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Abstract: We revisit the lore establishing the allowed space of field redefinitions and
show that there are essentially no restrictions. Our conclusions hold to all orders in
perturbation theory and for any dispersion relation. Field redefinitions can be nonlocal,
symmetry breaking, or have explicit dependence on spacetime. We address field redefi-
nitions that can be resummed into the propagator, which demonstrates how to perform
perturbative calculations away from the minimum in field space. Field redefinitions are
used to derive higher-order Schwinger-Dyson equations, which imply multiparticle soft
theorems. Non-standard field redefinitions are showcased using both relativistic and
nonrelativistic examples.
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1 Introduction

Field redefinitions play a foundational role in the formulation of quantum field theory.

The crucial statement is that S-matrix elements are invariant under field redefinitions,

which has profound consequences for mapping from Lagrangians to physical predic-

tions. They were first introduced in the context of gauge theories [1–5], since gauge

transformations are themselves field redefinitions. They were then put to work again

in the context of understanding the relation between the linear and nonlinear sigma

model [6, 7]. They are a critical tool for understanding Effective Field Theories (EFTs),
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where field redefinitions underlie the trick to remove derivative interactions by applying

the equations of motion [8–13]. In recent years, the connection between field redefini-

tions and coordinate changes on a field manifold [14–22] has been exploited to expose

interesting physical consequences, both in the scalar sector of the Standard Model [23–

33] and for scattering amplitudes of scalars and higher-spin particles [34–47].

Given this wide range of applications, it is critically important to delineate the

space of allowed field redefinitions. It is often assumed in the Standard Model EFT lit-

erature that in order for field redefinitions to leave the S-matrix invariant, they should

include a linear term and be local functions of fields and derivatives. However, in the

context of gauge transformations, ’t Hooft and Veltman had long ago understood that

nonlocal field redefinitions are completely allowed [5]. Additionally, mode-based EFTs

such as Heavy Quark Effective Theory rely on time-dependent field redefinitions when

separating the light from heavy modes [48]. Nonlocal field redefinitions are also com-

mon in the Soft Collinear Effective Theory (SCET) literature [49–52]. Our goal in

this paper is to unify all of these different points of view into a coherent and complete

picture. This will allow us to delineate in a precise way how to track the implications

of field redefinitions, and to show how their effects cancel systematically in the lan-

guage of Feynman diagrams. By understanding the details of the invariance of physical

predictions under changes of field basis, we further the development of this abstract

sentiment into a practical tool.

In this paper, we bring the diagrammatic proof by ’t Hooft and Veltman [5] into the

current zeitgeist and extend their argument to generic EFTs, including nonrelativistic

theories. Furthermore, we show that field redefinitions that are explicit functions of

the spacetime coordinates are also allowed. This justifies the types of manipulation

that are typically used when defining nonrelativistic EFTs. Symmetries may also be

totally obscured by the change of field basis with no physical consequence. Our proof

shows that one is free to perform field redefinitions with wild abandon, as long as care

is taken to incorporate the full set of features that emerge in the redefined theory. This

adheres to the EFT philosophy, where we need to consistently include all effects that

appear at a given order in a power-counting parameter.

The rest of this paper is organized as follows. In Sec. 2 we present a diagrammatic

proof of field-redefinition invariance, first for a theory of a single real scalar field before

generalizing the proof to a theory with arbitrary field content. From this we derive

various implications for correlation functions and S-matrix elements, and obtain the

Schwinger-Dyson equations in Sec. 3. We then showcase the extended space of allowed

field redefinitions in relativistic and nonrelativistic examples in Sec. 4, before concluding

in Sec. 5.
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2 The Diagrammatics of Field Redefinitions

We present a diagrammatic proof of field-redefinition invariance for S-matrix elements

and correlation functions valid to all orders in perturbation theory. For simplicity, the

proof is given for a theory of a real scalar field, before discussing how the proof extends

to general theories. The mechanism for the cancellation between terms is generic and

holds for both relativistic and nonrelativistic theories with an arbitrary field content.

The restrictions on what field redefinitions are acceptable are quite lenient: functions

of spacetime derivatives and spacetime coordinates are allowed without any regard for

locality or symmetry.

2.1 Perturbative Field Redefinitions

We work with a general theory of a single scalar field

Zϕ[J ] =

∫
Dϕ exp

(
iS[ϕ] + i

∫
d4xJ(x)ϕ(x)

)
, (2.1)

where S[ϕ] =
∫
d4xL[ϕ]. The Lagrangian is given by

L[ϕ] = −1

2
ϕ∆−1

x ϕ+ Lint[ϕ] , (2.2)

where Lint[ϕ] contains arbitrary interactions and spacetime derivatives of ϕ, and the

quadratic part of the Lagrangian determines the inverse propagator ∆−1
x . For example,

a free massive scalar has ∆−1
x = □ +m2. The arguments to follow will not depend on

the form of ∆−1
x , so we will leave it general except in the case of specific examples.

A general perturbative field redefinition takes the form

ϕ→ ϕ̃[ϕ] = ϕ+ λG[ϕ] , (2.3)

where ϕ̃[ϕ] is assumed to be an invertible polynomial function of ϕ, but we allow for an

arbitrary dependence on spacetime derivatives (both in the numerator and denomina-

tor) and explicit functions of spacetime. We assume that the Fourier transform of G[ϕ]

exists.1 We will track the effect of the field redefinition as a perturbative expansion in

the parameter λ.

1Nonlocal operators in x are equivalent to operators with infinitely many derivatives, see, e.g.,
Refs. [53, 54]. These cases are covered by our proof.
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After performing this field redefinition, the generating functional becomes

Zϕ̃[J ] =

∫
Dϕ̃ exp

(
iS[ϕ̃] + i

∫
d4xJ(x)ϕ̃(x)

)
,

=

∫
Dϕ det

(
δϕ̃

δϕ

)
exp

(
iS

[
ϕ+G [ϕ]

]
+ i

∫
d4xJ(x)

[
ϕ(x) +G [ϕ(x)]

])
, (2.4)

where the new Lagrangian is

L
[
ϕ+G[ϕ]

]
= −1

2
ϕ∆−1

x ϕ− λG[ϕ]∆−1
x ϕ− λ2

2
G[ϕ]∆−1

x G[ϕ] + Lint

[
ϕ+ λG[ϕ]

]
. (2.5)

The field redefinition has introduced a number of new terms in the generating func-

tional. The goal of this section is to give a perturbative diagrammatic argument that

Zϕ[J ] = Zϕ̃[J ] . (2.6)

As we will see, this derivation does not depend on any assumptions about the form of

∆−1, G, or Lint. We will then explore some implications of Eq. (2.6).

