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Abstract

In the standard model of particle physics, the masses of the carriers of the weak in-
teraction, the W and Z bosons, are uniquely related. Physics beyond the standard
model could change this relationship through the effects of quantum loops of vir-
tual particles, thus making it of great importance to measure these masses with the
highest possible precision. Although the mass of the Z boson is known to the remark-
able precision of 22 parts per million (2.0 MeV), the W boson mass is known much
less precisely, given the difficulty of the measurement. A global fit to electroweak
data, used to predict the W boson mass in the standard model, yields an uncertainty
of 6 MeV. Reaching a comparable experimental precision would be a sensitive and
fundamental test of the standard model. Furthermore, a precision measurement of
the W boson mass performed by the CDF Collaboration at the Fermilab Tevatron has
challenged the standard model by significantly disagreeing with the prediction of the
global electroweak fit and the average of other mW measurements. We report the first
W boson mass measurement by the CMS Collaboration at the CERN LHC, based on
a data sample collected in 2016 at the proton-proton collision energy of 13 TeV. The
W boson mass is measured using a large sample of W → µν events via a highly
granular binned maximum likelihood fit to the kinematic properties of the muons
produced in the W+ and W− boson decays. The significant in situ constraints of the-
oretical inputs and their corresponding uncertainties, together with an accurate de-
termination of the experimental effects, lead to a precise W boson mass measurement,
mW = 80 360.2 ± 9.9 MeV, in agreement with the standard model prediction.
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1 Importance of measuring the W boson mass
Precision measurements of fundamental parameters have played a major role in the develop-
ment of the standard model (SM) of particle physics, which provides a remarkably accurate
description of the known elementary particles and their interactions. Over the span of several
decades, they provided increasingly precise estimates for the masses of the W and Z bosons,
top quark, and Higgs boson, which helped guide the experimental programs aimed at their
discoveries [1, 2]. With the observation of the Higgs boson at the CERN LHC and the de-
termination of its mass, all the parameters in the electroweak (EW) sector of the SM are now
constrained by experimental measurements. Nevertheless, the standard model is widely be-
lieved to be incomplete, given that it does not explain certain fundamental observations, such
as the asymmetry of matter and antimatter in the universe and the existence of dark matter. In
the SM, the masses of the W± and Z bosons, mW and mZ , are uniquely related to the coupling
strengths of the weak and electromagnetic interactions. If the measured masses and couplings
deviate from the predicted relation, it would be a clear sign of physics beyond the SM (BSM),
most likely in the form of new particles at mass scales above those that existing accelerators and
experiments can probe directly. Such BSM physics could manifest itself through modifications
of mZ or mW via quantum loop interactions with the W and Z bosons [3, 4].

The Z boson mass has been measured with the exceptional precision of 22 parts per million
(mZ = 91 188.0 ± 2.0 MeV) [5] by the experiments operating at the CERN LEP collider, through
measurements of resonant Z boson production in precise beam energy scans [6]. The mW mea-
surement at LEP was based on the direct reconstruction of pair-produced W bosons, which
has a production rate in electron-positron collisions several orders of magnitude lower than
that of Z boson production. Consequently, the uncertainty in the mW measurement was an
order of magnitude larger than that of mZ . Subsequent measurements performed at the Fer-
milab Tevatron [7] and the LHC [8–10] contributed to the current experimental average of
mW = 80 369.2 ± 13.3 MeV [5]. The value of mW derived from the predicted relationships of
EW parameters in the SM and independently measured observables, known as a global EW
fit, mW = 80 353 ± 6 MeV [5], is significantly more precise. As such, improving the direct mea-
surement of mW provides an important test of the SM and enhances the sensitivity to BSM
physics. Furthermore, the experimental combination does not include the most precise single
measurement, performed by the CDF Collaboration, mW = 80 433.5 ± 9.4 MeV [11]. The strong
disagreement between this value and both the SM expectation and the other measurements [12]
represents a major puzzle in the field of particle physics. An independent high-precision mW
measurement is, therefore, of the utmost importance. In this paper we report the results of
the first W boson mass determination by the CMS Collaboration, based on a sample of proton-
proton (pp) collisions at a center-of-mass energy of 13 TeV. Our measurement is based on the
analysis of more than 100 million reconstructed W boson decays, an event sample that is an
order of magnitude larger than those used for the previous mW measurements. Together with
an accurate determination of the experimental effects, this large dataset allows us to signifi-
cantly reduce the theoretical and experimental uncertainties in our measurement. This result
constitutes a substantial step towards resolving the W boson mass puzzle.

2 Analysis strategy
At hadron colliders, jets from the hadronization of the quark-antiquark pair produced in the
decay of the W boson cannot be selected and calibrated with sufficient accuracy for a precise
mW measurement. Therefore, measurements of mW rely on the W boson decay to a charged
lepton ℓ and a neutrino ν, W → ℓν, in which the W boson cannot be fully reconstructed be-
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cause neutrinos are not directly measurable in collider detectors. The kinematic distributions
of the lepton and neutrino from the W boson decay are sensitive to mW because, in the rest
frame of the decaying W boson, the mass of the W boson is equally shared between the mo-
menta of the neutrino and of the lepton. In the laboratory frame, the transverse components of
the lepton and neutrino momenta (pℓT and pν

T) exhibit characteristic Jacobian peaks at around
mW/2, though their exact distributions depend on the transverse momentum of the W boson

itself, pW
T . Therefore, the mW value can be indirectly measured through pℓT or by the transverse

component of the negative vector momentum sum of all measured particles in the event, p⃗ miss
T ,

which is an estimator of pν
T. The resolution of the pmiss

T measurement degrades in the presence
of a large number of pp collisions in the same or adjacent bunch crossings (pileup), reducing

its sensitivity to mW . The transverse mass, mW
T =

√
2 pℓT pmiss

T (1 − cos ∆ϕℓ p⃗ miss
T

), where ∆ϕℓ p⃗ miss
T

is the azimuthal angle difference between the lepton and p⃗ miss
T trajectories in the plane trans-

verse to the beam line, is a powerful observable in the mW measurements performed at the
Tevatron [7, 11]. However, due to the poorer pmiss

T resolution, it has limited sensitivity to mW
in LHC measurements [8–10]. The dataset used for our measurement has more than twice the
pileup of that used for any previous mW measurement. These considerations inform the strat-
egy of our mW determination, which is based on the kinematic distributions of the charged
lepton in W → ℓν events.

Among the three leptonic decays (electron, muon, or τ lepton), we exploit the muon channel,
since it offers the best experimental precision with the multipurpose, nearly hermetic CMS de-
tector [13]. The CMS apparatus [13] is designed to trigger on [14–16] and identify electrons,
muons, photons, and (charged and neutral) hadrons [17–19]. A global event reconstruction
algorithm [20] aims to reconstruct all individual particles in an event, combining informa-
tion provided by the all-silicon inner tracker and by the crystal electromagnetic and brass-
scintillator hadron calorimeters, operating inside a 3.8 T superconducting solenoid, with data
from the gas-ionization muon detectors embedded in the flux-return yoke outside the solenoid.
Charged-particle trajectories (tracks) are built from energy deposits in each layer of the silicon
detector, referred to as “hits.” Muon tracks typically have at least 12 hits, each of which is mea-
sured with an accuracy of ≈15 µm in the bending plane. The momentum of muons is derived
from the curvature of the corresponding track.

To perform a high-precision mW measurement, we rely on a deep understanding of both the
experimental and theoretical sources of systematic uncertainty. The muon momentum scale
(the largest source of uncertainty in the measurement) is calibrated to a few parts per hundred-
thousand by using a sample of dimuon decays of the J/ψ resonance. Muons from Υ(1S) meson
and Z boson decays are used for independent validations. Although the pµ

T distribution is
sensitive to mW , it also depends on the theoretical modeling of the pW

T distribution and on
the parton distribution functions (PDFs), which describe the momentum distributions of the
quarks and gluons inside the protons. The PDFs strongly affect the W boson polarization and,
hence, the kinematic distributions of the decay leptons [21]. To minimize the dependence of
our mW measurement on the uncertainties in modeling the W boson production, we aggregate
selected data and simulated W → µν events into a highly-granular three-dimensional distri-
bution depending on pµ

T , ηµ , and qµ , where ηµ = − ln tan(θ/2) is the muon’s pseudorapidity,
θ is the polar angle of the muon with respect to the beam line, and qµ is the muon electric
charge. The three-dimensional distribution is divided into 48 ηµ bins from −2.4 to 2.4 and 30
pµ

T bins from 26 to 56 GeV, besides two bins in qµ (+1 or −1). The mW value is extracted from
a binned maximum likelihood fit to this distribution, using template shapes for the signal and
background processes.
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Our analysis uses state-of-the-art calculations to describe the W and Z boson production. The
predictions combine an all-order resummation of logarithmically enhanced soft and collinear
gluon emissions at next-to-next-to-next-to-leading logarithmic (N3LL) accuracy with next-to-
next-to-leading order (NNLO) accuracy in perturbative quantum chromodynamics (QCD) [22].
They also incorporate a phenomenological model for the nonperturbative motion of the par-
tons inside the proton [23]. We incorporate a novel proposal for “theory nuisance parameters”
(TNPs) [24], which exploits the known structure of the resummation calculation to parameter-
ize the impact of unknown perturbative corrections. These models, combined with uncertainty
profiling [5] in the binned maximum likelihood fit to the (pµ

T , ηµ , qµ) distribution, allow the
pW

T spectrum to be determined in situ by our W → µν data and reduce its uncertainty to sub-
leading importance in the measurement. In contrast to previous mW measurements at hadron
colliders [7, 9–11], we do not rely on measurements of Z boson production to modify the pre-
dicted pW

T distribution. As shown in Ref. [25], our procedure also significantly constrains the
PDFs, the second largest source of uncertainty in our mW measurement.

We have also developed an alternative mW analysis approach that reduces the sensitivity to
theoretical inputs by extracting mW simultaneously with the angular distributions of the muon
from the W boson decay. This procedure is based on the general parameterization of the pro-
duction cross section of a spin-1 vector boson and its decay to leptons in terms of nine helicity
states [26]. For each bin in the two-dimensional pW

T and W boson rapidity (yW) space, and sep-
arately for the W+ and W− bosons, each helicity component leads to a different (pµ

T , ηµ) distri-
bution. We perform a differential analysis, encoding the variations of the helicity components
as alternative templates fitted to the (pµ

T , ηµ , qµ) distributions. While this method, referred to
as “helicity fit”, reduces the measurement sensitivity to mW , it provides a valuable cross-check
of the nominal result by relaxing some assumptions about the W boson production and, hence,
reducing the dependence of the analysis on theoretical predictions and their uncertainties.

To validate the experimental and theoretical inputs of the measurement, we perform two Z
boson mass measurements. First we extract mZ through a maximum likelihood fit to the Z →
µµ dimuon mass distribution. Then we perform a “W-like measurement” of mZ using only one
of the two decay muons, to mimic the conditions of the mW measurement. We model Z and W
boson production with predictions at the same perturbative accuracy and parameterize their
independent uncertainties with a common strategy. Given the similarity between the Z and W
production mechanisms, the predictions and their uncertainties can be validated by the W-like
mZ analysis, where the predicted pZ

T distribution can be directly compared with the measured
pµµ

T spectrum. These two measurements, validated by comparing them with the precise mZ
value obtained at LEP, are a crucial step of our analysis procedure, ensuring the robustness of
the mW measurement.

The vector-boson (V = W or Z) mass and width are defined in the running-width scheme [27].
The analysis is conducted following the “data blinding” concept [28]: it is optimized on simu-
lated event samples and a random offset, between −500 and 500 MeV, is applied to the mW and
mZ values until all the procedures are established. In the following sections we briefly discuss
the most important aspects of the mW measurement, with further details given in the Methods
section (Section A).

3 Event samples and selection criteria
The measurements are made using a sample of pp collisions at a center-of-mass energy of
13 TeV, collected in 2016 and corresponding to an integrated luminosity of 16.8 fb−1 (±1.2%) [29].
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This dataset, roughly half of the full 2016 event sample, is selected to ensure an optimal per-
formance of the CMS detector, especially for the reconstruction of charged particle tracks [30].
The data were processed with the most recent version of the reconstruction software, includ-
ing improvements to particle identification and reconstruction developed for this analysis, and
with the latest detector calibration and description of the operating conditions.

The events are preselected by an online trigger algorithm that requires the presence of at least
one muon with pµ

T > 24 GeV, isolated from other energy deposits in the detector and satisfying
quality criteria for tracks reconstructed in the silicon tracker and muon detectors [13, 14, 16].
This filter selects the events used in both the mZ and mW analyses, to guarantee maximal con-
sistency between them in terms of event selection and efficiency corrections. Selected W → µν
events are required to have a muon in the |ηµ | < 2.4 and 26 < pµ

T < 56 GeV acceptance window.
The selected muon must be compatible with the object that triggered the event, be isolated from
other particles, and satisfy selection criteria meant to reduce backgrounds and ensure a high-
quality reconstruction. The pµ

T thresholds restrict the selected events to the pµ
T range where the

trigger and reconstruction efficiencies are measured most accurately. Machine-learning tech-
niques are used to improve the resolution of the reconstructed pmiss

T [31], which narrows mW
T

distribution for true W → µν events and, hence, improves the separation between the signal
and background events. We enhance the purity of the signal by requiring mW

T > 40 GeV and
by rejecting events with electrons (or additional muons) with pT >10 (15) GeV satisfying looser
identification criteria [17, 18]. A total of 117 million data events are selected by these crite-
ria. The estimated selection efficiency for simulated W → µν events is 85% and the estimated
fraction of W → µν events in the selected data sample is 89%.

