within a larger jet and

Ref. [111] for a review of jet substructure, which provides a number of tools for such

calculations. A similar feature arises for boosted top-antitop pair production, where large-

angle soft radiation in the c.m. frame cannot resolve the top quark decay [66, 112].

16In Ref. [62–64], these results based on working in the linear approximation for λ, were also used to

quantify the ambiguity caused by the corresponding O(ΛQCD) infrared renormalon. From the perspective

of quantifying the parametric dependence of non-perturbative effects, the gluon mass and the renormalon

computations are equivalent.
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For thrust values (sufficiently) above the thrust peak location, the leading linear non-

perturbative power correction in the dijet OPE is then related to a shift in the partonic

thrust distribution dσ̂/dτ proportional to the first moment of the shape function Ω1, see

Eq. (2.20):

dσ

dτ
(τ,Q,ΛQCD) =

dσ̂

dτ

(
τ − 2Ω1

Q
,Q

)
+O

(
Λ2
QCD

Q2τ3

)
. (5.3)

Note that on the LHS we have made the dependence of the hadron-level distribution

dσ/dτ on the c.m. energy and non-perturbative effects explicit by the arguments Q and

ΛQCD, respectively. As this relation applies for any gap subtraction (as well as for the

MS scheme Ω1) we also suppress the scheme-dependence of Ω1. Defining the cumulative

thrust distribution by Σ(τ) ≡
∫ τ
0 dτ ′ dσdτ (τ

′) this leads to the following relation between the

hadronic and partonic cumulative distributions for τ values above the peak, as long as the

dijet parametrization of the non-perturbative corrections is applicable, see inequalities (5.1)

and (5.2):

Σ(τ,Q,ΛQCD)− Σ̂(τ,Q)
dσ̂
dτ (τ,Q)

dijet
= −2Ω1

Q
+O

(
Λ2
QCD

Q2τ

)
. (5.4)

The generalization of this formula for all τ -values can now also be easily written down in

the form

Σ(τ,Q,ΛQCD)− Σ̂(τ,Q)
dσ̂
dτ (τ,Q)

= −2Ω1

Q
h

(
τ,

ΛQCD

Q

)
, (5.5)

where we defined the function h(τ,ΛQCD/Q). The dependence on both its arguments is in

principle non-perturbative, and at this time has not been quantified from first principles

away from the dijet region. Therefore, even if we had a non-perturbative calculation of

h(τ,ΛQCD/Q), for which we can take Q → ∞, then the resulting function h(τ, 0) is still

non-perturbative. However, we know that h(τ,ΛQCD/Q) is essentially constant and very

close to unity in the dijet region, i.e. h(τ,ΛQCD/Q) ≈ 1, which is physically related to the

non-perturbative soft modes not being able to resolve the harder perturbative modes, as

already mentioned above. Mathematically this corresponds to taking the limit of small τ

in h(τ,ΛQCD/Q).

Away from the dijet region, where three-jet configurations dominate and can be re-

solved by non-perturbative modes, we do not know anything about this function for thrust

from first principles. This can be compared to the model calculation obtained in Ref. [64],

which can be written as

Σ̂(τ,Q)− Σ(τ,Q,ΛQCD)
dσ̂
dτ (τ,Q)

three−jet
= −H̃NP

Q
ζ(τ) +O

(
Λ2
QCD

Q2

)
, (5.6)

where the model enables an explicit computation of ζ(τ). Ref. [64] carried out calculations

for thrust and a number of other event-shape and e+e− observables. Technically, they

obtained ζ(τ) for all τ values by an expansion in the gluon mass λ, assuming it is the
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Figure 13: Plot of the model function ζ(τ) of Ref. [64].

smallest scale regardless of the value of τ , and keeping the linear λ term. For thrust, the

model states that h(τ,ΛQCD/Q) ≈ H̃NP/(2Ω1) ζ(τ) in this three-jet regime. This provides

a parametrization with a different non-perturbative parameter H̃NP and thus a new non-

perturbative parameter in the ratio H̃NP/(2Ω1). The form of the function ζ(τ) is shown

in Fig. 1 of Ref. [64], and for convenience of the reader we display this function in Fig. 13.

We see that, except for extremely small thrust values, it takes values between 1.25 (around

τ ≈ 0.05) and 1.75 (for τ ≳ 0.3) and has a very smooth and overall rather flat behavior.

The conspicuous aspect of the function ζ(τ) is that it exhibits a very sharp rise for

extremely small τ values, where there are no events in the experimental data. This behavior

differs sharply from the flat behavior of h(τ,ΛQCD/Q) in the dijet regime. They also found

that eventually ζ(τ) approaches the value 2 for τ ≪ 0.01, which is what one expects if

Eq. (5.6) holds for all τ . Analogous observations were made in Ref. [64] for other event-

shapes. Based on this, they concluded that the ζ(τ) must be interpreted as a good model

function for 2h(τ,ΛQCD) for almost all τ values, and that the identity H̃NP = 2Ω1 holds,

which implies that the leading dijet and three-jet power corrections are associated to the

exact same non-perturbative parameter. As a consequence of the sharp rise at very small

τ , they infer that the traditional dijet treatment of non-perturbative corrections based on

Eq. (5.4) is unreliable for the thrust values that have been commonly used for strong-

coupling determinations, including the 2010 analysis in Ref. [50].

However, we should point out that in the calculation of the function ζ(τ) in Ref. [64],

the exact range of validity in τ for the small λ expansion has not been analyzed, so that

the actual range of validity of Eq. (5.6) in the dijet regime is unknown. Physically, their

expansion is associated to the assumption that the qq̄g final state is resolved as 3 jets by

the non-perturbative modes for any τ value.17 In addition, their power correction model

17Technically, the validity of the expansion in the small gluon mass λ in a fixed-order calculation for

the thrust distribution for fixed τ , breaks down in the dijet regime due to the appearance of large power

corrections such as [λ/(Qτ)]n ∼ [ΛQCD/(Qτ)]n. Therefore in the dijet region the correct approach is to

apply the dijet approximation first and only then expand in the small gluon mass. The same statement

applies in applications of infrared renormalon calculus. To reliably study the transition region, a gluon
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based on the finite gluon mass λ, yields relations for different kinds of non-perturbative

effects, which are unrelated in full QCD. This is also true for the dijet and the three-jet

power corrections, where the dijet matrix element Ω1 is defined from the matrix element in

Eq. (2.19), with Wilson lines for two light-like directions. In contrast, the non-perturbative

matrix element for the dominant three-jet power correction will depend on Wilson lines

for three light-like directions, see Refs. [113, 114]. The non-perturbative three-jet Wilson

line matrix element depends also on additional parameters, which are the angles between

the direction of the lines. Only in the limit where an angle goes to zero and Wilson lines

can be recombined, can one derive a connection between the three-jet non-perturbative

function and the dijet non-perturbative parameter [113]. Away from this limit the angular

dependence is non-perturbative. Since there is no other known relation between the two

non-perturbative matrix elements, the assumption that H̃NP = 2Ω1 is unreliable.