The idea of this proof is to enumerate all possible Wick contractions of ϕ (denoted

with an overbar as usual) that come from the term (G∆−1ϕ). We will argue that every

new diagram involving (G∆−1ϕ) has a corresponding diagram that cancels it. Further-

more, the cancellation occurs fully off-shell. Therefore, any quantity built from these

diagrams, such as correlation functions or S-matrix elements, will remain independent

of G(ϕ) and thus invariant under field redefinitions.

There are four different cases we must consider:

(a) The (G∆−1G) term in the Lagrangian in Eq. (2.5) cancels with (G∆−1ϕ)(G∆−1ϕ).

(b) The nth term in the Taylor series of Lint[ϕ+ λG[ϕ]] =
∑

n
1
n!
L(n)

intG
n cancels with

contractions of the form (G∆−1ϕ)n 1
n!
L(n)

int ϕ
n.

(c) The term (GJ) cancels with the contraction (G∆−1ϕ)(Jϕ).

(d) Loops of (G∆−1ϕ) cancel with ghost loops from the determinant in Eq. (2.4).

For all four cases, it should be understood that the vertices we consider may be a

small part of a much larger diagram with arbitrary loops and external legs. Since these

cancellations happen fully off-shell for every vertex individually, this accounts for every

new diagram to all loop orders proportional to any power λn.
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To first establish some notation that will be relevant for all four cases, we will use

plain solid lines to indicate the field ϕ, while clusters of red lines indicate the redefinition

G[ϕ]:

ϕ , and G[ϕ] . (2.7)

Here the blob is arbitrary for now. We assume for simplicity that G[ϕ] only contains

a single term with n factors of ϕ, though we write the equations to follow such that

they may be generalized straightforwardly to accommodate versions of G with multiple

terms. Arrows on ϕ legs indicate that the leg is acted on by the inverse propagator

∆−1:
∆−1

ϕ . (2.8)

We will use green blobs for vertices coming from Lint and dashed blobs for

vertices coming from the G and G2 terms in Eq. (2.5). We now explain each case in

more detail.

Case (a)

We will treat the field redefinition perturbatively, so that the propagator for ϕ is un-

changed and any linear or constant pieces in G[ϕ] appear as insertions. We therefore

have

= i∆(p) , (2.9)

where ∆(p) is the Fourier transform of ∆x, defined such that ∆(p) = 1/(p2 −m2 + iϵ)

for ∆−1
x = □ + m2. Alternatively, one could treat terms in G[ϕ] that are linear or

constant in ϕ to all orders directly by resumming them into the propagator. We will

explain how field-redefinition invariance manifests for this approach in Sec. 2.3 below.

The third term in Eq. (2.5) gives rise to a (2n)-point vertex

G[ϕ] G[ϕ] = iλ2G(p1, . . . , pn)G(pn+1, . . . , p2n)∆
−1 (

∑n
i=1pi) . (2.10)

The case of n = 1 corresponds to a propagator insertion.
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The second term in the Lagrangian in Eq. (2.5) gives rise to an (n+1)-point vertex

pn+1
G[ϕ] ϕ = iλG(p1, . . . , pn)∆

−1(pn+1) , (2.11)

where n is the number of legs in G[ϕ]. The arrow denotes the leg that is acted on by the

operator ∆−1, and the function G(p) encodes the Feynman rule for G[ϕ]. The combi-

nation of two such (n+ 1)-point vertices cancels against the contribution in Eq. (2.10)

for any n:

q
= (iλ)G(p1, . . . , pn)∆

−1 (q) [i∆(q)] (iλ)G(pn+1, . . . , p2n)∆
−1 (q)

= −iλ2G(p1, . . . , pn)G(pn+1, . . . , p2n)∆
−1 (

∑n
i=1pi)

= −

  . (2.12)

This cancellation occurs off-shell and for completely arbitrary forms of G[ϕ]. Of course,

in the case where G[ϕ] is a general polynomial in ϕ rather than a monomial ϕn, the

conclusion remains unchanged.

Case (b)

Now consider the interaction Lagrangian Lint[ϕ]. For simplicity, we will assume that

Lint[ϕ] contains only terms with m factors of ϕ, though it generalizes easily. Lint[ϕ]

then gives us an m-point vertex, indicated by a green blob:

= ifint(p1, . . . , pm) . (2.13)

The field redefinition generates new interactions of the form

Lint(ϕ+ λG[ϕ]) = Lint[ϕ] + λL(1)
intG[ϕ] +

λ2

2
L(2)

intG[ϕ]2 + · · · , (2.14)
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where L(n)
int ≡ δn

δϕnLint[ϕ]. The new interactions correspond to vertices where ϕ legs are

replaced with G[ϕ] legs,

+ + + · · · . (2.15)

Here, the first term is G-independent, while the second and third terms are proportional

to G and G2, respectively.

We will show the cancellation explicitly for the simplest case where we have one

factor of G and L(1)
int . The contribution from the second diagram in Eq. (2.15) is given

by

= iλG(pi, . . . , pi+n) f
(1)
int

(
p1, . . . ,

∑i+n
j=ipj, . . . , pn+m−1

)
, (2.16)

where G[ϕ] has been inserted on leg j, and f
(1)
int (p) is the Feynman rule from L(1)

int . Now

consider the diagram where we insert the (n+1)-point G vertex onto leg i of the Lint[ϕ]

vertex:

q
= (iλ)G(pi, . . . , pi+n)∆

−1(q) [i∆(q)]
(
if

(1)
int(p1, . . . , q, . . . , pn+m−1)

)
= −iλG(pi, . . . , pi+n) f

(1)
int

(
p1, . . . ,

∑i+n
j=ipj, . . . , pn+m−1

)
= −

  , (2.17)

so it exactly cancels the contribution from Eq. (2.16) fully off-shell. Here, f
(1)
int appears

instead of fint to account for the correct symmetry factor since using L(1)
int sums over

insertions of the (n+ 1)-point vertex.

The same cancellation takes place for the full Taylor expansion of fint in Eq. (2.14).