The event selection for the dimuon and W-like mZ measurements is designed to be maximally
consistent with the one used for the mW measurement. The selected events must have two
muons satisfying the same selection criteria, except that the pµ

T window is extended to 60 GeV
because the Z boson is heavier than the W boson. The two muons must have opposite electric
charge and a dimuon invariant mass in the 60 < mµµ < 120 GeV range. A total of 7.5 million
Z → µµ data events are selected. The signal purity of the selected dimuon sample is larger than
99.5%. For the W-like mZ analysis, only one of the muons from the Z boson decay is considered
to form the (pµ

T , ηµ) templates. The other muon is treated as a neutrino and, hence, is excluded
from the pmiss

T computation [32]. Considering the relative scale of mZ compared with mW ,
events must satisfy mT > 45 GeV, where mT is calculated from the selected muon and the
modified pmiss

T . To define statistically independent samples that mimic the W boson selection,
the Z → µµ events are split into two sets based on the event number, so that odd (even)
events are used to analyze positive (negative) muons. Only the analyzed muon is required to
match the object that triggered the event, which avoids the need to evaluate correlations in the
triggering efficiency in events where both muons satisfy the trigger requirements. We analyze
the two samples separately, such that all events are considered and no event is used more than
once. More details on the data sample and event selection are given in Section A.1.

Monte Carlo (MC) generators are used to produce large samples of simulated events that
are used to guide the analysis and to assess the consistency of the data with different hy-
potheses for the value of mW . Simulated W and Z boson event samples are generated with
MINNLOPS [33, 34], interfaced with PYTHIA [35] for the parton shower and hadronization,
and with PHOTOS++ [36, 37] for the final-state photon radiation. The Z boson event sam-
ples include all contributions to the dilepton final state, including contributions from virtual
photons. We modify the MINNLOPS predictions with two-dimensional binned corrections
in the W or Z boson pT and rapidity obtained with SCETLIB [22, 23, 38], thereby achieving
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N3LL+NNLO accuracy and improving the description of the data. The CT18Z PDF set [39] at
NNLO accuracy is used. The detector response is simulated using a detailed description of the
CMS detector, implemented with the GEANT4 package [40]. The reconstruction algorithms are
the same for simulated and data events. The simulated event samples, including those for the
relevant background processes, are described in Section A.1.

The average number of pileup interactions in data is 25, with a tail extending up to 44. The
simulated distributions of the number of pileup interactions and the position along the beam
line of the pp collision producing the muon are corrected to match the measured distribu-
tions, so as to accurately capture their impact on the muon reconstruction efficiency. The muon
trigger, reconstruction, identification, and isolation efficiencies predicted by the simulation are
corrected to match those measured in data, as discussed in Section A.2. The simulated pmiss

T
and mT distributions are corrected using Z → µµ events in data, as discussed in Section A.3.

The main backgrounds in the selected W → µν data sample result from events with nonprompt
muons, primarily from decays of heavy-flavor hadrons, or with prompt muons, from Z → µµ
decays where one muon misses the detector acceptance. Smaller backgrounds include W → τν
and Z → ττ decays, with one or more τ leptons decaying to muons, as well as top quark
and antiquark pair, single top quark, and diboson production. As discussed in Section A.4,
the nonprompt-muon background is evaluated with the “extended ABCD” method [41], using
sideband regions in data defined by inverting the mT selection, the muon isolation requirement,
or both. The uncertainty in the estimated background yields is dominated by the nonprompt-
muon background contribution, and contributes 3.2 MeV to the uncertainty in mW .

4 High-precision muon momentum calibration
A precise calibration of the muon momentum measurement is a crucial component of the mW
analysis. For the momentum range of the muons selected in this analysis, hits in the silicon
tracker have much greater importance in the track curvature determination than those in the
muon system. Therefore, and in order to limit the volume of the detector in which the ex-
perimental conditions must be precisely determined, we reconstruct the muon momentum
exclusively using the silicon pixel and strip detectors, and exploit the muon system only for
triggering and identification.

Since mW is measured from the pµ
T spectrum, relative uncertainties in the pµ

T scale translate di-
rectly into a corresponding mW relative uncertainty. The reconstruction and calibration of the
momentum scale requires an exceptionally detailed understanding of the features that impact
the propagation and measurement of charged particle tracks. In particular, the relative align-
ment of the tracking detector components, the magnetic field throughout the tracking volume,
and the material distribution, which governs the energy loss and multiple scattering (small-
angle deflections due to interactions with electrons or nuclei that lead to deviations from the
ideal particle trajectory), must be precisely determined. The muon tracks are reconstructed
using algorithms and conditions specifically developed for this analysis, including a magnetic
field mapping and a material model with a higher precision than those used in the standard
CMS reconstruction. The alignment procedure [30] used to determine the position and ori-
entation of the silicon modules has been extended to include fine-granularity corrections for
the magnetic field and energy loss. The correspondence between the measured track curvature
and the muon momentum is calibrated using a sample of events in which the dimuon invariant
mass is consistent with the well-established mass of the J/ψ resonance [5]. We extract param-
eterized corrections in fine bins of ηµ and extrapolate across the relevant range of pµ

T using a
model that takes into account small offsets in the magnetic field, alignment, and tracker ma-
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terial remaining after the initial correction procedure. We validate our results using samples
of Υ(1S) → µµ and Z → µµ events. The uncertainty in the procedure is evaluated from the
deviations of the ηµ -binned correction parameters from zero when applying the corrections
derived from J/ψ → µµ events to Z → µµ events and constraining mZ to the value of Ref. [5].

Extrapolating corrections to the muon momentum resolution from the relatively low momen-
tum range typical of muons from the Υ(1S) meson decay to the higher momentum range of
muons from Z boson decays is more challenging than for the momentum scale calibration, be-
cause multiple scattering has a large impact on the muon momentum resolution and is highly
momentum dependent. For this reason we correct the muon momentum resolution in simu-
lation to match the measured resolution in data using both J/ψ → µµ and Z → µµ events.
The uncertainty in this correction is 1.4 MeV. Additional details on the muon momentum scale
and resolution calibrations are given in Section A.5, where Table A.1 lists the contributions of
the muon momentum calibration to the uncertainty in mW . The muon momentum calibration
contributes 4.8 MeV to the mW uncertainty, or about 60 parts per million.

5 Theoretical corrections and uncertainties
We exploit state-of-the-art simulation tools to obtain precise predictions for the pµ

T spectrum at
N3LL+NNLO perturbative accuracy. The uncertainties in the predictions include contributions
reflecting the limited knowledge of the PDFs, the missing higher-order perturbative corrections
in the QCD and EW interactions, and the nonperturbative effects. The pW

T spectrum cannot be
directly measured with high precision due to the limited pmiss

T precision. Although the pZ
T spec-

trum is measured precisely, using it to infer the pW
T spectrum requires estimating theoretical

uncertainties in the pW
T /pZ

T ratio, which depend strongly on the assumed uncertainty correla-
tion [42]. Therefore, we do not apply corrections derived from the measured pµµ

T spectrum to
the W boson simulation. Instead, corrections to the pW

T spectrum come from W → µν data
events via the profiling procedure employed in the maximum likelihood fits used to extract re-
sults. This approach relies on the high accuracy of the theoretical predictions, novel techniques
to model their uncertainties and correlations across phase space, and the large statistical power
of the analyzed data sample.

The SCETLIB calculation parameterizes the dominant sources of uncertainty in the pV
T spectra

due to perturbative and nonperturbative effects. Perturbative uncertainties are represented
by the TNPs of Ref. [24], whose impact on the analysis is evaluated by varying their values.
The calculations treat the quarks as massless. Possible modifications due to the true quark
masses are effectively absorbed into the other sources of modeling uncertainty, as discussed
in Section A.6. We have tested other alternatives for the pW

T modeling, at equivalent or higher
perturbative orders, and confirmed that the variation in mW is within the uncertainty evaluated
from our nominal prediction at N3LL+NNLO accuracy.

The relative fractions of the Z and W boson helicity states and their uncertainties due to missing
higher-order perturbative corrections are evaluated at NNLO in QCD using MINNLOPS; we
have verified their consistency with the fixed-order NNLO QCD predictions of DYTURBO [43]
and MCFM [44]. Uncertainties due to the PDFs, including their impact on the W boson helicity
states, are evaluated by propagating the Hessian eigenvectors of the CT18Z PDF set [45]. Their
contribution to the uncertainty in mW is 4.4 MeV. We have repeated the mW measurement using
seven alternative PDF sets. Additional details on these studies, corrections, and uncertainties
are given in Sections A.6–A.9.
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6 Measurement of the Z and W boson masses
The results are obtained from binned maximum likelihood fits in which systematic uncertain-
ties are represented by nuisance parameters with Gaussian constraints [46]. We allow the sys-
tematic uncertainties to be constrained and the central values to be pulled, with respect to their
initial values, through the profile likelihood function [5] used in the fits. Common sources of
uncertainty are correlated across bins of the distribution. The uncertainty due to the size of the
simulated samples is estimated via the Barlow–Beeston approach [47], as simplified by Con-
way [46], with the nominal statistical uncertainty scaled up by 25% to account for the effect of
fluctuations in the alternate templates used to construct the systematic variations [48]. The cov-
erage of this uncertainty has been verified by bootstrap resampling the simulated samples [49].
The parameter of interest, i.e., the mass of the W or Z boson (mV), is an unconstrained pa-
rameter in the fit. The effect of different mV values on the distributions is derived from a
continuous interpolation around the nominal value in the fit, set to the world-average exper-
imental value of Ref. [50], and from variations of mV by ±100 MeV, evaluated from the full
matrix-element-level calculation of the MINNLOPS simulation. We verified that the maximum
likelihood fit correctly extracts the value of mW used in the simulation for twenty points within
this range, such that any residual bias on the fitted mV values is smaller than 0.1 MeV. The con-
struction and minimization of the likelihood is implemented using the TENSORFLOW software
package [51], in which the use of automatic differentiation [52] of gradients in the likelihood
minimization allows the mW and W-like mZ likelihood fits to be computationally feasible and
numerically stable, despite involving approximately 3000 bins and 4000 nuisance parameters.

6.1 Extraction of the Z boson mass from the dimuon mass spectrum

We extract mZ from a binned maximum likelihood fit to the dimuon mass distribution, in 25
bins of mµµ and 14 bins of ηµ of the muon with the largest |ηµ |. Compared with the world-
average value, mPDG

Z = 91 188.0± 2.0 MeV [5], dominated by measurements at the LEP collider,
we obtain

mµµ
Z − mPDG

Z = −2.2 ± 4.8 MeV. (1)

The largest contribution to the uncertainty comes from the pµ
T scale, 4.6 MeV. The mPDG

Z uncer-
tainty [5] is also included, as described in Section A.5.

Figure 1 shows the measured and simulated Z → µµ dimuon mass distributions, the latter
reflecting the best fit values of nuisance parameters obtained from the maximum likelihood
fit. The impact of a 4.8 MeV variation around the obtained mZ value is also shown, illustrating
the precise understanding of the distribution that is achieved. The excellent consistency of
our result with mPDG

Z is a powerful validation of the muon reconstruction, momentum scale
calibration, and corrections. Although Z → µµ events are not used to determine the values of
the parameterized muon momentum scale calibration, they are used, together with the mPDG

Z
value [5], to define the systematic uncertainties. Therefore, our mZ value is not a measurement
that is independent of the experimental world average.

6.2 W-like measurement of the Z boson mass

The W-like mZ measurement mimics the mW measurement procedure. The mZ value is de-
termined from a binned maximum likelihood fit to the (pµ

T , ηµ , qµ) distribution of the selected
muons, splitting the data into two independent samples and validating the theory model with
the helicity fit described in Section A.10. The result for the analysis configuration selecting
positive muons in odd event-number events, compared with the experimental mZ average [5],
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Figure 1: The Z boson mass measurement. Measured and simulated Z → µµ dimuon mass
distributions. The predicted Z → µµ distribution is shown in blue. The small contributions of
other processes are included but are not visible. The prediction reflects the best fit parameter
values and uncertainties from the maximum likelihood fit. The bottom panel shows the ratio
between the number of events observed in data, including variations in the predictions, and the
total nominal prediction. The vertical bars represent the statistical uncertainties in the data. The
total uncertainty in the prediction after the systematic uncertainty profiling procedure (gray
band) and the effect of a ±4.8 MeV variation of mZ (magenta lines) are also shown.

is
mW-like

Z − mPDG
Z = −6 ± 7 (stat) ± 12 (syst) = −6 ± 14 MeV,

showing that the mW-like
Z value agrees with mPDG

Z (and with mµµ
Z ). The configuration where

the Z → µµ events are selected with the alternative muon charge and event number polarity
matching agrees with this result to within one standard deviation. The mZ values extracted
in the helicity fit analysis configuration agree with this baseline result within the uncorrelated
uncertainties of the two analyses, for both Z → µµ event samples.