Finally, we also point out that in a recent analytic and numerical study of the coherent

branching algorithm in the Herwig 7.2 event generator [108, 109], the cumulative difference

of Eq. (5.5) was studied for different parton-shower cutoff values. This plays a similar role

as the finite gluon mass concerning the parametric sensitivity to non-perturbative effects.

In that analysis, the flat behavior of h(τ,ΛQCD/Q) follows Eq. (5.4) up to thrust values

of 0.2, see Fig. 1 in Ref. [109]. This is consistent with the dijet treatment being a good

approximation for τ values up to 0.2.

We therefore conclude that the model calculations presented in Ref. [64] is only rel-

evant for discussing non-perturbative corrections when three-jet configurations dominate.

However, their function ζ(τ) cannot be applied in the dijet regime. In particular, the

function ζ(τ) neither provides any information on the dijet regime itself or its τ range of

validity, nor does it give insight on the important transition region between the dijet and

three-jet regions. Furthermore, the knowledge of their function ζ(τ) does not specify the

size of the three-jet region where ζ(τ) is valid in a strict sense (at least within the model).

Nevertheless, assuming —hypothetically— that the form of Eq. (5.6) is the correct

leading non-perturbative power correction for all τ values above the peak, we can test what

the impact is on the outcome of an αs fit. The implementation of a τ -dependent power

correction in the form of Eq. (5.6) is straightforward in our factorization approach starting

from the expression of the hadron-level thrust distribution in Eq. (2.59), where the parton-

level distribution and the shape function Fτ (R0, µ0, k) at the reference scales R0 and µ0 are

fully separated. To achieve this we apply the replacement 2Ω1(R0, µ0) → ζ(τ)H̃NP. Given

the analytic ansatz of the shape function in Eq. (2.33), which yields the relation (2.34)

for the shape function’s first moment, we can implement the three-jet model of Ref. [64],

imposing the condition 2H̃NP = λ + 2∆0, by applying the replacements λ → 1
2λζ(τ) and

∆0 → 1
2ζ(τ)∆0 in the analytic expression of the shape function Fτ (R0, µ0, k) of Eq. (2.33).

Furthermore, for setups in which the renormalon is subtracted, we also need to rescale

δ(R,µs) → 1
2ζ(τ)δ(R,µs) and ∆̄(R,µs) → 1

2ζ(τ)∆̄(R,µs).

We carried out the following comparative toy analysis using our (best) N3LL′+O(α3
s)

resummed distribution in the R-gap scheme for the default profile function (i.e. not account-

mass calculation without any expansion would be necessary.
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Figure 14: Comparison of results obtained using the dijet power correction prediction

for the power correction Ω1 (purple curves) in the whole spectrum with those obtained

when using the treatment of power correction model in Refs. [62, 63] (red curves). We

show results for αs(mZ) in panel (a) and those for the hadronization correction in panel

(b), where we vary the upper limit of the fit range t3.

ing for any perturbative uncertainties) using data in the thrust intervals [(6GeV)/Q, t3]

for 0.15 ≤ t3 ≤ 0.3. We determined αs(mZ) and ΩR
1 using our dijet treatment for non-

perturbative corrections, and with a different fit also αs(mZ) and H̃NP using the three-jet

model of Ref. [64] for the non-perturbative power correction. The outcome of both anal-

yses for αs(mZ) as a function of t3 is shown in Fig. 14a, where the red dots correspond

to the best fits for the three-jet model of Ref. [64] and the purple dots indicate the best

fit values for the strict dijet treatment. The colored bands represent the corresponding

experimental uncertainties, while theoretical uncertainties are not displayed. Interestingly,

we find perfectly compatible values for αs(mZ) around 0.114 for both fits. There is a slight

tendency of decreasing αs(mZ) for the three-jet model with increasing t3, but the effect is

not very significant. The reason for the consistency of αs(mZ) values obtained with both

approaches is that the function ζ(τ) in Fig. 13 is fairly flat, with values between 1.3 and 1.4

for the lower part of the fit interval and reaching up to 1.75 when τ approaches 0.3. The

dominant effect when using the three-jet model is associated to a rescaling by ζ(0.07)/2 for

the non-perturbative correction, which has no effect on the physical description. Thus the

entire effect on the value of αs is small. This behavior can be seen in Fig. 14b, where we

display the fit results for 2ΩR
1 in the strict dijet treatment and ζ(0.07) H̃NP ≈ 1.3 H̃NP ob-

tained from the fit with the three-jet model. Here the factor ζ(0.07) ≈ 1.3 is picked as the

typical value of the function ζ(τ) in the lower part of the fit interval, which has the highest

weight in the fits. The fit results for both quantities are again mutually compatible. For

completeness, we have we also carried out the fit-range stability analysis from Sec. 4.1 using

the τ -dependent shape function based on the function ζ(τ) determined in Ref. [64]. We

find that all the observations concerning stability remain true with minimal modifications.

Another way of looking at these results is shown in Fig. 15, where we display the outcome of

2ΩR
1 and ζ(τ) H̃NP for fits within the dijet-dominated fit region [(6GeV)/Q, 0.15]. We see
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Figure 15: Fit results for 2ΩR
1 or ζ(τ)H̃NP, as a function of τ using data in the range

τ ∈ [(6GeV)/Q, 0.15]. We see that, irrespective of the treatment of the non-perturbative

corrections entering the fit, a consistent behavior of the power corrections is observed in

the fit window, indicated by the colored area.

that within the actual fit range, shaded red and purple, the results for 2ΩR
1 and ζ(τ) H̃NP

are very similar taking values around 0.62GeV. By examining the t3 dependence in Fig. 14,

we see that the mild 30% rise between ζ(0.15) and ζ(0.3) does not have a strong impact

on the fit results.