Additionally, this argument generalizes straightforwardly to an arbitrary number of

insertions of G[ϕ]. This demonstrates the full cancellation for case (b).
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Case (c)

We will now explain how the cancellation involving the source term occurs. The mod-

ified source term is given by∫
d4x J(x)ϕ(x)→

∫
d4x

(
J(x)ϕ(x) + λJ(x)G[ϕ(x)]

)
, (2.18)

which give us the two vertices

J = 1 , (2.19a)

J = λG(p1, . . . , pn) . (2.19b)

We also have diagrams of the form

= iλG(p1, . . . , pn)∆
−1(pn+1) [i∆(pn+1)]

= −

  , (2.20)

which clearly cancel. This completes the argument that all new diagrams involv-

ing (G∆−1G),
∑

n
1
n!
L(n)

intG
n, or (JG) are precisely canceled by diagrams that involve

(G∆−1ϕ).

Depending on the specific form of G[ϕ], the changes in the source may often be

neglected when going from off-shell correlation functions to S-matrix elements. We will

say more about this in Sec. 3.2.

Case (d)

The last case comes from diagrams where the arrows flow along a closed loop:

, (2.21)
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where clusters of (n− 1) blue lines indicate an insertion of δG
δϕ
ϕn, where ϕn denotes the

internal line without the arrow leaving the vertex:

δG[ϕ]
δϕ

pn

pn+1

= iλG(1)(p1, . . . , pn)∆
−1(pn+1) . (2.22)

Writing the interaction this way effectively sums over configurations for the internal

line, following the same logic as in case (b). For a general G[ϕ], diagrams of the form

of Eq. (2.21) are non-zero, and are canceled by the determinant in Eq. (2.4). The

determinant can be written as an integral over auxiliary ghost fields as

det

(
δϕ̃

δϕ

)
=

∫
Dc̄Dc exp

{
−i

∫
d4x

(
c̄c+ λc̄

δG

δϕ
c

)}
. (2.23)

Written this way, the ghost propagator is trivial,

= i , (2.24)

where the arrow on the ghost propagator keeps track of ghost number and does not

indicate a ∆−1 insertion, in contrast to the scalar case. The interaction term gives rise

to the vertex

δG[ϕ]
δϕ

pn

= iλG(1)(p1, . . . , pn) . (2.25)

The kinematic function in the ghost vertex is identical to the one in the vertex in

Eq. (2.22). This allows us to write

× = × , (2.26)

which means that diagrams with an arrow flowing around a closed loop precisely cancel

the ghost diagrams, due to the ghost’s additional factor of (−1) that comes from the
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Grassmann algebra:

+ = 0 . (2.27)

Since this argument is once again fully off-shell, this shows that all diagrams induced

by the field redefinition cancel among themselves to all loop orders for an arbitrary

number of external legs.

When Do Ghosts Matter?

While the ghosts are necessary for a general field redefinition to enforce Eq. (2.6), they

rarely make an appearance in familiar applications. Since ghosts only appear at loop-

level, they may be dropped for any tree-level calculation. Beyond tree level, ghosts may

still be ignored for a large class of redefinitions when using dimensional regularization.

Consider the combination appearing in Eq. (2.26):

× = −λG(1)(p1, . . . , pn) . (2.28)

When G[ϕ] is local, G(1)(p) is a polynomial in momenta. Since the loops built out

of this object have no poles, the loop integral is just an integral over a polynomial

of momenta, which vanishes in dimensional regularization. This is typical for field

redefinitions commonly used in EFTs [10, 12, 13].2 It should be emphasized that these

ghost loops are not zero in general, for example when working with a hard momentum

cutoff regulator.

The other case where they may be ignored is when G[ϕ] is independent of or

proportional to ϕ, i.e., G[ϕ] = Aϕ + B. If A is nonlocal then the ghost loops may

be non-zero. However, the ghosts have no interactions since δG
δϕ

is ϕ-independent,

and so they do not contribute to any correlation function.3 In summary, when using

dimensional regularization, ghosts are only relevant for nonlocal field redefinitions that

2Another way to phrase this is that for a local EFT field redefinition of the form ϕ→ ϕ+ 1
Λ2G[ϕ]

with Λ the EFT scale, the ghosts gain a mass proportional to Λ when canonically normalized. After
expanding the ghost propagator in powers of Λ for a consistent power counting, any ghost loop becomes
a polynomial in momenta and vanishes in dim reg.

3With the important exception of the chiral anomaly for fermions [55].
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are polynomials in ϕ with degree n ≥ 2 when going beyond tree level. We will show

this explicitly by working through a simple example in Sec. 4.1 below.

2.2 Generalization to Theories with Fermions and Gauge Bosons

The proof can be extended to a general field theory. If we have an arbitrary number

of scalars in our theory, then we can group them in multiplets ϕi. The propagator and

all interaction vertices now carry these indices. However, the proof of field-redefinition

invariance proceeds as before with the appropriate contraction of the scalar indices.

For fermions, one additional subtlety arises from the ghosts. In Eq. (2.4), we

obtain determinants since the particle ϕ is bosonic, while for fermions we get inverse

determinants. These can still be treated using ghosts in the usual way; however, to get

an inverse determinant, the ghosts are no longer Grassmann valued. The (−1) from

the closed fermion loop then cancels the bosonic ghost loop, and everything proceeds

as usual.

In the case of gauge bosons, gauge fixing presents a potential complication. This is

discussed nicely in Ref. [10] in the context of EFTs, though much of the discussion holds

more generally. The gauge-fixing part of the Lagrangian is given by LGF +LFP, where

the first is the gauge-fixing term and the second is the corresponding Faddeev-Popov

ghosts. In the case that gauge fixing is done before the field redefinition, the change

in these two pieces cancel between each other exactly.4 When it is done afterward, the

familiar procedure can be used to choose LGF and LFP, although the interpretation of

the choice of gauge may be different.

Also, note that relativity did not play a role in the proof. The cancellation occurred

between different diagrams because the propagator ∆ was canceled by the inverse prop-

agator in the vertex G∆−1ϕ. For nonrelativistic theories, the exact same cancellation

will take place. Therefore, we have proved the invariance under field redefinitions for

correlation functions and scattering amplitudes in relativistic and nonrelativistic theo-

ries.

2.3 Resumming Modifications into the Propagator

While the above proof works for arbitrary field redefinitions, it assumes that the field

redefinition is not resummed into the definition of the propagator and is always treated

perturbatively in λ. We will now relax this assumption. The two cases where this is

relevant are transformations that are either linear in or independent of ϕ.