We validate the accuracy of the theory modeling and corresponding uncertainties by measur-
ing the pZ

T directly in Z → µµ events. Using the prediction and uncertainties for Z boson
production described in Section 5, we perform a binned maximum likelihood fit of the two-
dimension distribution of the dimuon pT and rapidity (pµµ

T , yµµ) to the observed Z → µµ data.
The consistency of the adjusted predictions and their uncertainties with the data is assessed
with a goodness-of-fit test based on a saturated model, in which an unconstrained normaliza-
tion parameter is introduced for each bin of the likelihood [53]. The p-value obtained from the
comparison of the nominal and saturated likelihoods, 16%, affirms that the model and its un-
certainty provide an accurate description of the data. The predicted pµµ

T distribution, reflecting
the best fit values of the nuisance parameters, is compared with the observed data in Fig. A.10.

The results of the pµµ
T fit are not an input to the W-like mZ measurement. Rather, we inde-

pendently determine values for the nuisance parameters describing the pZ
T modeling from the

W-like mZ measurement and verify that they are consistent with those from the direct fit to

pµµ
T . Figure 2 shows the generator-level pZ

T distribution, adjusted by the nuisance parameter
values and uncertainties obtained from the two independent maximum likelihood fits. The re-
sult of these fits reflects corrections to the pµµ

T predictions obtained directly from the maximum
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Figure 2: Validation of the theory model. Unfolded measured pZ
T distribution (points) com-

pared with the generator-level SCETLIB+MINNLOPS predictions before (prefit, gray) and af-
ter adjusting the nuisance parameters to the best fit values obtained from the W-like mZ fit
(magenta) or from the direct fit to the pµµ

T distribution (blue). The center panel shows the ratio
of the predictions and unfolded data to the prefit prediction. The uncertainty in the prefit pre-
diction is shown by the shaded gray area. The bottom panel shows the ratio of the predictions
and unfolded data to the prediction adjusted to the best fit values obtained from the fit to the
(pµµ

T , yµµ) distribution. The uncertainties in the predictions after the maximum likelihood fits
are shown in the shaded magenta and blue bands. The vertical bars represent the total uncer-
tainty in the unfolded data.

likelihood fit to data. To test the accuracy of the adjusted predictions in describing our data, we
account for effects of the detector response and resolution by “unfolding” our measurement to
the generator level, as described in Section A.9. The consistency of the distributions obtained
from the direct pµµ

T fit and from the W-like mZ fit, as well as the consistency between each of
them and the data, confirms the robustness of the predictions and of the uncertainty model, as
well as the ability of the (pµ

T , ηµ) distribution to constrain the pV
T modeling in situ. This result

supports adopting the same treatment for the pW
T distribution in the mW analysis, where pW

T
cannot be precisely measured without theoretical input, and allows our mW measurement to

be independent of the assumed correlation between pZ
T and pW

T .

Section A.9 gives more details on the stability of our W-like Z boson mass measurement under
different modeling assumptions and its consistency with the measured pµµ

T distribution.

6.3 Measurement of the W boson mass

Having validated the analysis steps using the Z boson data, we proceed with the determina-
tion of the W boson mass. A binned maximum likelihood template fit is performed to the
(pµ

T , ηµ , qµ) distribution, shown in Fig. A.16, and the observed mW value is

mW = 80 360.2 ± 2.4 (stat) ± 9.6 (syst) = 80 360.2 ± 9.9 MeV,
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in agreement with the EW fit prediction, mW = 80 353 ± 6 MeV [5], and with other experimen-
tal results, except the latest measurement reported by the CDF Collaboration [11]. The EW fit
prediction is based on relationships between mW and other experimental observables, includ-
ing the Z boson, Higgs boson, and top quark masses, the fine-structure constant, and the muon
lifetime. The uncertainty in the prediction is due to missing higher-order terms in the pertur-
bative calculation used to derive the predicted relationship between the experimental inputs
and from uncertainties in the experimental inputs themselves. The two sources of uncertainty
are of comparable size.
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Figure 3: The W boson mass measurement. Measured and predicted pµ
T distributions, showing

the sensitivity to mW from the characteristic Jacobian peak at ∼mW/2. The predicted W → µν
contribution is shown in red, while the background contributions are shown in blue, purple,
and yellow. Additional background contributions are included but not visible. The prediction
is adjusted to the best fit values of the nuisance parameters and the measured value of mW .
The bottom panel shows the ratio between the number of events observed in data, including
variations in the predictions, and the total nominal prediction. The vertical bars represent the
statistical uncertainties in the data. A shift in the mW value shifts the peak of the distribution,
as illustrated by the solid and dashed magenta lines, which show an increase or decrease of
mW by 9.9 MeV. The total contribution of all theoretical and experimental uncertainties in the
predictions, after the systematic uncertainty profiling in the maximum likelihood fit, is shown
by the gray band.

Figure 3 shows the measured and simulated pµ
T distributions, with the predictions reflecting the

best fit values of the nuisance parameters and of mW extracted from the maximum likelihood fit
to the (pµ

T , ηµ , qµ) distribution. The effect on the pµ
T distribution of a 9.9 MeV variation in mW is

shown to illustrate the degree to which the distribution and its uncertainties are controlled, en-
abling the high precision of the measurement. The main uncertainties in the mW measurement
are due to the pµ

T scale (4.8 MeV) and the PDF uncertainties (4.4 MeV). A detailed breakdown
of the mW measurement uncertainty is provided in Table A.4 and alternative breakdowns are
detailed in Section A.11. The robustness of the result with respect to the theory model is tested
further by performing the mW measurement with the helicity fit configuration, as discussed in
Section A.10. The result, 80 360.8 ± 15.2 MeV, is consistent with the nominal value and is stable
against variations in the constraints imposed on the predicted helicity cross sections.
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7 Discussion
In this paper we report the first W boson mass measurement by the CMS Collaboration at the
CERN LHC. The result is significantly more precise than previous LHC measurements. The W
boson mass is extracted from a sample of 117 million selected W → µν events, collected in 2016
at the proton-proton collision energy of 13 TeV, via a highly granular binned maximum likeli-
hood fit to the three-dimensional distribution of the muon pµ

T , ηµ , and electric charge. Novel
experimental techniques have been used, together with state-of-the-art theoretical models, to
improve the measurement accuracy. The muon momentum calibration, based on J/ψ → µµ
decays, as well as the data analysis methods and the treatment of the theory calculations used
in the mW measurement have been extensively validated by extracting mZ and pZ

T both from a
direct Z → µµ dimuon analysis and from a W-like analysis of the Z boson data.

80300 80350 80400 80450
mW (MeV)

CMS  
mW in MeV

Electroweak fit
PRD 110 (2024) 030001
LEP combination 80376 ± 33
Phys. Rep. 532 (2013) 119
D0 80375 ± 23
PRL 108 (2012) 151804
CDF 80433.5 ± 9.4
Science 376 (2022) 6589
LHCb 80354 ± 32
JHEP 01 (2022) 036
ATLAS 80366.5 ± 15.9
arXiv:2403.15085
CMS 80360.2 ± 9.9
This work

80353 ± 6

Figure 4: Comparison with other experiments and the EW fit prediction. The mW measurement
from this analysis (in red) is compared with the combined measurement of experiments at
LEP [54], and with the measurements performed by the D0 [55], CDF [11], LHCb [9], and
ATLAS [10] experiments. The global EW fit prediction [5] is represented by the gray vertical
band, with the shaded band showing its uncertainty.

As shown in Fig. 4, the measured value, mW = 80 360.2 ± 9.9 MeV, agrees with the standard
model expectation from the electroweak fit and is in disagreement with the measurement re-
ported by the CDF Collaboration. Our result has similar precision to the CDF Collaboration
measurement and is significantly more precise than all other measurements. The dominant
sources of uncertainty are the muon momentum calibration and the parton distribution func-
tions. Uncertainties in the modeling of W boson production are subdominant due to novel
approaches used to parameterize and constrain the predictions and their corresponding un-
certainties in situ with the data. This result constitutes a significant step towards achieving
an experimental measurement of mW with a precision matching that of the EW fit. Together
with other recent measurements performed by the CMS Collaboration, including the top quark
mass [56] and the effective electroweak mixing angle [57], this work demonstrates the power of
the CMS detector and of the LHC as instruments for precision measurements of the parameters
of the standard model.
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A Details of the analysis methods
A.1 Details regarding the event samples and selection criteria

We simulate W and Z boson production at NNLO in QCD using the MINNLOPS Wj and Zj [33,
34] (rev. 3900) processes in POWHEG-BOX-V2 [58–60], interfaced with PYTHIA 8.240 [35] for the
parton shower and hadronization, and with PHOTOS++ 3.61 [36, 37] for final-state photon ra-
diation. We use the CP5 underlying event tune [61], with the hard primordial-kT parameter
set to 2.225 GeV, obtained from a dedicated optimization using the pµµ

T data of Ref. [62]. The
(Gµ, mW , mZ) and (Gµ, sin2 θeff, mZ) EW input schemes are used for W and Z boson produc-
tion, respectively. The CT18Z PDF set [39] at NNLO accuracy was chosen for the nominal
analysis, before unblinding the result, given its good description of our W and Z data and be-
cause the expected shifts in mW from using other modern PDF sets are within its uncertainties.
Additional NNLO PDF sets are studied using event-level weights in the POWHEG MINNLOPS
sample: NNPDF3.1 [63], NNPDF4.0 [64], CT18 [39], MSHT20 [65], and PDF4LHC21 [66]. We
also consider the MSHT20aN3LO approximate N3LO PDF set [67]. The POWHEG MINNLOPS
generator is also used to simulate events with W or Z bosons decaying to τ leptons, with the
same theory corrections on the boson production kinematic distributions as those applied to
the samples with muonic decays. To ensure that the MC sample size is not a significant source
of uncertainty in the measurement, simulated samples of more than 4 billion (400 million) W
(Z) boson production events have been produced. The EW production of lepton pairs or of a W
boson in association with a quark through photon-photon or photon-quark scattering is simu-
lated at LO using PYTHIA 8.240 [68]. Top quark and diboson production are simulated at NLO
QCD accuracy using MADGRAPH5 aMC@NLO v2.6.5 [69] and POWHEG-BOX-V2, respectively,
interfaced with PYTHIA 8.240 for the parton shower and hadronization. Quarkonia production
is simulated using PYTHIA 8 interfaced with PHOTOS++ v3.61 for final-state photon radiation.
Single-muon events have been simulated for additional validation of the muon reconstruction
and calibration.

The selected muons must have a reconstructed track in both the silicon tracker and the muon
detectors, with a consistent track fit for hits in both detector subsystems, and pass additional
quality criteria to ensure a high purity of the selected events. We use the “medium” identifi-
cation working point [17], whose efficiency is better than 98% for signal muons. The muons
must have a transverse impact parameter smaller than 500 µm with respect to the beam line
and be isolated from hadronic activity in the detector. The muon isolation is defined as the
pileup-corrected ratio between pµ

T and the sum of the pT of all other reconstructed physics ob-
jects within a cone centered around the muon [18]. The isolation of selected muons must be
smaller than 15%, using a cone of radius

√
(∆ϕ)2 + (∆η)2 = 0.4. Only charged particles within

2 mm of the muon track along the beam axis are considered in the isolation sum. The distance
is evaluated between the points of closest approach to the beam line for each track. The same
criteria are used to select charged particles used in the pmiss

T calculation. Our definition differs
from the standard CMS approach, where charged particles in the isolation and pmiss

T sums are
defined with respect to the vertex that maximizes the sum of p2

T of the associated physics ob-
jects [70]. This change of definition is needed to minimize the rate at which the wrong vertex
is chosen, which is negligible in Z → µµ events but, with the standard CMS algorithm, ranges
from 1 to 5% for W → µν events, depending on pW

T . Indeed, to ensure the validity of the iso-
lation and pmiss

T corrections measured with Z → µµ events and applied to W → µν events (as
described in Sections A.2 and A.3) it is important to make sure that there are no differences in
their dependence on the vertex selection.

Events are rejected if they contain electrons with pT > 10 GeV satisfying the identification



A.2 Details regarding the efficiency corrections 13

criteria of the “veto” working point (which has 95% efficiency for genuine electrons [18]) or
additional muons of pT > 15 GeV matching the “loose” criteria (more than 99% efficient for
real muons [17]).

A.2 Details regarding the efficiency corrections

The mW measurement is based on a fit to the measured (pµ
T , ηµ , qµ) distribution using simulated

templates for the signal and most background processes. Therefore, it is important that the
simulation can accurately reproduce the efficiency of the event selection in the (pT, η) bins
used in the analysis. Corrections to the simulated muon efficiencies are determined from data
with the tag-and-probe (T&P) method [71], using events from the same Z → µµ sample that
we use in the analysis, except that we apply a looser event selection.