5.3 Intermediate Summary and Discussion

Let us briefly summarize the situation before elaborating on the updated fit strategy we

will apply given all the insights we gained in the previous sections:

(a) There is no evidence that the summation of logarithms based on the dijet factorization

is unreliable for thrust values up to 0.3 (see Secs. 2.8 and 4.1). The use of gap

subtractions yields an improved perturbative stability as it removes the effects of

the most important O(ΛQCD) infrared renormalon arising from the large-angle soft

modes. Furthermore, we find consistency between different gap subtraction schemes

and the associated conversion of the obtained results for gap scheme dependent Ω1

values (see Secs. 2.9 and 4.1). We therefore employ dijet resummation of logarithms

and gap subtractions in the context of the factorization formula (2.2) for the final

fits, which was also the basis of the αs determination from 2010 of Ref. [50]. The

factorization formula includes smooth matching to the fixed-order regime for τ > 0.3

supplemented by self-normalization for the total cross section which, with the new

result for s3 obtained in Ref. [77], is in perfect agreement with the fixed-order result.

Finally, we have updated the 2- and 3-loop non-singular contributions using more

precise numerical determinations.

(b) The treatment of non-perturbative corrections based on the dijet factorization is valid

for τ < 0.11, the region where the singular perturbative contributions dominate over

the power-suppressed non-singular terms by a factor of 10 or more. However, for τ >

0.11 the relative size of the non-singular contributions smoothly increases (becoming
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as large as the singular contribution at τ ≈ 0.35) indicating that non-perturbative

corrections related to three-jet configurations should become more relevant as we

increase τ . At this time we do not have any concrete and reliable information on the

size and form of the three-jet-type non-perturbative power corrections. For the final

strong-coupling determination it is therefore conservative to allow for a deviation of

the dijet treatment of non-perturbative corrections for τ > 0.11 due to the potential

impact of hadronization effects related to three-jet configurations.

(c) Within the dijet region, the non-perturbative corrections related to subleading-power

effects in τ and associated to the non-singular cross section contributions are known

to partly arise from the leading-order shape function Fτ , and partly from subleading

shape functions and collinear hadronization [83, 85, 115, 116]. These are not covered

by our default formula in Eq. (2.23), that was constructed so that the singular and

non-singular perturbative distributions merge to the fixed-order result in the far-

tail region. Such subleading power dijet non-perturbative effects have a different

character than the three-jet power corrections which affect singular and non-singular

as a whole, but there is currently also no concrete knowledge on their form, even

though they are expected to be rather small. We carry out a quantitative analysis of

these corrections in Sec. 5.4.

5.4 Non-Perturbative Uncertainties from Beyond the Leading Dijet Correc-

tions

To reduce the impact of the unknown three-jet non-perturbative corrections as much as

possible, and in the absence of an exact knowledge on the size of the dijet to three-jet

transition region (which may extend up to τ ∼ 0.35) it is conservative to significantly

restrict the dataset used for αs extractions toward small values of τ , in order to have a

higher fraction of events in the dijet regime, but maintaining at the same time a reasonable

amount of data statistics. This should limit the impact of the three-jet non-perturbative

corrections so that they can be simply modeled and then accounted for as an additional

uncertainty. In a similar manner, we also analyze the uncertainty arising from modeling

the deviation of the dijet non-singular power correction from our default treatment in

Eq. (2.23).

For the final αs determination discussed in Sec. 6 we therefore apply the following

changes compared to the 2010 analysis of Ref. [50]:

(1) We reduce the default fit range from [(6GeV)/Q, 0.33] used in Ref. [50] to the range

[(6GeV)/Q, 0.15]. For τ < 0.15 the resummation of logarithms based on the di-

jet factorization is clearly valid. On the other hand, the impact of potential non-

perturbative corrections from three-jet configuration is expected to be small in this

new fit region, so that they can be accounted for as an additional source of uncer-

tainty.

(2) We treat the deviations from the dijet treatment of the non-perturbative corrections

due to three-jet configurations by making the reference shape function Fτ (R0, µ0, k)

– 51 –



of Eq. (2.33) τ -dependent through the rescalings λ → λh̄(τ) and ∆0 → ∆0h̄(τ), which

correspond to the replacement Ω1 → Ω1h̄(τ) for the non-perturbative correction in

the OPE region. For the setup in which the renormalon is subtracted, identical

rescalings are applied to δ(R,µs) and ∆̄(R,µs). This implements the general formula

of Eq. (5.5) with a τ -dependence on the RHS and follows the suggestion of Refs. [63,

64] to account for deviations of the dijet treatment of hadronization corrections.

However, we employ a different function h̄(τ) that is consistent with the presence of

a dijet regime and has the following form:

h̄(τ) =


1 0 ≤ τ < τbt
ζ(1, 0, 0, ζ̄ev, τbt, τet, τ) τbt ≤ τ < τet
ζ̄ev τet ≤ τ < 0.5

. (5.7)

This function equals unity for 0 ≤ τ < τbt in agreement with the dijet factorization.

We vary τbt in the interval 0.11 ≤ τbt ≤ τet = 0.225 in our final analysis following our

previous arguments. For τ > τet the function is again constant, attaining the value

ζ̄ev. The parameter ζ̄ev will be varied up and down around the value 1 to account

for the ignorance on the size and the sign of potential non-perturbative contributions

from the three-jet configurations. The value of τet = 0.225 is outside our fit range,

and therefore not varied for this analysis. The function ζ applied in the region

τbt < τ < τet = 0.225 is the double-quadratic already used in the construction of

the profiles (see Sec. 2.6), and smoothly interpolates between the lower and upper

flat regions. To account for the uncertainties related to the unknown three-jet non-

perturbative effects we randomly vary ζ̄ev in the range [0.75, 1.25] along with the

profile function parameters, as described in Sec. 2.6. The variation interval of ζ̄ev
is based on the assumption that at τ = 0.15 the maximal deviation from the dijet

treatment of the non-perturbative corrections is 25%. Given that at τ = 0.15 the

singular contributions are still larger than the non-singular contribution by more

than a factor of 5, we believe that this variation is conservative. The shape of h̄(τ)

for various values for ζ̄ev and τbt is shown in Fig. 16a. For the cases (τbt, ζ̄ev) =

(0.11, 0.75) (orange line) and (0.11, 1.25) (red line) we also show the ratio of the

modified distribution with respect to the default distribution in Fig. 16b. We see

that the overall relative size of the three-jet non-perturbative effects is at the level

of three permille. Note that the additional three-jet power correction impacts the

distribution for any τ through the normalization to the integrated cross section, see

Sec. 2.9. This is the reason why the ratio deviates from unity for τ < 0.11 even

though h̄(τ) = 1 in that range.