4This assumes the ghosts in LFP are different ghosts from those from the redefinition we discussed
above. This is necessary for the new terms in LGF and LFP to cancel independently of the rest of the
Lagrangian.
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2.3.1 Linear transformations

Here we consider the case of a linear redefinition ϕ→ Axϕ, where Ax is a ϕ-independent

(local or nonlocal) function of spacetime derivatives or spacetime coordinates. The

Lagrangian and source term become

L+ Jϕ→ −1

2
(Axϕ)∆

−1
x (Axϕ) + Lint[Axϕ] + JAxϕ . (2.29)

Resumming this interaction into the propagator amounts to defining a new propagator

∆−1
new,x =

←−
A x∆

−1
x

−→
A x , (2.30)

where the arrow denotes the direction Ax acts. With this definition, the Lagrangian is

L = −1

2
ϕ∆−1

new,xϕ+ Lint[Axϕ] . (2.31)

Diagrammatically, the Feynman rule for the propagator becomes

= i∆new(p) =
i∆(p)

[A(p)]2
. (2.32)

The Feynman rule for the interaction Lagrangian Lint[ϕ] now comes with additional

factors of A(p):

= if(p1, . . . , pm)
m∏
i=1

A(pi) , (2.33)

and the source terms also carry the same factor,

J = A(p) , (2.34)

such that the original theory is recovered when including sources on external legs,

= , (2.35)

where solid black lines are the propagators for ϕ in the original theory. For internal

propagators, the two Lint[ϕ] vertices give the two necessary factors of A(p) to recover
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the original theory:

q
=

q
. (2.36)

This establishes invariance under the transformation ϕ→ Axϕ.

One may wonder about the interplay of a linear transformation with a general

transformation λG[ϕ] as discussed in the previous section. The easiest way to see

invariance under such a combination is to notice that

ϕ→ Axϕ+ λG[ϕ] , (2.37)

is equivalent to

ϕ→ Axϕ , then ϕ→ ϕ+ λA−1
x G [ϕ] . (2.38)

Since G[ϕ] was never required to be local, showing invariance under ϕ → ϕ + λG[ϕ]

already proves invariance under ϕ → ϕ + λA−1
x G [ϕ]. However, this has an interesting

consequence. Even if both G[ϕ] and Axϕ are strictly local transformations, ghosts

are still necessary in dimensional regularization if Ax contains derivatives and was

resummed into the propagator since A−1
x G [ϕ] is not local. Arguably the simplest

example of this is in Appendix A of Ref. [13],5 although here we see that it is completely

generic.

2.3.2 Field-independent Transformations

Now we turn to the case where the transformations are independent of the field ϕ

entirely, ϕ(x) → ϕ(x) + ϵ(x). This field redefinition will be used below to derive the

Schwinger-Dyson equations in Sec. 3.3 (although we will not need the resummed version

in that section). Some of the terms proportional to ϵ(x) can in principle be absorbed

into the propagator. In this section, we show how to implement this resummation

self-consistently.

The new Lagrangian after the field redefinition is

L = −1

2
ϕ∆−1

x ϕ− ϵ∆−1
x ϕ− 1

2
ϵ∆−1

x ϵ+ Lint[ϕ] +
∑
n

1

n!
L(n)

int ϵ
n . (2.39)

The term ϵ∆−1ϵ is ϕ-independent and can be discarded. Which of the ϵ-dependent

terms can be absorbed into ∆x depends on the form of Lint[ϕ]. For simplicity, we

5Explicitly, in Ref. [13] they consider a real scalar field with ∆−1
x = □ and Lint[ϕ] = 0. Their field

redefinition in our notation is Ax = 1 + (1/m2)□ϕ and λG[ϕ] = (1/m2)gϕ3.
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specialize to the case Lint[ϕ] = −(g/3!)ϕ3. After shifting the field, we get

1

6
gϕ3 → 1

6
gϕ3 +

1

2
gϵϕ2 +

1

2
gϵ2ϕ+

1

6
gϵ3 , (2.40)

where ϵ3 is ϕ-independent and can therefore be dropped. The term (g/2)ϵϕ2 can be

absorbed into the definition of the propagator,

∆−1
new,x = ∆−1

x + gϵ , (2.41)

so that the Lagrangian becomes

L = −1

2
ϕ∆−1

new,xϕ− ϵ

(
∆−1

x +
1

2
gϵ

)
ϕ− 1

6
gϕ3 . (2.42)

Compared to the original theory, we have a modified propagator and a new linear

term. Invariance under this field redefinition is not immediately manifest when this

ϵ-dependence is resummed into the propagator. We now show how the final result is in

fact ϵ-independent, as it must be.

First, we must check that the field redefinition has not induced a nonzero one-point

function. There is now an infinite set of diagrams which contribute to the one-point

function. In addition, we have a new constant coupling to the source, ϵJ . After carefully

resumming the infinite set of tadpole diagrams, we find that it precisely cancels the

contribution from the source:

= +
1

2
× + · · ·

=

(
−ϵ∆

−1(p)− gϵ/2

∆−1(p)− gϵ

)
+

1

2

(
−ϵ∆

−1(p)− gϵ/2

∆−1(p)− gϵ

)2(
g

∆−1(p)− gϵ

)
+ · · ·

=
∞∑
n=0

2−ncn

(
−ϵ∆

−1(p)− gϵ/2

∆−1(p)− gϵ

)n+1(
g

∆−1(p)− gϵ

)n

= −ϵ , (2.43)

where the notation on the left-hand side denotes the resummed tadpole, the gray blobs

indicate factors of iϵ[∆−1(p)−gϵ/2] from the linear term in the Lagrangian in Eq. (2.42),

and cn = 1
n+1

(
2n
n

)
are the Catalan numbers.

The modified propagator from the Lagrangian in Eq. (2.42) is not the full two-

point function of this theory. We also need to account for the diagrams that contribute

to the two-point function that involve tadpole insertions. We can write the all-order
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expression for the modified propagator as

i∆full(p) = + + + · · ·

=
i

∆−1(p)− gϵ
+

i

∆−1(p)− gϵ
(igϵ)

i

∆−1(p)− gϵ
+ · · ·

=
∞∑
n=0

(
i

∆−1(p)− gϵ

)n+1

(igϵ)n = i∆(p) . (2.44)

After resumming the tadpole contributions, the full propagator is simply the propagator

in the original Lagrangian. There is an all-order cancellation between the new quadratic

terms in the Lagrangian and the tadpole contributions. The cubic vertex is invariant

under this field redefinition. We can use the cubic vertex and the full propagator to

see that all correlation functions and S-matrix elements, which we discuss in Sec. 3,

are invariant, as long as we account for all tadpole corrections.