The efficiencies are measured differentially in (pT, η) for different stages of the muon selection,
factorized as: reconstruction of a standalone track in the muon chambers; matching of a stan-
dalone muon with a track in the tracker to form a global muon candidate (tracking); impact
parameter and identification quality criteria of the global muon track; trigger selection; muon
isolation. Misalignment or other effects in the reconstruction of tracks in the muon chambers,
which are used for triggering and identification purposes, can result in charge dependent biases
in the measured efficiencies. To properly account for them, efficiencies are measured separately
for each muon charge except for the isolation step, for which the charge asymmetry is found to
be negligible. The muon isolation is sensitive to the angular distance between the muon and
the sum of the measured charged and neutral hadrons in the event, referred to as the hadronic
recoil. The distribution of the recoil is different between W and Z boson production events,
leading to a bias in the muon isolation efficiency measured using Z boson decays. For a given
pZ

T value, the bias is larger for low pµ
T , when the muon is more likely produced in the direction

opposite to that of the Z boson pT and in the vicinity of the recoil. The trigger efficiencies are
also affected because of the isolation requirement applied at the trigger level. To account for
this effect, the trigger and isolation efficiencies are measured triple-differentially in the muon
(pT, η) and in the projection of the Z boson recoil along the pµ

T direction, uT. The corrections
are applied to W → µν events using the W boson recoil, after correcting its distribution as
described in Section A.3.

The efficiencies are evaluated in the measured and simulated event samples, and their ratios
are used as scale factors (SFs) to reweight the simulated events in (pT, η) bins (and uT bins,
where appropriate). The granularity in ηµ corresponds to the 48 bins used in the analysis. The
statistical uncertainty in the SFs originates from the limited sample of measured and simulated
Z → µµ events in the T&P estimate, and systematic uncertainties stem from the modeling of
the Z → µµ mass distributions with signal and background components when extracting the
efficiencies in the measured event sample. We evaluate these systematic uncertainties by re-
peating the efficiency measurements in the data sample after varying the signal or background
models. To mitigate the effects of statistical fluctuations and discrete bin edges, the SFs are
smoothed as a function of pµ

T , or of uT-pµ
T , using a polynomial interpolation. No smoothing

is performed versus ηµ because physical boundaries in the detector might produce genuine
discontinuities in the ηµ dependence of the efficiency. Instead, a smooth dependence on pµ

T is
expected in the momentum range of interest. The smoothing simplifies the treatment of the
SF statistical uncertainties in the analysis fit and also leads to reduced uncertainties in mW by
imposing that the measured SFs are correlated across the pµ

T or uT-pµ
T bins. We have verified

that no bias is induced in the extracted mW value by the smoothing procedure, within the cor-
responding uncertainties.
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The statistical uncertainties in the SFs are obtained from the eigenvectors of the covariance
matrix of the fit determining the smoothing function parameters for the nominal SFs in each
ηµ bin, for each efficiency step (and charge, where appropriate), leading to 2784 independent
nuisance parameters. The systematic uncertainties in the SFs are estimated as the difference be-
tween the smoothed values for the nominal SFs and the alternative ones from the variation of
the signal or background models. Because the same signal and background models, and varia-
tions thereof, are employed for all T&P bins, each source of systematic uncertainty is treated as
fully correlated across all bins. However, the SFs for the nominal and alternative T&P models
are obtained by fitting the same data, and are both affected by large statistical uncertainties
because of the fine granularity versus ηµ . Therefore, uncorrelated variations for each of the
ηµ bins are also included, with the same magnitude as the correlated uncertainty in each bin.
Separate uncertainties are assigned for each step, for a total of 343 nuisance parameters, treated
as correlated between muon charges. The statistical and systematic components of the SF un-
certainties, after the smoothing, have a similar contribution to the uncertainty in mW , and their
combined effect is 3.0 MeV.

Dedicated SFs and uncertainties are derived for the muon veto selection employed in the
single-muon analysis. These are used to correct the simulated yields of the Z boson background
process in events where the second prompt muon falls inside the analysis (pµ

T , ηµ) acceptance
window but fails the reconstruction or identification criteria of the veto. This component of the
Z → µµ background is characterized by a pµ

T distribution similar to that of the muons from
W decays, but peaking at larger values of pµ

T . Moreover, because of the high veto efficiency,
close to unity in many bins, small variations between data and simulation can result in rela-
tively large corrections for the probability to fail the veto. To avoid biases in the measured mW
because of Z → µµ background variations induced by these corrections, dedicated veto SFs
and corresponding uncertainties are evaluated. These are measured and smoothed in the same
way as the others, but applied as a function of the (pT, η) of the second generator-level muon
(evaluated after final-state radiation), taken as a proxy for the nonreconstructed muon. Veto
SFs are computed as the product of three independent terms, accounting for muon tracking,
reconstruction, and loose identification, further split by charge. These SFs are measured for
pµ

T > 15 GeV, consistently with the lower pµ
T threshold used in the veto selection. Uncertain-

ties are defined using the same approach as detailed before and are encoded in a total of 384
(147) nuisance parameters for the statistical (systematic) components. These nuisance param-
eters are treated as uncorrelated with respect to those associated to the other efficiency steps.
Because the veto selection strongly suppresses the Z boson background affected by these SFs,
their contribution to the uncertainty in mW is smaller than 0.5 MeV. The nominal muon veto
restricts the selection to “global muons,” which have a high-quality track in both the tracker
and muon detectors. An alternative definition has also been tested, with the muon inner track
not required to be matched to a track reconstructed in the muon detectors. This looser selection
has higher efficiency for prompt muons and, therefore, provides better rejection of the Z → µµ
background, at the cost of larger systematic uncertainties in the measured veto SFs because of
the combination of different categories of reconstructed muons. Dedicated tests using pseudo-
data generated with either veto selection have been carried out, showing that the measured mW
values agree within less than 0.1 MeV between the two veto selections and that the residual bias
in mW is covered by the veto SF uncertainties.

Further corrections and corresponding uncertainties are applied to the simulated events. Par-
tial mistiming of signals in the muon detectors led to the incorrect assignment of the triggered
event to the previous proton bunch crossing for a small fraction of events [14]. This is known
as “prefiring”, and caused a reduction in the trigger efficiency. A correction for this effect is
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determined in bins of ηµ and pµ
T [72]. The correction increases with ηµ and varies between 0.5

and 2%. A similar issue originating from the prefiring of the electromagnetic calorimeter trig-
gers affects the analysis through hadronic jets containing photons or electrons not rejected by
the veto. The total contribution of the prefiring to the uncertainty in mW is about 0.7 MeV.

The quality of the experimental corrections applied to the simulated events is validated using
Z → µµ events, which offer a pure sample of prompt muons, comparing the distribution of
the selected muon ηµ with the measured one, for each muon charge, as shown in Fig. A.1. The
agreement between measured and simulated data is within 2% in all bins, and the difference is
smaller than the systematic uncertainty.
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Figure A.1: Measured and predicted ηµ distributions in Z → µµ events with the W-like Z
boson selection for positively (left) and negatively (right) charged muons. The total uncertain-
ties (statistical and systematic) are represented by the gray bands and the normalization of the
simulated spectrum is scaled to the measured distribution, to better illustrate the level of agree-
ment between the two. The vertical bars represent the statistical uncertainties in the data. The
bottom panel shows the ratio of the number of events observed in data and of variations in the
predictions to that of the total nominal prediction.

A.3 Hadronic recoil calibration

To further improve the modeling of pmiss
T and mT in the simulated events, hadronic recoil cor-

rections are derived using measured Z → µµ events. Templates of the parallel and perpendic-
ular components of the hadronic recoil (which balances the pZ

T ) along the Z boson momentum
are parameterized as a function of the reconstructed pµµ

T , both in the simulated and measured
events. For each event, a new value of pmiss

T is computed using an inverse cumulative distri-
bution function transformation of the function mapping the simulated templates to data. The
corrections derived from Z → µµ events are applied to simulated W → µν events by using the
generator-level pW

T to evaluate the corrections parameterized in pµµ
T . Differences between the

W and Z recoil modeling are accounted for as a systematic uncertainty. Statistical uncertainties
of the template parameterization are taken into account, although they have a negligible im-
pact on our pµ

T-based mW measurement. Figure A.2 shows the recoil-corrected transverse mass
distribution for Z → µµ and W → µν events. Apart from a slight disagreement in normaliza-
tion between the measured and simulated distributions (unrelated to the recoil and accounted
for by other uncertainties), the scale and resolution are corrected with subpercent precision.
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Figure A.2: Measured and predicted mT distributions in W → µν events, after calibrating the
hadronic recoil. The predictions are those prior to the fit to data. The total uncertainties (statis-
tical and systematic) are represented by the gray band and the normalization of the simulated
spectrum is scaled to the measured distribution to better illustrate their agreement. The verti-
cal bars represent the statistical uncertainties in the data. The bottom panel shows the ratio of
the number of events observed in data and of variations in the predictions to that of the total
nominal prediction.

The uncertainty in the corrections is evaluated from the statistical uncertainty of the fits that
parameterize the correction of the simulation to the data. Their impact on mW is assessed by
varying the correction parameters according to the eigenvectors of the fit covariance matrix.
We have verified that their contribution to the uncertainty in mW is below 0.3 MeV. Because
these variations are computationally expensive to evaluate, and their contribution to the mW
uncertainty is negligible, they are not included in the nominal fit configuration.

A.4 Nonprompt-muon background determination

The nonprompt-muon background consists primarily of events where muons originate from
decays of heavy-flavor hadrons (which have sizable lifetimes) rather than from the collision
point. Despite the large suppression applied by the muon selection criteria, a significant con-
tribution from this background remains in the W boson selection. We evaluate it using data
from sideband regions that are defined by inverting the mT selection, the muon isolation re-
quirement, or both. To account for correlations between the isolation and the mT sideband
regions, the “extended ABCD method” proposed in Ref. [41] is used. In this method, the low-
mT sideband region is divided into two regions with mT < 20 GeV or 20 < mT < 40 GeV,
each one further split into events passing or failing the muon isolation criterion, such that the
signal region is complemented by five sideband regions of isolation and mT, compared with
the typical three of the classic ABCD method. In the sideband regions, the nonprompt-muon
component is evaluated by subtracting from data the contribution of processes with prompt
muons, estimated from simulations. For each bin of pµ

T , ηµ , and charge, the low-mT regions are
used to obtain a transfer factor that is then applied to nonprompt-muon events that satisfy the
mT selection but fail the isolation requirement, to obtain an estimate of the nonprompt-muon
background in the signal region. To suppress statistical fluctuations, the nonprompt-muon
background contribution in each sideband region is smoothed in pµ

T with an exponential of a
third-order Chebyshev polynomial. The statistical uncertainties of the data are accounted for
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by propagating the uncertainties in the smoothing function parameters through the analysis.
This procedure results in 384 variations, reflecting the four coefficients of the smoothing poly-
nomials, the two charges, and the 48 ηµ bins. The prompt-muon contamination in the sideband
regions is modeled with simulated events, with all the corrections applied, as for the signal re-
gion, including the appropriate combination of SFs for events that fail the isolation requirement
in the nonisolated sideband regions. All experimental and theoretical systematic uncertainties
in the prompt-muon contamination are propagated to the sideband regions by repeating the
subtraction of the prompt component and the determination of the smoothing parameters in
the sideband regions for each variation. In this way, uncertainties stemming from experimental
or theoretical sources are also assigned to the nonprompt-muon background, and the correct
correlation structure between prompt- and nonprompt-muon events is consistently taken into
account in the uncertainty model.
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Figure A.3: The observed data and the prediction of the extended ABCD method before the
maximum likelihood fit, for the pµ

T (left) and ηµ (right) distributions, in a region enriched in
events with nonprompt muons obtained by selecting muons compatible with being produced
in a secondary vertex. Small contributions from events with a prompt muon, evaluated using
simulated samples, are shown by the red histogram. The total uncertainties (statistical and
systematic) are represented by the gray bands. The vertical bars represent the statistical uncer-
tainties in the data. The bottom panel shows the ratio of the number of events observed in data
and of variations in the predictions to that of the total nominal prediction.

This procedure was validated using a simulated sample of nonprompt-muon events by com-
paring the MC prediction in the W boson signal region with the prediction obtained from the
extended ABCD method. The extended ABCD method overestimates the number of nonprompt-
muon events in the signal region. A normalization correction factor of 0.85 is assessed from
simulation and applied to the final estimation to correct for this overestimation. We account
for residual differences in the shape of the pµ

T distribution by varying the coefficients of the
smoothing polynomial. These two additional variations are fully correlated across ηµ and
charge bins. The method was validated using a data sample enriched in events with non-
prompt muons originating from a secondary vertex. As shown in Fig. A.3, the measured and
predicted nonprompt-muon events agree within uncertainties, and the agreement in the total
number of events is within 2% in this region, confirming the aforementioned correction factor.
A normalization uncertainty of 5% is assigned to the nonprompt-muon prediction to cover this
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difference and possible differences between the control and signal regions. The uncertainty
model is tested by performing a fit to the (pµ

T , ηµ , qµ) distributions, leading to a p-value of 98%
and good agreement between data and prediction.

The total uncertainty in mW from the nonprompt-muon background is estimated to be 3.2 MeV,
a value that includes the normalization uncertainty and systematic variations of the coefficients
(2.5 MeV) and the statistical uncertainty of the smoothing function coefficients and their varia-
tions (1.9 MeV). Additional mW uncertainties result from variations of the predicted nonprompt-
muon background due to experimental and theoretical effects, which modify the prompt-muon
contamination that is subtracted from data in the sideband regions. They are accounted for as
part of the corresponding experimental and theoretical uncertainties in mW from the respective
sources.