(3) We model deviations from our default treatment of the dijet non-singular hadroniza-

tion corrections by introducing a non-singular term with a different leading power

correction parameter which we add to our default non-singular factorization formula,

see Eq. (2.23). This additional term has the form

∆

[
dσns
dτ

]NP

=
dσ̂ns
dτ

[
τ − 2∆Ω1(τ)

Q

]
− dσ̂ns

dτ
(τ) , (5.8)
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with

∆Ω1(τ) = ΩR
1 P (τ) . (5.9)

The overall scaling of the additional non-perturbative correction is set by ΩR
1 and the

function P (τ) parametrizes the deviations. It is reasonable to assume that P (τ) is a

function with size of order unity that should be rather flat in the tail region, where

we carry out the αs fits, and smoothly decreases in the region where the three-jet

power correction increases. We also note that the ansatz of Eq. (5.8) is appropriate

only in the tail region where the OPE can be applied, see Sec. 2.4. If we apply it with

a flat and finite P (τ) in the peak region, where the correct implementation would

be in terms of a shape function, the logarithmic behavior of the non-singular cross

section dσns/dτ for τ → 0 will lead to an unphysical singular behavior in Eq. (5.8).

To avoid this, P (τ) needs to vanish for τ → 0. This choice is also consistent with

the fact that the additional non-singular non-perturbative corrections should have

an even smaller impact in the peak region. The functional form of P (τ) we adopt is

thus given by

P (τ) =



0 0 ≤ τ < 0.01

ζ(0, 0, 0, 0.25, 0.1, 6/Q, τ) 0.01 ≤ τ < 6/Q

ζ̄ns 6/Q ≤ τ < 0.1

ζ(0.25, 0, 0, 0, 0.1, 0.15, τ) 0.1 ≤ τ < 0.15

0 0.15 ≤ τ < 0.5

, (5.10)

where we note that the particular decreasing form of P (τ) for τ < 6/Q, which

is outside of our fit interval, can also be interpreted as a realization of a shape

function for the peak region in the context of the ansatz in Eq. (5.8). In our fits

we vary ζ̄ns conservatively between ±1. The relative size of these additional non-

singular hadronization corrections relative to the default distribution is shown in

Fig. 16b for ζ̄ns = ±1 (blue and green curves). We see that the overall magnitude of

the effects caused by these additional dijet non-singular non-perturbative corrections

are also small, below three per mille, and thus comparable to the effect of three-

jet power corrections. However, both effects differ quite a lot concerning their τ

dependence. While the three-jet power correction yields varying shape modifications

only outside the dijet regime, the additional dijet non-singular hadronization effects

show significant shape variations in the dijet regime and decrease for larger τ values.

Before we start our final analysis in the next section, let us take a brief look at the

impact of the variations caused by the three-jet power correction model and the additional

dijet non-singular hadronization correction. To that end, we carry out toy fits to the

experimental data in the interval [(6GeV)/Q, 0.15], showing again only the experimental

uncertainties to better see the impact of the effects. In Fig. 16c we show the results

for αs(mZ) using ζ̄ev = 0.75, 0.88, 1.13, 1.25, as a function of τbt covering values above

0.11 (which is the choice we adopt in our final analysis) and below. The central colored

solid lines are the best fit and the corresponding colored bands represent the experimental
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Figure 16: Panel (a) shows deviations from the dijet treatment of power corrections

versus τ from different model functions (red, purple, and yellow curves). The dashed line

denotes the model of Ref. [64] normalized by its value at τ = 0.07. Panel (b) shows the

impact on the differential cross section of the two largest dijet deviation models (yellow

and magenta curves) and the model used to estimate uncertainties from the treatment of

power corrections in the dijet nonsingular distribution (blue and green curves). The lower

two panels (c) and (d) depict the results for αs(mZ) and ΩR
1 when varying τbt and ζ̄ev in

Eq. (5.7). The uncertainty bands contain only experimental uncertainties for the fit range

(6GeV)/Q ≤ τ ≤ 0.15.

uncertainties. We see that αs(mz) remains stable around 0.114 and that the most important

effect is the slightly larger uncertainty caused by the variations of τbt and ζ̄ev. We see that

for αs the effects from the three-jet power corrections vanish for τbt ≈ 0.126 and lead to

mild and continuously increasing uncertainties for smaller and larger τ values. For τbt
outside the fit range, the uncertainty bands freeze and does not increase further. For

τbt ≥ 0.11 we obtain an additional uncertainty of δαs(mZ) = ±0.0002. The outcome for

ΩR
1 , which is illustrated in Fig. 16d, remains stable as well with a value of around 0.3GeV,

but the additional uncertainty, which vanishes for τbt > 0.15, continuously increases for

decreasing τbt. The uncertainty band again freezes for τbt < 6/Q. For τbt ≥ 0.11 we obtain

an additional uncertainty of δΩR
1 = ±0.01GeV. The impact of the additional dijet non-

singular hadronization corrections on the fit results for αs(mZ) and ΩR
1 depends linearly
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on ζ̄ns. For ζ̄ns = ±1 the additional uncertainties amount to δαs(mZ) = ±0.00015 and

δΩR
1 = ±0.004GeV.

Overall, the effects from the additional three-jet and dijet non-singular hadronization

corrections are both an order of magnitude smaller than the perturbative uncertainties from

the variations of the profile functions and the experimental uncertainties. Nevertheless, we

include them in our final error bucket for completeness.