Next, we generalize the discussion to a theory with a quartic interaction, which

will allow us to highlight a new feature that emerges for theories with higher-point

interactions. Consider the Lagrangian

L = −1

2
ϕ∆−1

x ϕ− 1

6
g3ϕ

3 − 1

24
g4ϕ

4 . (2.45)

After the shift of the scalar field, the Lagrangian takes the form

L = −1

2
ϕ

(
∆−1

x + g3ϵ+
g4ϵ

2

2

)
ϕ− ϵ

(
∆−1

x +
g3ϵ

2
+

g4ϵ
2

6

)
ϕ

− 1

6
(g3 + g4ϵ)ϕ

3 − 1

24
g4ϕ

4 . (2.46)

To combat the plethora of diagrams induced by this shift, we make a simplifying choice

for the shift parameter:

ϵ = −g3/g4 . (2.47)

The reason this value of ϵ is useful is that it sets the cubic interactions in the redefined

Lagrangian to zero. This naively introduces a puzzle, since there are cubic interactions

in the original theory. We will see how the original cubic vertex is recovered due to

including tadpole insertions in the redefined theory.
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First, we check that the one-point function is zero:

=

(
−ϵ∆

−1(p)− g3ϵ/2− g4ϵ
2/6

∆−1(p)− g3ϵ− g4ϵ2/2

)

+
1

6

(
−ϵ∆

−1(p)− g3ϵ/2− g4ϵ
2/6

∆−1(p)− g3ϵ− g4ϵ2/2

)3(
g4

∆−1(p)− g3ϵ− g4ϵ2/2

)
+ · · ·

=
∞∑
n=0

6−ndn

(
−ϵ∆

−1(p)− g3ϵ/2− g4ϵ
2/6

∆−1(p)− g3ϵ− g4ϵ2/2

)2n+1(
g4

∆−1(p)− g3ϵ− g4ϵ2/2

)n

=− ϵ , (2.48)

where dn = 1
2n+1

(
3n
n

)
, and we used g3 = −g4ϵ. This cancels the contribution from the

source term, ϵJ . The two-point function is also unchanged:

i∆full(p) =
i

∆−1(p)− g3ϵ− g4ϵ2/2

+
1

2

i

∆−1(p)− g3ϵ− g4ϵ2/2
(−ig4ϵ2)

i

∆−1(p)− g3ϵ− g4ϵ2/2
+ · · ·

=
∞∑
n=0

(
i

∆−1(p)− g3ϵ− g4ϵ2/2

)n+1 (
−ig4ϵ2/2

)n
= i∆(p) , (2.49)

where enforced that g3 = −g4ϵ. Finally, the three-point function is nonzero, even

though there are no cubic terms in the Lagrangian:

= −ig4(−ϵ) = −ig3 . (2.50)

The conclusions we draw from these examples hold generally. The infinite set of

tadpole diagrams sums to −ϵ. Furthermore, when tadpole corrections are included, all

n-point functions in the theory after the field redefinition are the same as in the original

field basis. This leads us to a statement that might be surprising at first sight; we can

compute S-matrix elements from anywhere in field space, not just at the minimum (or

extrema) of the potential. The price to pay to work away from the minimum of the

potential is the inclusion of tadpole corrections.6 We have demonstrated here how they

can be systematically included to all orders. For example, using this insight we can

6Of course, if one does not include the tadpole corrections, then one would not get the correct
result for the S-matrix elements away from the extrema of the potential [56, 57].
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consider novel ways of computing S-matrix elements in the broken electroweak theory

using the theory expanding around the unbroken point in field space. We leave this for

future explorations.

3 Implications

Let us now turn to some of the implications of the general proof. We will first discuss

correlation functions before moving on to S-matrix elements, paying close attention to

how the LSZ procedure can be connected to the field-redefinition invariance of scattering

amplitudes. We then leverage the invariance of the path integral to derive higher-order

Schwinger-Dyson equations, which imply generalized soft theorems.

3.1 Correlation Functions

With the diagrammatic proof of the invariance of the generating functional under field

redefinitions, Eq. (2.6), we turn our focus to correlation functions. The n-point corre-

lation function is obtained from the generating functional after taking derivatives with

respect to the source J :

⟨ϕ(x1) · · ·ϕ(xn)⟩ = (−i)n δ

δJ(x1)
· · · δ

δJ(xn)
Zϕ[J ]

∣∣
J=0

. (3.1)

If we then take functional derivatives of both sides of Eq. (2.6), we immediately have

⟨ϕ(x1) · · ·ϕ(xn)⟩ = ⟨ϕ̃(x1) · · · ϕ̃(xn)⟩ . (3.2)

The correlation functions are invariant under field redefinitions, as long as we compare

consistently. As discussed in Ref. [58], if one changes the coupling to the source after

the field redefinition, then the resulting correlation function would be different, simply

because one is computing a different quantity.

3.2 S-Matrix Elements

Until this point, we have focused on the invariance of correlation functions under field

redefinitions. It is often the case that we are actually concerned with the implications

for scattering amplitudes. The relation between correlation functions and scattering

amplitudes is given by the LSZ reduction formula [59, 60]. For scattering amplitudes,

the common lore is that field-redefinition invariance comes from the idea that the LSZ

prescription is independent of what field is used. This lore might seem in contradiction

to our demonstration that the invariance is simply a property of correlation functions

directly. This section addresses the connection between these two points of view.
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For simplicity, consider a relativistic scalar field ϕ. If ϕ is an interpolating field for

a single particle state |p⟩ such that

⟨0|ϕ(x)|p⟩ ≠ 0 , (3.3)

then its two-point function has a pole at the physical mass p2 = m2
ph:∫

d4x eipx⟨ϕ(x)ϕ(0)⟩ ∼ iR

p2 −m2
ph + iϵ

+ finite , (3.4)

where R is the propagator residue. It does not matter if we use ϕ or ϕ̃ in Eq. (3.4), as

long as the field redefinition still satisfies Eq. (3.3). In practice, this requires that the

field redefinition contains a linear term.

The n-particle scattering amplitude is then computed from a general off-shell cor-

relation function via the LSZ reduction formula[
n∏

i=1

R
1/2
i

]
⟨p1, . . . , pn|0⟩ =

[∏
i

lim
p2i→m2

ph

i

∫
d4xi e

ipixi
(
p2i −m2

ph

)]
⟨ϕ(x1) · · ·ϕ(xn)⟩ ,

(3.5)

which projects correlation functions onto the S-matrix by only including contributions

from ⟨ϕ(x1) . . . ϕ(xn)⟩ that have poles as p2i → m2
ph. Since correlation functions are

invariant under field redefinitions, S-matrix elements are as well.