A.5 Details regarding the muon momentum calibration

The muon tracks are first reconstructed using a standard pattern recognition and Kalman filter
track fit [19]. To improve the accuracy of the track parameter determination, the tracks are then
refitted using a continuous variable helix (CVH) fit, a global χ2 fit that extends the general-
ized broken-line fit [73, 74] to incorporate continuous energy loss and multiple scattering from
finite material elements. The detailed material model of the CMS detector used for our simu-
lation is based on the initial design of the tracker material and support structures as well as in
situ measurements using collision data, such as Ref. [75]. This model is incorporated into the
track fit using the GEANT4e propagator [40, 76, 77]. To model the magnetic field, we use a pa-
rameterization of the detailed three-dimensional solenoidal field map [78] rather than the less
accurate, but computationally faster, finite-element model used in the standard reconstruction.
The starting point for the alignment corresponds to what is used in the standard CMS recon-
struction [30, 79]. As compared with the standard track fit, additional quality criteria are used
to select pixel hits, and a refined parameterization of the local hit position is used for the trape-
zoidal strip modules in the endcaps of the strip detector. To ensure an accurate modeling of
track hit positions in the simulation, the numerical precision of the helix-surface intersection in
GEANT4 has been increased with respect to the standard CMS simulation.

Although the models used to describe the magnetic field, the material distribution, and the
detector alignment are the most accurate currently available, a few sources of potential bi-
ases remain. The magnetic field model is based on measurements made in the ground-level
assembly hall rather than in the cavern and does not account for differences in the field in-
duced by material in the detector and surroundings. The simulation geometry underlying the
material model might not provide a perfect description of the real detector and there are inac-
curacies in the Gaussian model used to incorporate material effects. Finally, the alignment is
affected by small residual biases in the alignment procedure and by so-called “weak modes”
(misalignment patterns, including global translations, twists, and radial expansions, that bias
the parameter extraction from the track but do not impact the overall χ2 of the track fits [79]).
To correct for these biases, we developed a generalized correction procedure that extends the
standard alignment procedure. The alignment degrees of freedom are parameterized by the
three translation and three rotation degrees of freedom per tracker module, albeit without ex-
tra parameters for module deformation or residual time dependence. The parameterization is
extended with additional parameters to correct the z component of the magnetic field and the
energy loss from material in the vicinity of each module. The correction parameters are derived
from a sample of J/ψ → µµ decays using the CVH fit, imposing the additional constraints that
the muons are produced from a common vertex and that the muon pair has a mass consis-
tent with that of the J/ψ meson. These are needed to constrain weak modes in the alignment,
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magnetic field, and energy loss parameters.

The correction procedure is effective in absorbing local biases in the magnetic field, energy
loss, and alignment, but remains subject to weak modes, as well as to residual biases resulting
from limitations in the Gaussian J/ψ meson mass constraint. Convolution effects from the
finite detector resolution and for final-state radiation are only accounted for in an approximate
manner, and background contributions are not considered. To correct for these potential biases,
residual corrections are derived from fits to the J/ψ → µµ dimuon mass distribution, in two
steps. In the first step, we extract correction factors finely binned in a four-dimensional space
constructed from the pµ

T and ηµ of the two muons. In these fits, the signal model is based on
templates from simulation, convoluted with a Gaussian whose mean and standard deviation
account for the residual scale and resolution difference, whereas the combinatorial background
is represented by an exponential function. In the second step we extract calibration factors for
each individual muon by minimizing a χ2 that translates the J/ψ meson mass correction factors
in all four-dimensional bins of pµ

T and ηµ of the positively and negatively charged muons, to
parameterize corrections for each muon as a function of ηµ and charge.

The residual corrections to the muon momenta are parameterized as a function of the curvature,
k ≡ 1/pT, as

δk
k

= Aiη − ϵiη k + q Miη/k. (2)

The iη subscript indicates the corresponding η bin of the correction parameters, which are in-
dependent for the 48 η bins of width 0.1. The Aiη term corresponds to a small adjustment of
the magnetic field. The ϵiη term is the first one in a Taylor series expansion for the effect of
mismodeling the energy loss between the interaction point and the first hit measurement. The
Miη term expresses the bias in the track sagitta resulting from a misalignment of the tracker in
the plane transverse to the magnetic field. The expression captures the leading behavior once
local biases in the magnetic field, material, and alignment are corrected. In the presence of suf-
ficiently large local biases, additional terms would appear with a more complicated functional
form. Using MC simulation, we have validated that residual biases are well described by this
functional form, after performing the track refit and applying the generalized global correc-
tions. The corrections are then applied by shifting the reconstructed curvature of the measured
muons.

To avoid extrapolating the muon momentum resolution corrections from the relatively low
momentum values typical of muons from J/ψ decays, we calibrate the muon momentum reso-
lution using both J/ψ → µµ and Z → µµ events. The resolution corrections are derived from
fits to the J/ψ → µµ and Z → µµ dimuon mass distributions, binned in the pµ

T and ηµ of the
positively and negatively charged muon as for the scale corrections, and after correcting the
momentum scale using the calibration parameters previously extracted from the J/ψ sample.
The resolution is parameterized as a function of the curvature as

σ2
k

k2 = a2
iη +

c2
iη

k2 +
b2

iη

1 + d2
iηk2

, (3)

where the parameters aiη , ciη , biη , and diη parameterize the contributions to the curvature reso-
lution from multiple scattering, hit resolution, and the correlations between them induced by
the track fit. These parameters are computed in 24 η bins of width 0.2 for each of the four terms,
separately for data and simulation, and are applied by smearing the reconstructed curvature
of the simulated muons through a Gaussian distribution with the width corresponding to the
difference in quadrature between data and simulation.
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Figure A.4: Charge-independent (A′, left) and charge-dependent (M′, right) residual scale dif-
ferences from using J/ψ → µµ, Υ(1S) → µµ, and Z → µµ events. The charge-independent
comparison probes a magnetic-field-like difference, whereas the charge-dependent comparison
reflects a misalignment-like term. The points with error bars represent the scale parameters
and statistical uncertainties associated with the closure test performed with J/ψ → µµ (green),
Υ(1S) → µµ (red), and Z → µµ (blue) events. The yellow band represents the corresponding
statistical uncertainty in the calibration parameters derived from the J/ψ calibration sample.
The filled gray band shows this uncertainty scaled by a factor of 2.1, as described in the text.
The χ2 values correspond to the compatibility of the scale parameters with zero for the closure
test performed with Z → µµ events and take into account the statistical uncertainties for these
parameters, as well as for the calibration parameters derived from the J/ψ sample, without ad-
ditional scaling. The calibration parameter uncertainties are fully uncorrelated from the Z and
Υ(1S) closure test uncertainties, but very strongly correlated with the J/ψ closure uncertainties,
since they use the same data.

The calibration is validated using J/ψ → µµ, Υ(1S) → µµ, and Z → µµ events, by com-
puting the residual muon momentum scale difference between the measured and simulated
distributions, after applying all corrections, following the same two-step procedure used to
derive the calibration factors. The residual scale differences between the event samples are ob-
tained in 24 bins of ηµ following the parameterization of Eq. (2) with ϵiη = 0. The resulting
closure parameters, corresponding to a charge-independent magnetic-field-like residual (A′)
and a charge-dependent alignment-like residual (M′), are shown in Fig. A.4. The χ2 compat-
ibility test for the J/ψ → µµ calibration applied to Z → µµ events demonstrates that there is
consistency within the statistical uncertainties for the charge-independent residuals. A small
inconsistency for the charge-dependent residuals is seen, indicating a systematic uncertainty
source. Given the momentum range relevant for W → µν events, the magnetic field and align-
ment effects are dominant with respect to those reflecting energy loss. The Υ(1S) → µµ events
are only used to validate the calibration in the central region of the detector, where the dimuon
mass resolution allows us to select a high purity sample of muons from the Υ(1S) meson decay.
The small deviations from zero in the J/ψ → µµ events are due to the larger ηµ bin sizes used
for the validation step and from small pµ

T bin migrations after applying the initial corrections
in the A′ and M′ parameter extraction. The differences are small compared with the statistical
uncertainty in the calibration procedure.
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The uncertainties propagated to the analysis include the statistical uncertainties in the calibra-
tion parameters extracted from the J/ψ sample, with statistical correlations taken into account,
as well as the statistical uncertainties in the residual nonclosure between the J/ψ and the Z
samples and the systematic uncertainty associated with the reference measurement of the Z
boson mass [5]. Although these uncertainties account for the limited size of the measured and
simulated event samples in the J/ψ calibration procedure and closure tests, as well as for the
uncertainty in the world-average Z boson mass, other systematic effects might be present, re-
lated to weak modes with different sensitivity in J/ψ → µµ and Υ(1S) → µµ events, trigger
biases, or other sources. Remaining systematic effects that are not explicitly accounted for are
assessed from the closure test between the J/ψ calibration and the momentum scale from the
Z sample. The statistical compatibility of this test is assessed for different ηµ binning choices
and considering several possible correlated patterns of biases. To cover all possible biases with
a reduced χ2 smaller than unity, the statistical uncertainty in the J/ψ calibration parameters is
scaled by a factor of 2.1, as shown in Fig. A.4.

For the momentum resolution, the relative agreement between the measured and simulated
samples, especially in the tails of the momentum response distribution, is affected by a dif-
ferent pixel hits efficiency after the tighter quality requirements imposed in the CVH fit. To
account for this, a systematic uncertainty is evaluated by reweighting the simulated pixel hit
multiplicity distribution to match data differentially in ηµ and taking the full difference as an
uncertainty. Since the nominal resolution corrections are also affected by this issue, we assign
a systematic uncertainty to cover the residual disagreement. This uncertainty is expressed in
terms of the statistical uncertainty of the resolution correction parameters, which are scaled by
a factor of 10 to cover the observed differences. Because the statistical uncertainty in the resolu-
tion correction is small, and because the mW measurement is not sensitive to small changes in
the resolution, these scaled resolution uncertainties only contribute 1.4 MeV to the uncertainty
in mW .

The uncertainties in pµ
T from the momentum scale and resolution calibrations are several or-

ders of magnitude smaller than the pµ
T bin width of our likelihood function. If the uncertainty

in the (pµ
T , ηµ , qµ) distribution is evaluated directly from event-level variations of pµ

T , significant
fluctuations are introduced into the uncertainty templates due to the low probability of bin mi-
gration. To avoid introducing these statistical fluctuations into the nuisance parameters of the
likelihood, the scale and resolution uncertainties are propagated as event weights that exploit
the momentum response distributions in the simulation to estimate the relative contributions of
an event across bins of the distribution. The resulting scale and resolution uncertainties have
also been validated by applying the difference in scale between the J/ψ → µµ and Z → µµ
events to the W boson simulation to build a biased prediction that is tested as pseudo-data in
the fit. The resulting shift in mW from this procedure is covered by the corresponding calibra-
tion uncertainties. The breakdown of muon momentum calibration uncertainties is shown in
Table A.1. The total contribution of the muon momentum calibration to the mW uncertainty is
4.8 MeV. Figure A.5 shows the Z → µµ dimuon mass distributions after correcting the muon
momentum scale by the calibration parameters extracted from fits to the J/ψ events.

A.6 Modeling of the W and Z boson transverse momentum distributions

To achieve the best accuracy in modeling the pV
T spectra, we correct the generator-level pV

T and
yV distributions in MINNLOPS to state-of-the-art calculations in QCD, including the resum-
mation of logarithmically-enhanced contributions at small pV

T and a model for nonperturbative
effects also at small pV

T . We use the SCETLIB code [22, 23, 38], which performs pV
T resummation
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Table A.1: Breakdown of muon momentum calibration uncertainties.

Source of uncertainty
Nuisance Uncertainty

parameters in mW (MeV)
J/ψ calibration stat. (scaled ×2.1) 144 3.7
Z closure stat. 48 1.0
Z closure (LEP measurement) 1 1.7
Resolution stat. (scaled ×10) 72 1.4
Pixel multiplicity 49 0.7
Total 314 4.8
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Figure A.5: Measured and simulated Z → µµ dimuon mass distributions, after applying the
muon momentum scale and resolution corrections. The simulated predictions and uncertain-
ties are scaled to match the number of observed data events. The vertical bars represent the
statistical uncertainties in the data. The bottom panel shows the ratio of the number of events
observed in data and of variations in the predictions to that of the total nominal prediction.

as formulated using soft-collinear effective theory (SCET) [80–82], using deterministic numer-
ical integration routines to provide predictions with high numerical accuracy. The resummed
predictions from SCETLIB are matched to the fixed-order calculation from DYTURBO [43], at
O(α2

s ) in the QCD coupling constant αs, to achieve N3LL+NNLO accuracy. The correction is
derived from the ratio of the SCETLIB+DYTURBO and MINNLOPS predictions (after the par-
ton shower but before final-state photon radiation) in the full phase space of the decay lepton
kinematics. The corrections are binned in 1 GeV bins of pV

T , up to 100 GeV, and 0.25 wide bins in
the |yV | < 5.0 range. They are applied to the MINNLOPS simulation by sampling the binned
corrections per event with the generator-level |yV | and pV

T to obtain event-level weights that
are propagated through the full experimental analysis. This procedure allows us to maintain
the statistical power of the MINNLOPS MC sample while improving its accuracy at small pV

T .
After the correction, the dependence of the pV

T distribution on the parton shower and tune is
negligible. We have compared the predictions using SCETLIB+DYTURBO with those using
DYTURBO v1.4.0 [43, 83], MATRIX+RADISH v1.0.0 [42, 84], and CuTe-MCFM v10.2 [44, 85],
at equivalent or higher perturbative order. After propagating those predictions through the
analysis as binned corrections in pV

T , we find that the expected shifts in mW are within the
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SCETLIB+DYTURBO uncertainties.
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Figure A.6: Measured and simulated pµµ
T (left) and pµ

T (right) distributions in selected
Z → µµ events. The standalone uncorrected MINNLOPS predictions are shown by the
dashed gray line. The nominal predictions (blue) correct the POWHEG MINNLOPS pV

T with
SCETLIB+DYTURBO at N3LL+NNLO, as described in the text. The vertical bars represent
the statistical uncertainties in the data. The bottom panel shows the ratio of the number of
events observed in data to that of the total nominal prediction, as well as the relative impact
of variations of the predictions. Different sources of uncertainty are shown as solid bands in
the lower panel: the fixed-order uncertainty and the uncertainty in the resummation and fixed-
order matching (orange), resummed prediction using TNPs (pink), the Collins–Soper (CS) ker-
nel nonperturbative uncertainty (green), and other nonperturbative uncertainties (light blue).
Additional sources of experimental and theoretical uncertainty that impact the agreement with
the data are not shown.