6 Dijet αs Extraction

In this section we present the results of our final strong coupling determination using our

N3LL′ +O(α3
s) resummed thrust distribution in the R-gap scheme, which represents the

main outcome of the phenomenological analysis in this article. All details on the implemen-

tation of our theory prediction have been given in Sec. 2, which discusses how we include

and go beyond the formalism developed in Ref. [50]. We remind the reader that we will

primarily quote results without including finite bottom quark mass and QED corrections,

in order to facilitate direct comparison with other analyses, even though such effects can

be included (as was done in Ref. [50]). Our theory predictions are based on the most

comprehensive and rigorous combination of all known components including fixed-order,

resummation, and hadronization effects, including both the leading-power dijet factoriza-

tion theorem and beyond.

A key aspect of our analysis is accounting for uncertainties associated to the poten-

tial impact of three-jet non-perturbative power corrections for which, currently, no first-

principle QCD treatment exists. This is done in a conservative manner by reducing the

thrust fit region from the [(6GeV)/Q, 0.33] used in Ref. [50] to [(6GeV)/Q, 0.15], which di-

minishes the potential contributions from three-jet hadronization effects significantly, and

by considering a model for these three-jet power corrections which allows us to assess this

additional sources of uncertainty (Sec. 5.4). Furthermore, we account for the uncertainties

coming from modelling subleading dijet power corrections (Sec. 5.4) and from subleading

shape function OPE (Ω2) corrections (Sec. 2.5.1). These uncertainties are assessed with-

out performing fits for any additional hadronic parameters. Overall, these three sources of

non-perturbative effects yield uncertainties that are much smaller than our experimental

and perturbative uncertainties.18 A discussion on all uncertainties we include is the main

content of Sec. 6.1.

We emphasize that our combined default theoretical N3LL′ +O(α3
s) resummed thrust

distribution (without the effects of three-jet and subleading dijet power corrections), pro-

vides an excellent description of the experimental data, not only for the thrust interval used

for the αs extraction, but also for all τ and Q values. This is demonstrated in Sec. 6.2.
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Figure 17: Panel (a) shows results for our default fit to αs and ΩR
1 using different datasets

τ ∈ [τmin, τmax]
χ2/dof with larger choices of the upper limit. Here the error ellipses only

contain experimental uncertainties. Panel (b) shows variations of the fit range about our

default choice of τ ∈ [6GeV/Q, 0.15]. Here the error ellipses contain both experimental

and perturbative uncertainties. The solid ellipses in both (a) and (b) correspond to 39%

confidence level (1-σ in each of the parameters). In panel (b) we show these projections by

error bars on the x-axis, and the dashed error ellipse corresponds to 68% confidence level

in two dimensions.

6.1 Results from Fits

We start by briefly discussing the impact of changing the fit interval from [(6GeV)/Q, 0.33]

used in Ref. [50] to the new range [(6GeV)/Q, 0.15]. As already elaborated on in Sec. 4.1,

the stability of our theory description in the dijet regime implies that the fit results in

both cases are consistent. In Fig. 17a the fit results for αs(mZ) are displayed for the upper

bounds τ = 0.15 (red), 0.20 (orange), 0.25 (green) and 0.33 (blue). The error ellipses (see

Sec. 3) only contain experimental uncertainties (i.e. renormalization-scale, three-jet, and

subleading dijet power-correction uncertainties are not displayed) to better illustrate their

dependence on the upper bounds. The ellipses, which also illustrate the correlation between

αs(mZ) and ΩR
1 , correspond to 39% confidence level (CL), i.e. they are 1-σ when projected

onto a single parameter. The superscripts on the fit interval represent the χ2/dof value of

the best fit. We see that the central values with αs(mZ) between 0.1134 and 0.1138 and

the reduced χ2 with values between 0.82 and 0.86 are very stable, and that the primary

18On the perturbative side, we do not incorporate resummation of leading-logarithms on the next-to-

leading partonic corrections [83–85]. We believe these should be small since the dijet cross section overly

dominates in the fit region. The corresponding uncertainties should be covered by the variations of the

renormalization scales.
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δαs(mZ) δΩR
1 Included in [50]

Experiment 0.0003 0.010 ✓
Ω1/αs 0.0007 0.026 ✓

Total Experiment + Ω1/αs 0.0008 0.028 ✓

Ω2 hadronization 0.0002 0.013 ✓
3jet hadronization 0.0002 0.010

Subleading power dijet 0.0002 0.004

Total subleading hadronization 0.0003 0.017

Perturbative 0.0008 0.037 ✓

Total 0.0012 0.049

Table 3: Sources of uncertainties for best-fit results. The first column contains the source

of uncertainty. The second column quotes the contribution to the error on αs(mZ), whereas

the third column quotes the corresponding contribution to the overall uncertainty on ΩR
1 .

It is also indicated in the last column which of these uncertainties were included in the

2010 analysis of Ref. [50].

change due to reducing the upper bound from 0.33 to 0.15 is an increase of the experimental

uncertainty by about 30%.

In the context of fit range stability, we also assess results from variations around our

default by considering fits with the ranges τ ∈ [(6± 1GeV)/Q, 0.15± 0.02]. The outcome

is shown in Fig. 17b, where the ellipses now contain both experimental and perturbative

uncertainties. We observe that all best fit values for αs(mZ), represented by the dots in the

center of each ellipse, are again contained within the perturbative uncertainty obtained from

our default choice for the fit range (cf. Sec. 4.1). This demonstrates that the theoretical

uncertainty associated with varying the fit range provides a fully compatible estimate to

our perturbative uncertainty from scale variation in the resummed analysis, just as was

seen in Sec. 4.1. For this reason, we do not view the variation of the fit range as a new

source of uncertainty.

As a last comment on the contributions to the total uncertainties on our best-fit results,

we note that both perturbative as well as experimental uncertainties are included in an

analogous manner to Ref. [50], described in detail in Sec. 3.

The final result for the αs(mZ)-Ω
R
1 fit using the interval [(6GeV)/Q, 0.15] and account-

ing for all uncertainties listed in Table 3 reads

αs(mZ) = 0.1136± 0.0012tot , (6.1)

ΩR
1 = 0.311± 0.049tot GeV ,

χ2/dof = 0.86 .

These results represent the main outcome of the phenomenological analysis in this article.

The minimal χ2/dof value, computed by averaging over the individual 500 results obtained

in the random scan, indicates an excellent agreement between our theoretical description

and the experimental data.
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Figure 18: Distribution of best-fit points at different orders for the default fit range

τ ∈ [(6GeV)/Q, 0.15], shown in the αs(mZ)-2Ω
R
1 plane in panel (a), and in the χ2/dof-

αs(mZ) plane in panel (b). Ellipses contain both experimental and theoretical uncertain-

ties.