One implication of the LSZ prescription is that we can ignore contributions from

Eq. (2.19b) in the case of local field redefinitions. Using the same source coupling Jϕ

both before and after the redefinition leads to a different correlation function

⟨ϕ(x1) . . . ϕ(xn)⟩Jϕ = ⟨ϕ̃(x1) · · · ϕ̃(xn)⟩Jϕ̃ ̸= ⟨ϕ̃(x1) · · · ϕ̃(xn)⟩Jϕ , (3.6)

where the subscript indicates what coupling to the source was used. Treating field redef-

initions perturbatively as in Sec. 2.1, the difference between these correlation functions

come from diagrams with arrows on external legs

∝ G(pn)∆
−1(pn) , (3.7)

where for our relativistic scalar field, ∆−1(pn) ∼ p2n − m2
ph, and ∆−1(pn) → 0 as

p2n → m2
ph. As long as G(pn) is finite as p2n → m2

ph, this modified source does not

impact the calculation of the S-matrix since ∆−1 removes a pole in ⟨ϕ(x1) . . . ϕ(xn)⟩.
This is always the case for any local field redefinition.
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On the other hand, if G(pn) comes from a nonlocal field redefinition, it may not

be finite as p2n → m2
ph. Then the change in the source cannot be ignored. The LSZ

formula still holds, but we have to also include diagrams with multiple lines attached

to J , which can contribute to scattering amplitudes for nonlocal field redefinitions.

The LSZ formula implies that linear field redefinitions in Sec. 2.3.1 have an im-

pact; the wavefunction factors R1/2 account for the combined change in the source and

the amputated external propagators. The wavefunction factors can even be nonlocal

functions of the kinematics. For example, this happens when working with EFTs for

heavy particles [61]. The R1/2 factors can also be interpreted geometrically as tetrads

[36]. As long as the interpolating-field condition is not violated,7 the LSZ formula will

hold as usual and the S-matrix is invariant under field redefinitions.

3.3 Schwinger-Dyson Equations

The field-redefinition invariance of the path integral has physical consequences, which

manifest as restrictions on relations between correlation functions. Take the following

simple transformation

ϕ(x)→ ϕ̃(x) = ϕ(x) + ϵ(x) , (3.8)

where ϵ(x) is a function of spacetime. The measure is invariant under this transfor-

mation, Dϕ̃ = Dϕ. As shown in Sec. 2.3.2 above, correlation functions computed

from the path integral must be independent of ϵ(x) at each order in ϵ. Plugging this

transformation into Eq. (3.2) and expanding to first order, we have

0 =

〈[
i

∫
d4x

(
ϵ(x)

δL
δϕ(x)

− ϵ(x)∂µ
δL

δ∂µϕ(x)

)]
ϕ(x1) · · ·ϕ(x2)

〉
+

n∑
i=1

⟨ϕ(x1) · · · ϵ(xi) · · ·ϕ(xn)⟩ . (3.9)

This is the Schwinger-Dyson equation. The first term is the insertion of the equation-of-

motion operator in a correlation function and the terms on the second line are contact

terms, where one field is replaced with ϵ(x). This identity is true for any function ϵ(x).

The Schwinger-Dyson equations can be leveraged further. After transitioning from

correlation functions to scattering amplitudes, the Schwinger-Dyson equations can be

used to derive a universal soft theorem [36]. For a scalar effective field theory, where

7In the notation of Sec. 2.3.1, this translates to the requirement that ∆new(p) still has a simple
pole as p2 → m2

ph.
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we drop the potential V (ϕ) for simplicity, the soft theorem takes a geometric form

lim
q→0

An+1,i1...ini = ∇iAn,i1...in , (3.10)

where ∇i is the covariant derivative in field space. See Ref. [36] for details and Ref. [46]

for extensions of the soft theorem to theories with scalars, fermions, and gauge bosons.

Furthermore, if we expand Eq. (2.4) to second order in ϵ, we get a new relation

between correlation functions,

0 =
1

2

〈[
iδ2S

]
ϕ(x1) · · ·ϕ(xn)

〉
+

1

2
⟨[iδS] [iδS]ϕ(x1) · · ·ϕ(xn)⟩

+
n∑

i=1

⟨[iδS]ϕ(x1) · · · ϵ(xi) · · ·ϕ(xn)⟩+
n∑

i=1

∑
j ̸=i

⟨ϕ(x1) · · · ϵ(xi) · · · ϵ(xj) · · ·ϕ(xn)⟩ ,

(3.11)

where

δS =

∫
d4x

(
ϵ(x)

δL
δϕ(x)

− ϵ(x)∂µ
δL

δ∂µϕ(x)

)
, (3.12a)

δ2S =

∫
d4x

(
ϵ(x)ϵ(x)

δ2L
δϕ(x)2

+ 2ϵ(x)∂µϵ(x)
δ2L

δϕ(x)δ∂µϕ(x)

+ ∂µϵ(x)∂νϵ(x)
δ2L

δ∂µϕ(x)δ∂νϕ(x)

)
. (3.12b)

This is a higher-order Schwinger-Dyson equation. Obviously, one can derive analogous

equations by expanding Eq. (2.4) to any desired order in ϵ.

In Eq. (3.9), we noticed that the insertion of the equation-of-motion operator in

a correlation function vanished up to contact terms. However, from Eq. (3.11) we see

that the insertion of two equation-of-motion operators in a correlation function does

not vanish, even when we account for the contact terms. We also need to include the

insertion of the second variation of the action. Nevertheless, we can use Eq. (3.11) to de-

rive physical consequences for scattering amplitudes. The first-order Schwinger-Dyson

equation leads to the soft theorem for a single particle. The second-order Schwinger-

Dyson equation gives us the soft theorem for two particles: a double soft theorem.

Following the same derivation as in Ref. [36] but starting with Eq. (3.11) and dropping
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the potential V (ϕ) for simplicity, we end up with

lim
qa,qb→0

An+2,i1...iniaib = ∇(ia∇ib)An,i1...in +
1

2

∑
c ̸= a,b

sac − sbc
sac + sbc

R jc
iaib ic

An,i1...jc...in . (3.13)

Naturally, one can generalize this to any desired order, where the higher-order Schwinger-

Dyson equations lead to multiparticle soft theorems. These generalized geometric soft

theorems are a consequence of the field-redefinition invariance of the path integral.