As illustrated in Fig. A.6, the SCETLIB+DYTURBO correction substantially improves the de-
scription of pµµ

T and pµ
T data in selected Z → µµ events when compared with the standalone

MINNLOPS predictions. Uncertainties in the pW
T prediction, particularly those impacting the

low-pW
T region, can shift the Jacobian peak of the pµ

T distribution in a way similar to a variation
of mW . Therefore, the sensitivity of the analysis to mW critically relies on differentiating the

uncertainty in pW
T and its impact on the pµ

T distribution from mW variations. As can be appre-

ciated from Fig. A.6, different sources of uncertainty contribute predominantly to different pV
T

regions. The nonperturbative uncertainty is most pronounced at low pV
T . Uncertainties in the

resummation calculation and in the matching of the resummed and fixed-order calculations
are relevant up to pV

T ≈ 40 GeV. The nonperturbative and resummation uncertainties have the
largest impact on the pµ

T distribution around the Jacobian peak region that is sensitive to the
mW value. Consequently, their contributions have an important impact on the measurement

of mW . The perturbative uncertainties in fixed-order QCD, which are dominant at high pV
T ,

have a small impact on pµ
T in the region sensitive to mW . The uncertainties are estimated by

varying the relevant parameters of the SCETLIB+DYTURBO calculation to obtain alternative
predictions that are propagated through the full experimental analysis via event-level weights.
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Perturbative uncertainties in the resummed predictions are evaluated using the TNP approach
recently proposed in Ref. [24], which exploits the known all-order perturbative structure of the
resummed calculation and is implemented in SCETLIB. In the SCET formalism used here, there
are three perturbative ingredients in the pV

T resummation: the “hard function” that describes
the hard virtual corrections for W and Z production, the “proton beam functions” that extend
the PDFs to include collinear radiation, and the “soft function” describing soft radiation. All
these functions share a system of renormalization group equations whose solution yields the
all-order resummation of logarithms of pV

T /mV . In the TNP approach, the minimal indepen-
dent set of ingredients that would be needed at the next perturbative order are identified and
parameterized in terms of common nuisance parameters. Specifically, there are six sources of
TNPs: the three fixed-order boundary conditions of each of the hard (H), soft (S), and beam (B)
functions, and three anomalous dimensions governing their renormalization group evolution,
namely the cusp anomalous dimension (Γcusp) and the virtuality and rapidity noncusp anoma-
lous dimensions (γµ and γν). The TNPs of the hard and soft functions and the three anomalous
dimensions are numerical constants. As such, they are propagated as scalar variations around
their known values. The beam functions (BF) comprise five one-dimensional functions of the
Bjorken-x for the different partonic splitting channels. The qqV and qg BF contain the dom-
inant quark to quark (q → q) and gluon to quark (g → q) channels, while the others (qqV,
qqS qq∆S) correspond to specific nondiagonal q → q′ contributions that are present at higher
orders [38]. We use their known functional shape and treat their normalization as a scalar TNP
for each partonic channel. The TNPs have a true, but unknown, value that can be varied ac-
cording to their expected typical magnitude. As a result, the TNP approach provides a robust
prediction for the correlation of the uncertainties due to the missing higher orders across pV

T ,
yV , and mV , which can be consistently used in the profile maximum likelihood fit used to ex-
tract mW . Figure A.7 shows the impact of the ten TNPs, propagated through the analysis via
the event-weighting procedure, on the pµ

T spectrum in W → µν events.
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Figure A.7: The predicted pµ
T distribution for selected W → µν events, before the maximum

likelihood fit. The lower panel shows the ratio of the ten TNP variations described in the text
to the nominal prediction, illustrating their impact on the spectrum.

The SCETLIB program implements different configurations for the TNPs, in terms of the loga-
rithmic accuracy of the prediction and the perturbative order at which the TNPs are included.
We use the N3+0LL scheme, where the prediction has N3LL accuracy and the TNPs represent-
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ing the unknown higher-order corrections are estimated from multiplicative variations of the
same N3LL terms. We also consider two alternate schemes, N3+1LL and N4+0LL. The N3+1LL
scheme implements the full N4LL perturbative structure, combining the known values for the
parameters up to N3LL with best estimates of the higher-order terms and their variations to
define the TNP variations. The N4+0LL scheme follows the same approach as the N3+0LL,
but is based on the N4LL calculation. We have verified that using the N3+1LL or the N4+0LL
schemes has a negligible impact on the results with respect to the nominal N3+0LL scheme.
As discussed in Sections A.9 and A.11, we validate the robustness of this approach against the
measured pµµ

T distribution and the W-like measurement of mZ , where the impact of the pZ
T

modeling uncertainty is treated in the same way.

The perturbative uncertainty in the fixed-order matching correction of the unpolarized calcula-
tion is assessed from 7-point variations of the factorization and renormalization scales, µR and
µF, in the DYTURBO calculation. The uncertainty is treated as a correlated nuisance parameter
for the different W (and Z) boson decay channels, and between W+ and W− boson production,
but uncorrelated between W and Z boson production. An uncertainty due to the matching pro-
cedure is evaluated by varying the midpoint of the transition between the resummation and
the fixed-order regime from the nominal value of 0.5 mV to 0.35 mV and 0.75 mV .

Nonperturbative effects, such as the residual transverse motion of the partons inside the pro-
ton, impact the pV

T distribution. These effects are expected to scale as (ΛQCD/pV
T )

2 [86], where
ΛQCD ≈ 200 MeV is the QCD vacuum expectation value. As such, their impact is dominant at
low pV

T and less relevant for pV
T ≳ 10 GeV. The predictions considered here implement phe-

nomenological models that require tuning to data to describe these nonperturbative effects.
Two sources of nonperturbative effects impact pV

T . First, there can be nonperturbative correc-
tions to the CS rapidity anomalous dimension [86], which are universal for W and Z boson
production. Second, there are nonperturbative contributions to the beam (and soft) functions,
which account for the “intrinsic kT ” of the partons inside the protons, that are not universal as
they can depend on the flavor and Bjorken-x of the interacting parton. As shown in Ref. [87],
the leading nonuniversal dependence can be captured by a single effective model function that
only depends on the vector boson rapidity for each given vector boson type, besides the he-
licity cross section and the collision center-of-mass energy. The SCETLIB program implements
a corresponding nonperturbative model for both these sources [23], where the model parame-
ters effectively determine the first two powers in an expansion in (ΛQCD/pV

T )
2 together with a

parameter that determines the overall asymptotic behavior for pV
T → 0. For the intrinsic kT, the

effective model amounts to a (rapidity-dependent) Gaussian smearing in the Fourier conjugate
of pV

T .

In our analysis, the parameters of the SCETLIB model are loosely constrained around nominal
values that correspond to minimal nonperturbative smearing. The CS anomalous rapidity pa-
rameters are correlated between Z and W boson production, whereas the Gaussian smearing
terms are uncorrelated between the two. Their best fit values are extracted from the maximum
likelihood fits to the measured distributions. The values obtained from a direct maximum like-
lihood fit to the pµµ

T distribution are consistent with those resulting from the W-like fit to the
pµ

T distribution in Z → µµ events.

The SCETLIB+DYTURBO and MINNLOPS calculations are performed in a fixed-flavor scheme
with massless quarks. Calculations with b and c quark masses have not been performed at a
comparable perturbative accuracy. The impact of quark masses is expected to be mostly at the
scale of the b and c masses. Their impact is partially estimated by varying the heavy-quark



26

thresholds using charm and bottom quark mass variations of the MSHT20 PDF set [88]. In
addition, the loose initial constraints of our nonperturbative uncertainty model provide flexi-
bility to cover such sources of uncertainty at low pV

T . Quark mass effects are expected to differ
between W and Z production because of the different flavor contributions to their production.
This difference is captured by the variations of the PDF threshold and by our independent
treatment of nonperturbative uncertainties between Z and W production. The sufficiency of
our model to capture these effects is confirmed by the likelihood fits to data discussed in Sec-
tion A.9.

The total impact on mW from the perturbative, nonperturbative, and quark mass threshold
uncertainties is 2.0 MeV, the three components yielding comparable contributions. A summary
of nuisance parameters in the maximum likelihood fit that represent these uncertainties is given
in Table A.5. Section A.9 further discusses the validation of the model and its uncertainty.

A.7 Modeling of the angular distributions in W and Z boson leptonic decays

The differential cross section for the production and decay of the spin-1 W and Z bosons can
be decomposed in terms of spherical harmonics into nine helicity-dependent states [26],

dσ

dp2
T dm dy dcos θ∗ dϕ∗ =

3
16π

dσU+L

dp2
T dm dy

[
(1 + cos2 θ∗) +

7

∑
i=0

Ai(pT, m, y)Pi(cos θ∗, ϕ∗)
]
. (4)

We choose the CS reference frame [89], where cos θ∗ and ϕ∗ correspond to the polar and az-
imuthal angles of the muon emitted in the W boson decay. The angular coefficients Ai depend
on the boson charge, rapidity yV , pV

T , and mV . Combined with the unpolarized cross section
σU+L, they describe the relationship between the boson production and the kinematic distribu-
tions of the decay muons. The Pi spherical harmonics describe the kinematic distributions of
the daughter muon, which depend on the properties of the W or Z boson.

The nominal predictions for the angular distributions, from MINNLOPS, are NNLO accurate
in QCD. Uncertainties in the predicted angular coefficients impact the pµ

T and ηµ distributions
by modifying the polarization of the W boson. Uncertainties in the angular coefficients are
assessed by varying µR and µF in the MINNLOPS predictions. The correlations of higher-order
corrections across phase space and processes are not well known. Therefore, we consider these
variations uncorrelated among the Ai coefficients and in ten pV

T bins, but correlated across yV ,
and between W+, W−, and Z.

We have verified that the MINNLOPS predictions and uncertainties for the angular coefficients
are consistent with NNLO fixed order calculations, and that the Ai coefficients predicted at
N3LL, assessed with both SCETLIB and DYTURBO, are consistent with the MINNLOPS pre-
dictions within the assigned uncertainties. The isotropic smearing of the colliding partons due
to the intrinsic kT model of PYTHIA induces a modest change to the angular coefficients, in
particular A1 and A3 at low W or Z boson transverse momentum. The full difference between
the angular coefficients before and after the PYTHIA 8 shower and intrinsic kT is taken as an
additional systematic uncertainty, fully correlated across angular coefficients, phase space, and
W and Z boson production. The total uncertainty in mW due to the uncertainty in the predicted
angular coefficients is 3.2 MeV, with the largest contributions coming from A0, A2, and A4.

A.8 Parton distribution functions

Figure A.8 shows the ηµ distribution for W+ and W− boson events, compared with the pre-
dictions obtained with the CT18Z PDF set and its uncertainties, as well as with the central
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predictions for several other PDF sets. The consistency among the five PDF sets and the ob-
served data is determined by performing likelihood fits to these distributions for each PDF
set under consideration. Fits are performed including all the uncertainties of the nominal mW
fit, as well as removing the PDF+αs or the theory uncertainties. The impact of αs is eval-
uated from alternative PDF fits with αs shifted by ±0.015 from its nominal value of 0.118.
The change of αs is propagated through the matrix element calculation in MINNLOPS and
the SCETLIB+DYTURBO corrections. The corresponding saturated likelihood goodness-of-fit
values are reported in Table A.2.
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Figure A.8: Measured and predicted ηµ distributions for positively (left) and negatively (right)
charged muons. The nominal prediction, obtained with the CT18Z PDF set, is shown in filled
light red. The uncertainty, evaluated as the sum of the eigenvector variation sets, is repre-
sented by the filled band in the lower panel. The predictions using the PDF4LHC21, MSHT20,
NNPDF4.0, and CT18 sets are also shown (without uncertainty bands). The vertical bars repre-
sent the statistical uncertainties in the data. The bottom panel shows the ratio of the number of
events observed in data and of variations in the predictions to that of the nominal prediction.