The table shows all individual sources of hadronization uncertainties considered. They

include the effects of (dimension-two) Ω2 effects in the OPE of the shape function, of po-

tential three-jet power corrections as well as non-perturative contributions from subleading

power dijet corrections. For αs(mZ) each of these uncertainties amounts to δαs(mZ) =

0.0002. For ΩR
1 the Ω2 and three-jet power uncertainties amount to (δΩR

1 )Ω2 = 0.013 and

(δΩR
1 )3−jet = 0.010, respectively, which are larger that the uncertainty from subleading

power dijet effects, which is (δΩR
1 )dijet pc = 0.004. All these uncertainties each are com-

parable in size to the experimental uncertainties which are (δαs(mZ))exp = 0.0003 and

(δΩR
1 )exp = 0.010. The dominant sources of uncertainties are the perturbative error from

scale variation which amount to (δαs(mZ))pert = 0.0008 and (δΩR
1 )pert = 0.037. We remind

the reader that QED corrections will lower αs(mZ) by ∆αs(mZ)QED = −0.0005, and that

finite bottom mass effects are negligible, see Sec. 2.11.

At this point it is also instructive to have a closer look at the order-by-order con-

vergence of the fits and the distribution of the individual minimal χ2/dof values for the

500 profile functions. In Fig. 18a the 39% CL ellipses (accounting for experimental and

theoretical uncertainties) are displayed at N3LL′+O(α3
s) (red), N2LL′+O(α2

s) (blue) and

NLL′+O(αs) (green). The dashed dark red ellipse arises from using the fixed-order norm

for normalizing the N3LL′+O(α3
s) differential distribution. We see that the results exhibit

excellent order-by-order convergence. Furthermore, using the fixed-order total cross sec-

tion for the normalization leads to an almost identical result at the highest order. While

the NLL′+O(αs) results for αs(mZ) are compatible with the current world average, albeit

with huge uncertainties, the fit results for all higher orders are consistently below the world
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average centering around 0.1135 in a stable way. In Fig. 18b we show the distribution of

the minimal χ2/dof values from the individual fits for the different profile functions as a

function of the best-fit αs(mZ) values. As for the error ellipses we clearly see a stabilization

of the distribution beyond NLL′+O(αs) and an excellent convergence for the N2LL′+O(α2
s)

and N3LL′+O(α3
s) orders.

It is also useful to compare the fit results displayed in Eq. (6.1) and Table 3 to those

obtained with the fit approach of the 2010 analysis of Ref. [50]. This way we can assess

the effect of the theoretical updates in the N3LL′+O(α3
s) resummed thrust distribution,

namely the non-singular distribution, and the O(α3
s) jet and soft function non-logarithmic

coefficients j3 and s3. The corresponding results using the fit interval [(6GeV)/Q, 0.33],

the 2010 profile functions, and fixed-order normalization, while ignoring the three-jet and

subleading dijet power corrections read19

αs(mZ) = 0.1140± 0.0008pert ± 0.0006exp+Ω1 [±0.0002hadΩ2 ] , (6.2)

ΩR
1 = 0.332± 0.045pert ± 0.024exp+αs [±0.013hadΩ2 ] GeV ,

χ2/dof = 0.85 .

The results compare well to those in Ref. [50], see their Fig. 14 and the bottom lines of Ta-

bles IV and V. The full breakdown of the uncertainties is displayed in Eq. (68), where QED

and b-quark mass effects are included, leading to the downward shift ∆QED,mb
αs(mZ) =

−0.0004. The updates concerning the O(α3
s) soft and jet function coefficients s3 and j3,

and the O(α3
s) non-singular distribution we have implemented in this analysis have negli-

gible effects on the central value of αs(mZ) and yield an increase in ΩR
1 by about 10MeV.

The experimental uncertainties remain unchanged and the perturbative uncertainty of the

strong coupling decreases by 0.0001. The reduced χ2 of this update χ2/dof = 0.85 is

slightly better than in Ref. [50], where χ2/dof = 0.91 was found, confirming that the newly

available perturbative ingredients translate into a better agreement with data. Our results

are also in very good agreement with the recent results quoted in Ref. [65], which is a

strong consistency check for the three analyses. Comparing the fit results in Eqs. (6.1)

and (6.2) we see that they are perfectly compatible. This leads us to the conclusion that,

within the current perturbative and experimental uncertainties, the phenomenological im-

pact of three-jet power corrections is small for τ > 0.15. This view is also confirmed by

the comparison to experimental data discussed in Sec. 6.2.

6.2 Comparison against Experimental Data

We conclude this section with a comparison of our best theoretical N3LL′ +O(α3
s) thrust

distribution and the experimental data. In Fig. 19a Z-pole (Q = mZ) data and theory

are shown in the fit interval [(6GeV)/Q, 0.15]. The theory curve is our default N3LL′

thrust prediction (with the default renormalization-scale profile functions, and with the

three-jet and subleading dijet power corrections set to zero) using the best-fit results in

19In contrast if we use the new 2024 profiles this shifts the central value by ∆αs(mZ) = −0.0006, with a

perturbative uncertainty of ±0.0010.
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(a) (b)

(c) (d)

Figure 19: Comparison of theory prediction and experimental data at the Z-pole in the

fit region, panel (a). We also show results outside the fit region in the peak (b), tail (c),

and far-tail (d) regions. The theory prediction uses our default N3LL′+O(α3
s) results for

the cross section. The best fit values for αs and ΩR
1 are used.

Eq. (6.1). The displayed red error band arises from the 500-point random scan over the

profile parameters. The analogous comparisons for Q = 44GeV and Q = 189GeV are

shown in Figs. 20a and 21a, respectively, in the appendix. Overall, we see a very good

agreement to the data points within their uncertainties for all thrust values and energies,

and in particular with those having the smallest uncertainties.20

The other plots in Figs. 19 show the comparison of the theory prediction to the Z-pole

data, based on the best-fit results, for thrust values not used in the fit. For example,

Fig. 19b shows the comparison in the peak region, Fig. 19c in the tail region above the fit

interval up to τ = 0.325, and Fig. 19d in the far-tail and endpoint region for τ > 0.325.