4 Examples

Now that we have seen the implications of field-redefinition invariance in general, we

move on to specific examples to showcase some of the most important lessons from

the general proof. We first highlight that ghosts and modified couplings to the source

must be incorporated to correctly account for nonlocal field redefinitions using a massive

relativistic scalar field with a ϕ3 interaction. We then show two practical nonrelativistic

examples.

4.1 A Nonlocal Field Redefinition for a Relativistic Theory

As a concrete example, we consider a massive scalar with a ϕ3 coupling

L = −1

2
ϕ
(
□+m2

)
ϕ− g

3!
ϕ3 . (4.1)

In the notation we used in Sec. 2.1, we have ∆−1
x = □+m2 and Lint = −(g/3!)ϕ3. We

perform a nonlocal field redefinition with G[ϕ] = ϕ□−1ϕ:

ϕ→ ϕ̃ = ϕ+ λϕ□−1ϕ . (4.2)

After the redefinition, the Lagrangian becomes

L = −1

2
ϕ(□+m2)ϕ−

[
ϕ
λ

□
ϕ

] (
□+m2

)
ϕ− 1

2

[
ϕ
λ

□
ϕ

] (
□+m2

) [
ϕ
λ

□
ϕ

]
− 1

6
gϕ3 − 1

2
gϕ2

(
ϕ
λ

□
ϕ

)
− 1

2
gϕ

(
ϕ
λ

□
ϕ

)2

− 1

6
g

(
ϕ
λ

□
ϕ

)3

+ c̄c+ c̄

(
λ

□
ϕ

)
c+ ϕc̄

λ

□
c , (4.3)

where c are the ghosts. Let us now show explicitly that correlation functions are

unchanged by this field redefinition. The Feynman vertices originating from redefining
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the scalar kinetic term are

=
i

p2 −m2
, (4.4a)

p2

p1

p3 = iλ

[ (
p23 −m2

)( 1

p21
+

1

p22

)]
, (4.4b)

p2

p1

p4

p3

= iλ2

(
1

p21
+

1

p22

)[
(p1 + p2)

2 −m2
]( 1

p23
+

1

p24

)
+ (p2 ↔ p3) + (p2 ↔ p4) . (4.4c)

The arrow on the scalar three-point vertex denotes which leg has the ∆−1(pi) = p2i −m2

factor in the Feynman rule, as in Sec. 2.1. From Lint, we have vertices proportional to

g:

= ig , (4.5a)

= 3iλg
4∑

i=1

(
1

p2i

)
, (4.5b)

= 6iλ2g

5∑
i=1

5∑
j ̸=i

(
1

p2i

)(
1

p2j

)
, (4.5c)

= 6iλ3g

6∑
i=1

6∑
j ̸=i

6∑
k ̸=j ̸=i

(
1

p2i

)(
1

p2j

)(
1

p2k

)
. (4.5d)
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The ghost propagator and interactions from the change in the measure are

= i , (4.6)

p2

p1

p3 = iλ

(
1

p21
+

1

p22

)
. (4.7)

Finally, the coupling to the source becomes∫
d4x J(x)ϕ(x)→

∫
d4x J(x)

[
ϕ(x) + λϕ(x)□−1ϕ(x)

]
, (4.8)

which gives us two vertices

J = 1 , (4.9a)

p2

p1

J = λ

(
1

p21
+

1

p22

)
. (4.9b)

Let us now demonstrate how the cancellations proceed in this theory, in the same

order as our general proof in Sec. 2.1. We will keep all external legs off-shell so that

the same cancellations occur within arbitrary loop diagrams. First, we have

q
p2

p1

p4

p3

+ (p2 ↔ p3) + (p2 ↔ p4)

=

[
i(−iλ)2

q2 −m2

] [ (
q2 −m2

)( 1

p21
+

1

p22

)][ (
q2 −m2

)( 1

p23
+

1

p24

)]
+ (p2 ↔ p3) + (p2 ↔ p4)

= −iλ2

(
1

p21
+

1

p22

)[
q2 −m2

]( 1

p23
+

1

p24

)
+ (p2 ↔ p3) + (p2 ↔ p4)

= −


p2

p1

p4

p3  . (4.10)

– 24 –



From Lint, we have new diagrams proportional to g. The vertex Eq. (4.5a) gives

the physical contribution, and we expect all diagrams involving the new vertices to

cancel. For the diagram proportional to g × λ, we have

q
p2

p1

= (iλ)(ig)
4∑

i=1

4∑
j>i

[ (
q2 −m2

)( 1

p2i
+

1

p2j

)][
i

q2 −m2

]

= −3iλg
4∑

i=1

(
1

p2i

)

= −


 .

(4.11)

The same pattern follows for diagrams with two and three insertions of the three-point

arrow interaction, canceling with the remaining two diagrams in Eq. (4.5).

For diagrams with sources, we have

q

p2

p1

= iλ

(
1

p21
+

1

p22

)
(q2 −m2)

(
i

q2 −m2

)

= −λ
(

1

p21
+

1

p22

)

= −


p2

p1  . (4.12)

This cancellation is necessary for the invariance of correlation functions, however as

discussed in Sec. 3.2, the situation is simpler for S-matrix elements. Since our trans-

formation G[ϕ] = ϕ□−1ϕ does not have the same pole structure as the kinetic term,

the vertex Eq. (4.4b) vanishes as p23 → m2 and we may simply ignore the redefinition

in the coupling to the source for on-shell external legs.8

Finally, the loops involving ghosts cancel as follows:

8This would not have been true if we had considered, for example, G[ϕ] = ϕ(□+m2)−1ϕ.
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p2

p1
p
× = iλ

[
(p2 −m2)

(
1

p21
+

1

p22

)][
i

p2 −m2

]

= −λ
(

1

p21
+

1

p22

)

= × ,

(4.13)

and so the (−1) from any closed ghost loop causes it to cancel the corresponding scalar

loop. We should emphasize that ghost loops do not vanish for this redefinition and so

they must be included. For example, the one-loop correction to the two-point function

includes the diagram

k

p− k

p = −λ2

∫
d4k

(2π)4

(
1

p2
+

1

k2

)(
1

p2
+

1

(p− k)2

)
, (4.14)

which is nonzero even when using dimensional regularization.

This accounts for all of the new terms in Eq. (4.3) generated by the redefinition,

showing invariance of correlation functions and S-matrix elements.