To test the dependence of the result on the choice of PDF set, we performed the mW measure-
ment with the NNPDF3.1 [63], NNPDF4.0 [64], CT18 [39], MSHT20 [65], and PDF4LHC21 [66]
sets at NNLO, and the approximate N3LO set MSHT20aN3LO [67]. To assess the consistency of
the PDF sets we perform studies where the MC simulation for the W and Z boson production,
and the corresponding PDF uncertainties, are obtained from a given PDF set while another PDF
set provides pseudodata. We then evaluate if the mW value extracted from the fit lies within the
uncertainty predicted by the PDF set under test. In the case of the CT18Z, CT18, and PDF4LHC
PDF sets, their uncertainty covers the mW value extracted with all other PDF sets. This does
not happen for the remaining PDF sets and, hence, we test the impact of increasing their PDF
uncertainty by scaling all eigenvectors by a constant value until the difference in the extracted
mW is within the postfit σPDF. The scale factors determined with this procedure are reported in
Table A.3, which also shows that the total mW (unscaled) uncertainty due to the alternative PDF
sets ranges from 2.4 to 4.6 MeV. Results for each PDF set, obtained with and without the scal-
ing factors, are reported in Section 6. The scaling of the PDF uncertainty has only a moderate
impact on the total mW uncertainty and leads to a better consistency between the measured mW
values for different PDF sets. Given its agreement with data, relatively large uncertainty, and
consistency with the other PDF sets, we select the CT18Z PDF set for the nominal prediction.
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Table A.2: Goodness-of-fit test statistic for different PDF sets when fitting simultaneously the
ηµ distributions for selected W+ (W−) events and the yµµ distribution for Z → µµ events. The
saturated likelihood ratios, which are expected to follow a χ2 distribution with ndf degrees of
freedom if the model is an accurate representation of the data, and the associated p-value are
both shown. The fit is performed in the nominal configuration with all uncertainties (left col-
umn), nominal configuration without PDF and αs uncertainties (middle column), and nominal
configuration without theory uncertainties (right column).

PDF set
Nominal fit Without PDF+αs unc. Without theory unc.

χ2/ndf p-val. (%) χ2/ndf p-val. (%) χ2/ndf p-val. (%)
CT18Z 100.7/116 84 125.3/116 26 103.8/116 78
CT18 100.7/116 84 153.2/116 1.0 105.7/116 74
PDF4LHC21 97.7/116 89 105.5/116 75 104.1/116 78
MSHT20 97.0/116 90 107.4/116 70 98.8/116 87
MSHT20aN3LO 99.0/116 87 122.8/116 31 101.9/116 82
NNPDF3.1 99.1/116 87 105.5/116 75 115.0/116 51
NNPDF4.0 99.7/116 86 104.3/116 77 116.7/116 46

The PDF uncertainty in mW from the CT18Z set is 4.4 MeV.

Table A.3: Prefit uncertainty scaling factors required to cover the central predictions of the
considered PDF sets and postfit impact on mW , with and without scaled PDF uncertainties.

PDF set Scale factor
Impact on mW (MeV)

Original σPDF Scaled σPDF
CT18Z — 4.4
CT18 — 4.6
PDF4LHC21 — 4.1
MSHT20 1.5 4.3 5.1
MSHT20aN3LO 1.5 4.2 4.9
NNPDF3.1 3.0 3.2 5.3
NNPDF4.0 5.0 2.4 6.0

A.9 Impact of missing higher-order electroweak corrections

By interfacing MINNLOPS with PHOTOS++, QED final-state radiation (FSR) is considered at
leading logarithmic (LL) accuracy, including matrix-element corrections and the effect of lepton
pair production. Uncertainties in the QED FSR modeling are evaluated by propagating the
differences in the post-FSR dimuon mass and pµ

T distributions, by switching off the PHOTOS++
matrix-element corrections and comparing to a prediction from HORACE v3.2 [90, 91], where
the QED FSR is modeled at leading logarithmic (LL) accuracy in the collinear approximation.
The impact on mW is smaller than 0.3 MeV.

The QED initial-state radiation (ISR) is modeled by the PYTHIA 8 parton shower at LL accuracy.
The uncertainty is evaluated by comparing to a sample with ISR photon radiation switched
off. The modifications on the pV

T and yV distributions are propagated through the analysis and
found to have a negligible impact on mW . Besides the photonic corrections, we consider the
impact of EW virtual corrections.

For the neutral-current Drell–Yan process, the separation between weak and photonic correc-
tions can be performed in a gauge-invariant way. The virtual EW corrections are calculated
at NLO with the Z ew process in the POWHEG-BOX-V2 (rev. 3900) program [92, 93] including
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universal higher-order (HO) corrections. The ratios between the NLO+HO EW and LO EW
predictions of the Z boson mass, and of the rapidity and cos θ∗ distributions, are used to define
a systematic variation to the nominal MINNLOPS prediction.

For W boson production, the splitting into virtual and photonic corrections is not gauge in-
variant and is, hence, ambiguous. Nonetheless, it is possible to separate the two contributions,
to reproduce the QED FSR given by PHOTOS++. This separation is implemented in Rene-
SANCe 1.3.11 [94], and the uncertainty in weak virtual corrections is defined as the ratios be-
tween the NLO+HO EW and LO EW predictions of the W boson mass, and of the rapidity
and cos θ∗ distributions. We cross-checked that the full NLO EW corrections (QED plus weak)
agree at the 0.3% level between the POWHEG-BOX-V2 [95] and the ReneSANCe programs, also
confirming previous benchmarks [96]. The uncertainty from the virtual EW corrections has an
impact on mW of 1.9 MeV.

In order to validate the uncertainties in our theoretical predictions and to quantify the sensi-
tivity of our result to alternative pV

T modeling approaches, we performed several additional
checks to demonstrate the stability of the results when modifying the treatment of theoretical
predictions and their uncertainties in the analysis. To facilitate this, we correct our dimuon data
sample for the effect of the detector response by “unfolding” the two-dimensional (pµµ

T , yµµ)
distribution, extending the study reported in Ref. [62]. The Z/γ∗ → µµ production cross sec-
tion is extracted inclusively in the kinematics of the decay muons, defined before final-state
photon radiation, and for 60 < mZ < 120 GeV, pZ

T < 54 GeV, and |yZ | < 2.5. The unfolding is
performed via a maximum likelihood fit to the two-dimensional distribution of (pµµ

T , yµµ) with-
out regularization. The unfolded pZ

T and |yZ | distributions, shown in Fig. A.9, are obtained by
integrating over the other dimension of the measured two-dimensional distribution.
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Figure A.9: Unfolded differential cross sections as functions of pZ
T (left) and |yZ | (right) com-

pared with the prefit prediction from SCETLIB+DYTURBO. The results are obtained with the
selection |yZ | < 2.5 and pZ

T < 54 GeV. The vertical bars represent the statistical uncertainties in
the data. The bottom panel shows the ratio of the unfolded data to the SCETLIB+DYTURBO

prediction.

Figure A.10 compares the pµµ
T distribution measured in the full phase space of the decay leptons

with the prediction of our nominal model of MINNLOPS corrected to SCETLIB+DYTURBO at
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Figure A.10: Measured and simulated pµµ
T distributions in selected Z → µµ events, with the

normalization and uncertainties of the prediction set to the postfit values. The gray band rep-
resents the total systematic uncertainty. The vertical bars represent the statistical uncertainties
in the data. The bottom panel shows the ratio between the number of events observed in data,
including variations in the predictions, and the nominal prediction.

N3LL+NNLO, with N3+0LL TNPs. The predictions of SCETLIB+DYTURBO reflect the best fit
values of the nuisance parameters obtained from the maximum likelihood fit. The ability of this
model to describe the pµµ

T distribution is a fundamental step towards using it in the W-like mZ
and mW analyses. In particular, we find that the observed data have a 16% probability of being
described as well as, or worse than, they are by the model, a level of agreement that validates
the model and its uncertainties.

We have repeated the W-like mZ and mW measurements using predictions from SCETLIB at
different orders of accuracy, matched to DYTURBO, as well as different approaches to incorpo-
rate the TNPs. When using N3+1LL and N4+0LL predictions and uncertainties, the measured
value of mW is shifted by less than 0.5 MeV, to be compared with the 2.0 MeV of total pW

T -
modeling uncertainty of the nominal result. Although the approximate N4LL predictions [23]
give slightly reduced pW

T uncertainties, the difference in the total uncertainty in mW is negligi-
ble when compared with the nominal result.

We have further assessed the impact of incorporating the Z → µµ data in our model. For the
W-like mZ measurement, the nominal prediction is corrected to the unfolded pZ

T distribution
shown in Fig 2. The value of mZ extracted from this configuration differs by −1.8 MeV with

respect to the nominal result, within the 1.8 MeV uncertainty due to the pZ
T modeling. The

stability of these results, and their consistency with the independently measured value of mZ ,
supports the use of the SCETLIB+DYTURBO prediction and its uncertainties.

We also test the impact of adjusting the pW
T distribution from the measured pZ

T distribution.
For this comparison, we apply a correction to the pW

T distribution derived from the ratio of our
pµµ

T data to the pZ
T prediction from SCETLIB+DYTURBO. However, because of the differences

between W and Z boson production, we do not consider this procedure to be an acceptable
approach for the nominal result. The resulting shift in mW with respect to the nominal analysis
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is smaller than 0.5 MeV and the change in the total uncertainty is negligible. This result is
expected, given the excellent agreement found in the nominal analysis between the pµµ

T data
and prediction, after the maximum likelihood fit.

Finally, we test a simultaneous fit to the (pµ
T , ηµ , qµ) distribution in W → µν events and the

(pµµ
T , yµµ) distribution in Z → µµ events. The TNPs are correlated across the W and Z boson

processes, whereas uncertainties in the matching contributions and angular coefficients are left
uncorrelated between the different processes. For the nonperturbative model, the Gaussian
smearing parameters are considered independent for W and Z, whereas the CS anomalous
rapidity is correlated. The mW value extracted in this fit is shifted by +0.6 MeV compared
with the nominal result. The total uncertainty is moderately reduced because of additional
constraints on theory and experimental uncertainties that are correlated across the W and Z
processes. Figure A.11 presents a summary of these results, shown as a comparison to the
nominal result and its uncertainty.

-20 -10 0 10
mW (MeV)

N3+1LL+NNLO

N4+0LL+NNLO

pT  rwgt.,
 N3+0LL unc.
Combined pT  fit,
 N3+0LL unc.

16.8 fb 1 (13 TeV)CMS
N3+0LL+NNLO
 (nominal)

Figure A.11: Comparison of the nominal result and its theory uncertainty, using
SCETLIB+DYTURBO at N3LL+NNLO, with the difference in mW measured when using al-

ternative approaches to the pW
T modeling and its uncertainty. The results from alternative

approaches to the pW
T modeling and uncertainty are shown as points. The solid black line

represents the nominal result, the inner shaded gray band shows the pW
T modeling uncertainty,

and the outer shaded gray band shows the total uncertainty in the nominal result. The pW
T

modeling uncertainties are shown as the inner bars while the outer bars denote the total uncer-
tainty.

The impact of including the pµµ
T data in the fit is illustrated in Fig. A.12, which compares the

generator-level pW
T spectrum modified by the best fit values of nuisance parameters for the two

fits. The consistency of the two results supports the conclusion that the pµµ
T measurement is

not required as an input to describe the pW
T distribution, with the added benefit of a reduced

model dependence of the result. In fact, the loose assumptions about the correlation of the
nonperturbative parameters between W and Z boson production limit the impact of including
the pµµ

T data.

A.10 Helicity fit

While the theoretical model and uncertainties described in Section 5 reflect our best knowl-
edge of QCD and of the proton structure, approximations of this model or the presence of new
physics motivates the extraction of mW using a parallel approach with a reduced model depen-
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Figure A.12: The generator-level pW
T distribution, with three instances of the prediction and

their uncertainty: before the maximum likelihood fit (“prefit”), and reflecting the results of the
two fits described in the text. The distribution and uncertainties obtained from the combined
(pµ

T , ηµ , qµ) and (pµµ
T , yµµ) fit is shown in red, whereas the purple band shows the distribu-

tion obtained from the nominal (pµ
T , ηµ , qµ) fit. The generator-level distribution predicted by

SCETLIB+DYTURBO before incorporating in situ constraints is shown in gray. The ratio of the
postfit predictions to the prefit prediction (in gray), as well as their uncertainties, are shown by
the shaded bands in the lower panel.

dence, which we call “helicity fit”. With this technique we extract, from a likelihood fit to the
(pµ

T , ηµ , qµ) distribution, not only the mass of the W boson but also, simultaneously, its polar-
ization and the pW

T and yW spectra. At the core of this alternative analysis is the observation
that mW variations induce a uniform scaling of the pµ

T spectrum, whereas changes in the W

boson polarization or in the (pW
T , yW) double-differential cross sections lead to a nonuniform

sculpting of the pµ
T and ηµ spectra. We implement variations in the W boson polarization and in

the (pW
T , yW) distribution as a set of independent nuisance parameters in the signal likelihood

function that is used to fit the measured (pµ
T , ηµ , qµ) distribution. The W boson polarization

enters into our analysis procedure through the helicity decomposition of Eq. (4). We use he-
licity cross sections, σi, which correspond to the product of the angular coefficients Ai and the
unpolarized cross section, and we neglect the terms with i > 4, predicted to be zero in first
approximation and having no effect on our measurement (given that we integrate over the ϕ∗

angle in Eq. (4)).