In Figs. 20 and 21 the analogous plots show the comparison for the other energies. We

again find an excellent agreement with the experimental data, which is comparable to

the one visible for the thrust fit intervals. There are some discrepancies visible in the

prediction of the peak region shape. However, this is not unexpected since in the peak

a more flexible parametrization for the shape function should be implemented, including

20In Ref. [50] a very similar comparison was already carried out for the Z-pole data.
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more parameters than the single one employed in Eq. (2.33). This is related to the fact that

the shape function OPE of Eq. (2.18) is not applicable in the peak, where details of the

shape function’s form become are important.21 Interestingly, even in the far-tail region,

shown in Figs. 19d, 20d and 21d, where there is no first-principles argument indicating

that the dijet factorization formula should provide a good data description, the data is in

fact described very well. This is particularly notable for the very accurate Z-pole data.

The important conclusion we can draw from this comparison is that our default N3LL′

thrust distribution prediction, which is based on the best possible combination of the ingre-

dients related to leading-power dijet factorization, provides an excellent data description

for all thrust values. In the context of the discussion on possible sizeable effects caused by

three-jet-related non-perturbative power corrections, this implies that for the thrust values

where these corrections must be included, the improved theoretical description must yield

predictions that are equivalent to our default dijet-based treatment. In other words, all

mandatory modifications beyond the dijet-based treatment do for some reason cancel or

happen to be very small.

7 Conclusions

In this paper we have updated the theoretical ingredients used in the 2010 thrust fit of

Ref. [50], and refined this previous determination of αs(mZ) by carrying out a fit purely

in the dijet region. While the highest perturbative order is still the same, namely N3LL′ +

O(α3
s), the various upgrades have a positive impact on the robustness of the results.

This analysis has been partly motivated by a recent theoretical and phenomenological

article [64] that has questioned some vital aspects of the theoretical description employed in

the 2010 study, most notably the resummation of large logarithms, ln τ , and the description

of non-perturbative corrections in the three-jet region and near the dijet limit. We have

demonstrated that the questions casting doubt on the dijet factorization theorem, and its

associated resummation of large logarithms and description of power corrections, are not

justified. In contrast, the need for a modified description of non-perturbative corrections

in the three-jet region is in our view justified.

Since the 2010 analysis, four new perturbative ingredients have became known: the

two-loop [75, 76] and three-loop soft functions [77], the three-loop jet function [73, 74]

and the 4-loop cusp anomalous dimension [68, 69, 118]. These new ingredients have been

included in our computer code, that has been written anew in C++. Their impact on the

final αs fit is much smaller than the perturbative uncertainty. The O(α2
s) and O(α3

s) non-

singular distributions have been updated using higher statistics for the former and the more

precise outcome of the computer code CoLoRFulNNLO [29] for the latter. Moreover,

both parametrizations have been constructed to exactly reproduce the (now known) lead-

ing logarithms of the next-to-leading power partonic contribution [83–85]. Among these

21Examples of shape function parametrizations suitable for peak fits of event-shapes have been constructed

for B → Xsγ in Ref. [117] and for top quark production in Ref. [92]. For the dijet tail fit analysis carried out

in this article such a sophisticated parametrization is not needed, and we have estimated the uncertainty

induced by dropping the next most important parameter Ω2.
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updates, the improved three loop nonsingular has the only significant impact on the fit

αs in the smaller fit window, being of similar size as the perturbative uncertainties. The

improvement that has the most prominent impact on our results is the implementation of

more flexible renormalization scale profile functions in the different components of our fac-

torization formula that allow using canonical scaling in the three regions (peak, tail and far

tail) where theoretical constraints demand a particular τ -scaling for renormalization scales.

The profile functions in these three regions are smoothly joined with “junction” functions

whose specific form mildly affects the cross section. Besides the new functional form of the

profile functions, we have shown how to cast their dependence on τ such that the OPE for

the total cross section, i.e. the integrated norm, is respected, exhibiting full independence

with respect to the leading linear power correction Ω1 ∝ ΛQCD. Having implemented this

new prescription and including all the updates of our best N3LL′ + O(α3
s) prediction we

found excellent agreement between the total cross section obtained from integrating the

distribution and the one obtained in fixed-order perturbation theory.

In the context of these analyses we have also discussed the dependence of our predic-

tions on the choice of the gap subtraction scheme which removes the dominant O(ΛQCD)-

renormalon from the definition of first non-perturbative shape function moment Ω1. The

gap subtraction plays an important role in achieving the small uncertainties of our best

N3LL′+O(α3
s) prediction and the resulting strong coupling fits. Some reasonable concerns

were expressed in Ref. [65] that the gap scheme dependence, which was not examined in the

2010 analysis, may not be covered by the renormalization scale variations within the R-gap

scheme. In this article we have studied a wider class of gap subtraction schemes and checked

the results for consistency. We found that the gap subtractions that are constructed in

accordance with the summation of logarithms lead to results mutually consistent to each

other within the renormalization scale uncertainties at N3LL′+O(α3
s) order. Furthermore,

the values of the renormalon-free Ω1-values in the different gap schemes can be converted

to each other in full accordance to the differences of respective perturbative subtraction

series.

To confirm that the summation of logarithms arising from dijet factorization is reliable

in the thrust fit intervals used in the 2010 analysis, we have critically reexamined the

behavior of the perturbative expansions both in the dijet-based renormalization group

improved (resummed) and the fixed-order approaches. Up to τ = 0.3 we found a perfectly

stable convergence for the resummed approach. In contrast, for the fixed-order expansion

the higher-order corrections are significantly larger, and the fixed-order series is observed

to converge towards the best N3LL′ + O(α3
s) resummed prediction. Furthermore, we find

that in αs-fits, the resummed prediction together with the updated profile function yields

results that are reasonably independent of the thrust intervals used for the fit covering

ranges with 5/Q as the smallest lower and 0.38 as the largest upper boundary. All fit

results for αs(mZ) are close to 0.114. In contrast, the fixed-order expansion at O(α3
s)

yields fit results that are depending very strongly on the choice of the fit interval covering

αs(mZ) values ranging from 0.112 to 0.120. Some fit intervals yield strong coupling results

perfectly compatible our final result and some yield results compatible with the world

average. Overall, we found no evidence that the summation of logarithms based on the
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dijet factorization were unreliable, and we refute any claims that the opposite were true.