4.2 A Useful Nonlocal Field Redefinition

Let us now turn to a nonrelativistic example. This closely follows the discussion in

Ref. [62]. We start with the Lagrangian for a single complex Schrödinger field:

L = 2iMϕ∗∂0ϕ−∇ϕ∗ · ∇ϕ+m2ϕ∗ϕ− λ(ϕ∗ϕ)2 . (4.15)

We expand around the vev:

ϕ =
ei(θ+π(x)/v)

√
2

(
v + χ(x)

)
, (4.16)
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where v = m/
√
λ and θ is an arbitrary phase. The Lagrangian now takes the form

L =− 2Mχ∂0π −
1

2
(∇χ)2 −m2χ2 − 1

2
(∇π)2

− λvχ3 − λ

4
χ4 − M

v
χ2∂0π −

(
χ

v
+

χ2

2v2

)
(∇π)2 , (4.17)

up to constant terms and total derivatives. The quadratic part of the Lagrangian mixes

the two fields π and χ. No local field redefinition can diagonalize the quadratic part

of the Lagrangian. Nevertheless, we can extract the dispersion relation by Fourier

transforming the bilinear part of the Lagrangian and setting the determinant of the

resulting matrix to zero. This gives

E(p) =
1

2M

√
p2(p2 + 2m) , (4.18)

where E is the energy and p is the three-momentum.

Equipped with nonlocal field redefinitions, we can obtain this result directly at the

level of the Lagrangian. Consider the following field redefinition:

χ→ χ̃ = χ+
1

∇2 − 2m2
2M∂0π, (4.19)

which diagonalizes the quadratic part of the Lagrangian,

L2 =
1

2
χ(∇2 − 2m2)χ− 1

2
(2M∂0π)

1

∇2 − 2m2
(2M∂0π)−

1

2
(∇π)2 . (4.20)

Now we can directly read off the dispersion relation for π, which is in agreement with

Eq. (4.18).

4.3 A Useful Time-dependent Field Redefinition

In Ref. [63], the following Lagrangian for the field θ was considered:

L =
1

8c̃4

[
1− 2c3∂0θ −

√
(1− 2c3∂0θ)2 − 8c̃4

[
(∂0θ)2 − (∇θ)2

]]
. (4.21)

The Lagrangian is controlled by two parameters, c3 and c̃4. This theory appears to

be nonrelativistic. However, all scattering amplitudes are independent of the coupling

c3 and equal to the scattering amplitudes of the relativistic Dirac-Born-Infeld (DBI)
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theory [63]. We can understand this fact by changing field basis:

θ → θ̃ = αθ + βt , (4.22)

where

α =

(
2c̃4

2c̃4 − c23

)3/4

, and β =
c3

2(c23 − 2c̃4)
. (4.23)

After dropping constant terms and total derivatives, the Lagrangian becomes

L = −1

κ

√
1− κ

[
(∂0θ)2 − c2(∇θ)2

]
, (4.24)

where κ = 4
√

2c̃4(2c̃4 − c23) and c2 = 2c̃4
2c̃4−c23

. This is the DBI theory, which also

coincides with the theory of an exceptional fluid with an enhanced soft limit [46].

This was noted in Ref. [63], but the legality of the field redefinition in Eq. (4.22)

was questioned since it depends on time explicitly. However, the diagrammatic proof

of field-redefinition invariance presented in Sec. 2 ensures that this is a valid field

redefinition.

5 Outlook

In this paper, we have explored the space of allowed field redefinitions for EFTs. We

have shown how field-redefinition invariance is manifest at the level of correlation func-

tions and S-matrix elements after LSZ reduction. For linear and field-independent

transformations, we have additionally demonstrated how field-redefinition invariance

remains even after resumming modifications into the propagator. Our focus was on

unconventional field redefinitions that are typically not considered. The space of al-

lowed redefinitions is vast: symmetry breaking, nonlocality, and explicit coordinate

dependence all present no obstacles.

There are many future directions to explore. One immediate application is to un-

derstand the implications for field-space geometry, where derivative-independent field

redefinitions are identified as coordinate changes on a field manifold. This subject

has a long history, beginning with a geometric formulation of nonlinear sigma mod-

els [14–22]. Recently, this idea has seen a renaissance in the context of more general

EFTs [23–47, 64]. As we have emphasized in this work, the space of valid field redefini-

tion is much larger than those that are captured by the standard field-space-geometry

picture. The geometric EFT framework must correspondingly be generalized. As of

now, several attempts have been made to accommodate (local) field redefinitions with
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derivatives [65–71]. These ideas are still in their infancy, and now we see that they

must be generalized even further to account for nonlocal field redefinitions. Also, from

the discussion of tadpole resummations in Sec. 2.3, we can contemplate novel ways to

compute S-matrix elements at various points in field space. We are optimistic that this

paper will inspire further progress in these directions.

This paper emphasizes the importance of the often neglected coupling between the

field and the external source. The conventional linear coupling is specific to a particular

choice of field basis, and one generically induces nonlinear source couplings through field

redefinitions. This naturally leads one to wonder if there exists an optimal choice of

coupling involving the source. One famous example of exploiting this coupling is the

Vilkovisky-deWitt effective action, which is obtained after modifying the source term to

keep the field-space covariance manifest for off-shell computations [19, 72]. Similarly,

renormalization-group and matching computations are geometrized with a judicious

choice of source term [25, 39, 40, 64]. We expect that other modifications of the source

term will be of use in future work.

In practice, it may not always be obvious how to choose the appropriate coupling

to the source. For example, it was demonstrated in the context of SCET that there is

a preferred choice to reproduce the expected off-shell QCD amplitudes for renormal-

ization [73]. It would be interesting to further explore different choices for the coupling

to the source in SCET and other modern EFTs, as well as the interplay between field

redefinitions and renormalization in general.

Modifying the source term may also hold the key for defining observables free of

infrared singularities. The Faddeev-Kulish dressing [74] may turn out to be equivalent

to an appropriately-chosen source term. In the same spirit, recent progress towards

understanding the general structure of infrared singularities for the S-matrix [75–77]

may be informed by the results in this work.

Nonlocal field redefinitions are potentially very useful in EFTs with a preferred

frame, such as EFTs for nonrelativistic systems [78–94], the EFT of inflation [95, 96],

and EFTs for black-hole binaries [97, 98]. We already saw a couple of examples in

Sec. 4, and we anticipate a host of other applications. With nonlocal field redefinitions

at our disposal, it might be possible to dramatically simplify the analysis of these

interesting theories.

Field redefinitions are an essential tool for the study of EFTs, both conceptually

and with a wide range of practical applications. Now that we have extended the space

of allowed field redefinitions, we can only begin to anticipate the multitude of future

implications. Looking forward, we are very excited to see what the community will

discover by playing games with field redefinitions without the prejudice of locality and

symmetry.
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