In contrast, the resummation of logarithms based on dijet factorization plays an essential

role in the ability of our best N3LL′ + O(α3
s) prediction to describe experimental data in

the thrust tail above the thrust peak, not only in the fit intervals, but for the entire tail

region up to τ = 0.3.

Addressing the criticism in Ref. [64] that the treatment of the leading hadronization

corrections arising from dijet factorization were unreliable in the thrust fit intervals used in

the 2010 analysis, we have reexamined the physical arguments for the dijet picture. Their

conclusions were based on the three-jet model calculations of Refs. [61–64], and we dis-

cussed the underlying assumptions and interpretation. In particular we have addressed the

limitations of the model that was based on a small gluon mass and renormalon calculation

for e+e− → qq̄γ [62–64]. These model calculations provide an estimate for the size of power

corrections in the three-jet region. The essential omissions are that the model calculation

assumes that soft non-perturbative modes can always resolve three distinct hard jets for

any thrust value and that the normalization of the three-jet hadronization correction is

fixed by the dijet power correction.22 Thus, these results (i) cannot be used to justify that

the same hadronic parameter describes dijet and three-jet power corrections, since in QCD

they involve different hadronic matrix elements, (ii) are at best a suppressed effect in the

dijet dominated region, and (iii) do not describe the transition region between the dijet

regime and the regime where a three-jet description becomes relevant. To address the fact

that different non-perturbative power corrections are associated to dijet and three-jet con-

figurations, we focused on a reduced dijet dominated thrust fit region and parameterized

and estimated uncertainties coming from the potential three-jet power corrections.

Our final strong coupling determination, is a simultaneous fit of αs(mZ) and ΩR
1 based

on our best N3LL′+O(α3
s) thrust theory description. To reduce the impact of the three-jet

power correction uncertainties in our new αs(mZ) fit, we have lowered the upper boundary

of the thrust fit intervals from 0.33 used in the 2010 analysis to 0.15 for the data from all c.m.

energies. For the upper bound 0.15 the terms in the dijet factorization theorem dominate

over the O(α3
s) nonsingular terms (which are also included), and the effects of potential

three-jet power corrections can be accounted for by an additional source of theoretical

uncertainty, which we estimated conservatively using a model that yields additional three-

jet power corrections. At the same time we also included an independent uncertainty that

arises from the ignorance of subleading power non-perturbative power corrections affecting

the nonsingular distribution in the dijet regime. We find that both types of uncertainties

are much smaller than the perturbative uncertainties and thus do not play an essential

role. The final result of our analysis is perfectly compatible with the result of the 2010

analysis, albeit with slightly larger experimental uncertainties due to the reduction of the

data used in the fit. The final fit results are quoted in Eqs. (6.1) with a breakdown of all

individual uncertainties shown in Table 3.

We also note that using these best fit results and our default N3LL′ + O(α3
s) thrust

22One of the biggest assumptions in the fit of Ref. [64] is that three-jet hadronization corrections are

universal for different event shapes, which unlike in the dijet case, has not been proven from QCD.
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theory prediction we find an excellent description of the experimental data from all c.m.

energies, not only in the fit ranges, but for all thrust values larger than 0.15. These

results show that the strict leading power dijet-based description of the thrust distribution

provides an excellent data description even for thrust values where one may expect sizeable

non-perturbative corrections from three-jet or multi-jet final states.

Our final determination of αs(mZ) from thrust data is significantly lower than and

incompatible with the 2023 PDG world average [119], αs(mZ) = 0.1180 ± 0.0009. After

carefully examining all possible aspects of our theoretical prediction, and having thoroughly

estimated all sources of uncertainties from perturbative and non-perturbative origin, we

are confident that our result is sound, based on the available data. We believe it would

be worth reexamining the systematic experimental uncertainties in e+e− event shapes,

for example related to unfolding and extrapolation outside fiducial regions, making use of

modern Monte Carlo generators.

Possible next steps for our analysis include pushing the perturbative order and resum-

mation to N4LL, incorporating next-to-leading-power summation of logarithms [83–85],

and having a better understanding of power corrections beyond the dijet approximation.

However, we are confident that including these effects will not lead to a significant change

in a strong coupling determination. It is also possible to include peak data, which inval-

idates the dijet OPE and requires fitting for the shape function as a whole. Such fits are

now technically in reach [92] and can be carried out as well at N3LL′ + O(α3
s) order for

thrust. One can also consider reassessing uncertainties using the theory nuisance parameter

method [120], and combined fits with other event shape observables like C-parameter and

Heavy Jet Mass, where additional experimental and theoretical correlations in uncertain-

ties are important. Finally, one could consider other types of event-shapes with different

systematics such as energy-energy correlators or jet rates, or apply grooming techniques to

reduce the effects of hadronization.
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Figure 20: Comparison of theory prediction and experimental data for Q = 44 GeV in

the fit region, panel (a). We also show results outside the fit region in the peak (b), tail

(c), and far-tail (d) regions. The theory prediction uses our default N3LL′+O(α3
s) results

for the cross section. The best fit values for αs and ΩR
1 are used.

IS and AHH would like to express thanks to the Mainz Institute for Theoretical Physics

(MIAP) of the Cluster of Excellence PRISMA+ (Project IC 390831469) for its hospitality

and support during the scientic program “Energy Correlators at the Collider Frontier”,

July 8-12, 2024.

A Comparison against experiment for different energies

In Figs. 20 and 21 we show, as examples, a comparison of our best theoretical prediction

against experimental data for Q = 44GeV and Q = 189GeV. For comparison, the analo-

gous result for Q = 91GeV is given in Fig. 19 in the main text. Once again we partitioned

the results into different regions of the thrust spectrum, with one panel showing data used

in the fit and three pannels showing data outside the fit region. (Recall that theoretical

uncertainties are not shown in the peak panels, 20b and 21b.) For these and other values

of Q the theoretical description works well outside the fit window. Note that in making

comparisons of continuous theory curves to the data points the one must be careful to note

that different datasets use bins of different sizes.
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Figure 21: Comparison of theory prediction and experimental data for Q = 189 GeV in

the fit region, panel (a). We also show results outside the fit region in the peak (b), tail

(c), and far-tail (d) regions. The theory prediction uses our default N3LL′+O(α3
s) results

for the cross section. The best fit values for αs and ΩR
1 are used.
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