For each muon charge, the analysis covers the pV
T vs. yV plane with nuisance parameters that

represent variations of the production cross section, separately for 7 bins in yV (within |yV | < 3)
times 8 bins in pV

T (for pV
T < 60 GeV), plus 16 overflow bins. The five σi helicity cross sections

(with i = 0–4) plus the unpolarized cross section (σU+L) are defined for each of those 144
bins, leading to a total of 864 nuisance parameters. We propagate variations in the helicity
amplitudes, which depend on the unobserved pW

T and yW , into a multitude of (pµ
T , ηµ , qµ) dis-

tributions, obtained by reweighting the simulated events. For each individual variation, the
sum of all contributions is recomputed to get a new prediction for the (pµ

T , ηµ , qµ) distribution.
The nuisance parameters are constrained around the theoretical predictions with uncertainties
that are relaxed with respect to their theoretical values, used for the nominal result. The σU+L
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and σ4 parameters have very loose initial constraints, of ±50% and ±100% of the predicted
cross sections, respectively. The initial uncertainties in the four other helicity terms, for which
the fit has limited constraining power, are defined by the spread of theory predictions (reflect-
ing missing higher orders) and by uncertainties covering several different PDF sets. To ensure
coverage of all possible correlated variations allowed by the theory model used in the baseline
analysis, in addition to the explicit helicity cross section variations we also retain the PDF and
missing higher-order uncertainties, as well as the primordial-kT smearing and nonperturbative
uncertainties in the angular coefficients. The latter two are also retained in the unpolarized
term, given that their impact on the cross section at low pV

T is significant within the finite-width
bins of the helicity cross section variations. In contrast, we do not consider uncertainties in
the unpolarized cross section from resummation, matching, and missing higher orders because
they are largely redundant with respect to the explicit σU+L variations. This approach results in
a significant reduction in model-dependent assumptions with respect to the nominal analysis.

We validate the helicity fit approach by measuring a negligible mW bias in pseudo-data sam-

ples generated with different PDF sets and pW
T or yW spectra, and by measuring the Z boson

mass in the W-like configuration. The expected mW uncertainty is evaluated for different prefit
constraints on the helicity nuisance parameters. We observe only a mild dependence of the
mW uncertainty on all helicity terms, except for σ3, whose variations have a similar impact on
pµ

T as those resulting from mW variations. Therefore, in the mW extractions made to verify the
stability of the measurement, we scale the prefit uncertainties of σ3 and of all the other σi terms
by two independent factors.

80260 80310 80360 80410 80460
mW (MeV)

16.8 fb 1 (13 TeV)CMS
Nominal result

3 × 0.5, others × 1

3 × 0.5, others × 2

3 × 0.5, others × 5

Helicity fit

3 × 1, others × 2

3 × 1, others × 5

3 × 2, others × 1

3 × 2, others × 2

3 × 2, others × 5

Figure A.13: The W boson mass measured with the helicity fit for different scaling scenarios of
the prefit helicity cross section uncertainties, denoted by ∆σ3

and ∆σothers
for the σ3 and the other

components, respectively. The points are grouped and colored according to the scaling of σ3.
The black line indicates the nominal result, with its uncertainties shown in the gray band.

Figure A.13 shows the mW values measured with the helicity fit for different scenarios of the pr-
efit helicity cross section uncertainties. We halved or doubled the default σ3 prefit uncertainty,
to study possible shifts of the central value under more aggressive or conservative theoretical
assumptions. For each of those scenarios, we inflated the other helicity cross section uncer-
tainties by factors of 2 or 5 (in addition to the nominal uncertainty). All eight extra cases give
central mW values that are stable and consistent with both the baseline and helicity fit nominal

results. Figure A.14 shows the W boson differential cross sections in pW
T and |yW |, extracted
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from the (pµ
T , ηµ , qµ) distributions through the decomposition of the helicity amplitudes in pW

T
and yW bins.
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Figure A.14: Differential W boson production cross section, in the W → µν decay channel,
in pW

T (left) and |yW | (right), measured from the (pµ
T , ηµ , qµ) distributions using the helicity fit

approach (red). The SCETLIB+DYTURBO generator-level predictions, before incorporating in
situ constraints, are also shown (in gray). The results are shown for the selection |yW | < 3.0
and pW

T < 54 GeV. The lower panel shows the ratio between the postfit and prefit spectra.

A.11 Details regarding the W-like Z and W boson mass measurements

Figures A.15 and A.16 show the (pµ
T , ηµ) distributions, used in the binned maximum likelihood

template fits to perform the W-like mZ and mW measurements, respectively. The ηµ binning
allows sensitivity to discontinuities in the geometry of the detectors and maximally exploits
in situ constraints of systematic uncertainties. The pµ

T binning roughly corresponds to the pµ
T

resolution, useful to enhance the sensitivity to the measured mass, while avoiding fluctuations
in the simulated templates that could potentially lead to undercoverage of the estimated un-
certainties [48]. The predicted and observed pµ

T distribution of the W-like analysis, with the
prediction corrected by the best fit values of the nuisance parameters after the maximum like-
lihood fit to the (pµ

T , ηµ , qµ) distribution, is shown in Fig. A.17. The impact of a variation of
mZ corresponding to the total uncertainty of the measurement is also shown, as well as the
uncertainties in the prediction, illustrating the precision of the measurement.

The dominant uncertainties in mW are the pµ
T scale and the PDFs. The individual systematic un-

certainties in the W-like mZ and mW measurements are presented in Table A.4. The uncertainty
breakdown labeled as “Nominal impact” is computed according to the procedure described
in Ref. [25], where the data statistical uncertainty corresponds to a hypothetical analysis with
no systematic uncertainties. The impact for all other sources of uncertainty corresponds to the
amount by which the total uncertainty would decrease in quadrature if that source were re-
moved from the analysis. The total uncertainty cannot be calculated as the sum in quadrature
of the impacts because of correlations between the partial uncertainties.

This uncertainty breakdown is not directly comparable to that of ATLAS [10], which uses an
alternative method to define the uncertainty contributions, referred to as “global” impacts [97].
In that approach, the data statistical uncertainty is, instead, computed with the nuisance pa-
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Figure A.15: Measured and predicted (pµ
T , ηµ) distributions used in the W-like mZ measure-

ment, for positively (upper) and negatively (lower) charged muons. The two-dimensional dis-
tribution is “unrolled” such that each bin on the x-axis represents one (pµ

T , ηµ) cell. The gray
band represents the uncertainty in the prediction, before the fit to the data. The bottom panel
shows the ratio of the number of events observed in data to the nominal prediction. The verti-
cal bars represent the statistical uncertainties in the data.
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Figure A.16: Measured and predicted (pµ
T , ηµ) distributions used in the mW measurement, for

positively (upper) and negatively (lower) charged muons. The two-dimensional distribution
is “unrolled” such that each bin on the x-axis represents one (pµ

T , ηµ) cell. The gray band rep-
resents the uncertainty in the prediction, before the fit to the data. The bottom panel shows
the ratio of the number of events observed in data to the nominal prediction. The vertical bars
represent the statistical uncertainties in the data.
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Figure A.17: Measured and simulated pµ
T distributions, with the prediction adjusted according

to the best fit values of nuisance parameters and of mZ obtained from the maximum likelihood
fit of the W-like mZ analysis. The vertical bars represent the statistical uncertainties in the data.
The bottom panel shows the ratio of the number of events observed in data to the nominal
prediction. The solid and dashed purple lines represent, respectively, the relative impact of an
increase and decrease of mZ by 14 MeV. The uncertainties in the predictions, after the system-
atic uncertainty profiling in the maximum likelihood fit, are shown by the shaded band.

Table A.4: Uncertainties in the W-like mZ and mW measurements, with contributions to
the total uncertainty from individual sources separated according to the “nominal” [25] and
“global” [97] definitions of the impacts.

Source of uncertainty
Impact (MeV)

Nominal Global
in mZ in mW in mZ in mW

Muon momentum scale 5.6 4.8 5.3 4.4
Muon reco. efficiency 3.8 3.0 3.0 2.3
W and Z angular coeffs. 4.9 3.3 4.5 3.0
Higher-order EW 2.2 2.0 2.2 1.9
pV

T modeling 1.7 2.0 1.0 0.8
PDF 2.4 4.4 1.9 2.8
Nonprompt-muon background — 3.2 — 1.7
Integrated luminosity 0.3 0.1 0.2 0.1
MC sample size 2.5 1.5 3.6 3.8
Data sample size 6.9 2.4 10.1 6.0
Total uncertainty 13.5 9.9 13.5 9.9

rameters present in the fit. If the data constrain the nuisance parameters in situ, beyond the
externally imposed constraints, then fluctuations in the data and the simulated event samples
become correlated with the fitted values of the nuisance parameters, which in turn increases the
statistical components of the uncertainty. The impacts of systematic sources are computed con-
sidering fluctuations of the corresponding external measurements (i.e., of the so-called “global
observables”) within their uncertainties. In the presence of stronger in situ constraints, this
method typically leads to smaller impacts than our approach. These two procedures only dif-
fer in the split between the statistical and systematic components of the uncertainty; they do
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not impact the total uncertainty of the result. To facilitate the comparison with the uncertainty
breakdown of the ATLAS measurement, Table A.4 also reports the leading uncertainties using
global impacts.

Table A.5: Number of nuisance parameters for the main groups of systematic uncertainties,
for the W-like mZ and mW fits. The number of parameters is displayed only once when it is
the same for both fits, while “—” means that this source is not relevant. For completeness,
subgroups of parameters are also reported as indented labels for a few groups.

Systematic uncertainties W-like mZ mW
Muon efficiency 3127 3658

Muon eff. veto — 531
Muon eff. syst. 343
Muon eff. stat. 2784

Nonprompt-muon background — 387
Prompt-muon background 2 3
Muon momentum scale 314
L1 prefiring 14
Integrated luminosity 1
PDF (CT18Z) 60
Angular coefficients 177 353

W MINNLOPS µF, µR — 176
Z MINNLOPS µF, µR 176
PYTHIA shower kT 1

pV
T modeling 22 32
Nonperturbative 4 10
Perturbative 4 8
Theory nuisance parameters 10
c, b quark mass 4

Higher-order EW 6 7
Z boson width 1
Z boson mass — 1
W boson width — 1
sin2 θW 1
Total 3725 4833

Table A.5 shows a summary of the number of nuisance parameters included in the likelihood
for the W-like mZ and mW fits. The parameters are categorized into groups, corresponding
to the main sources of uncertainty reported in Table A.4, and gathering conceptually related
systematic uncertainties. Uncertainties specific to W bosons, for instance the mass or width
variations, are not implemented in the W-like mZ analysis because the W + jets background is
negligible.

A.12 Measurement of mW+ − mW−

Our measurement assumes that the W+ and W− bosons have identical masses, mW+ = mW− ,
as required by CPT symmetry. This requirement reduces the impact of uncertainties that affect
the two charges differently, including the PDFs, angular coefficients, and the alignment terms
of the muon momentum calibration. By relaxing this requirement, we perform a measurement
of the mass difference,

mW+ − mW− = 57.0 ± 30.3 MeV.
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The significant increase in the uncertainty compared with the mW measurement is due to un-
certainties that have a strong negative correlation between the two charges. In particular, the
muon momentum calibration contributes an uncertainty of 22.0 MeV, the angular coefficients
contribute 18.7 MeV, and the PDF uncertainty is 11.8 MeV. The statistical uncertainty of the
data is 4.7 MeV. The p-value indicating the compatibility of this result and the expectation of
mW+ − mW− = 0 is 6.0%, or about 1.9 standard deviations. The correlation coefficient between
mW+ and mW− is −0.40, whereas the correlation between the mass difference and mass average
is only 0.02. The small correlation between mW and mW+ − mW− is a consequence of a strong
degree of anticorrelation for the alignment components of the pµ

T calibration uncertainties, and
the uncertainties in the A3 angular coefficient.

As a validation of this result, we also perform the corresponding measurement in the case of
the W-like mZ measurement using the positively and negatively charged muons. In this case,
the two leptons are from the same object and, therefore, the comparison is purely a validation
of the theoretical and experimental inputs. The result when selecting positively charged muons
in odd event-number events is

mZ+ − mZ− = 30.9 ± 32.5 MeV,

and for the reversed muon charge vs. event number selection we get

mZ+ − mZ− = 6.4 ± 32.3 MeV.

Apart from the PDFs, which are not relevant for this measurement, the breakdown of uncer-
tainties is similar to the mW+ − mW− case. The muon momentum scale and the angular coeffi-
cients contribute uncertainties of 23.1 and 14.5 MeV, respectively. The statistical uncertainty of
the data is 13.9 MeV.

Table A.6 shows the impacts on the difference between the measured mass with positive or
negative muons in the W-like mZ and mW analyses, comparing with the nominal result from the
simultaneous fit to both charges, and using nominal impacts. The breakdown of uncertainties
from the global definition of the impacts is also reported, for completeness.

We have performed several additional checks that confirm that the small tension with the ex-
pectation of mW+ = mW− does not reflect a bias or an underestimation of our uncertainties that
would impact our result. The alignment components of the muon momentum scale calibration
and the A3 angular coefficient uncertainties are the dominant sources affecting the mW+ −mW−
measurement. Therefore, we repeat both measurements after varying the central value of these
parameters by one standard deviation (σ) such that the charge difference is reduced, keeping
their relative uncertainty fixed. Up variations of the pµ

T scale alignment terms, and down vari-
ations of the A3 coefficient uncertainties, each reduce mW+ − mW− . The maximum shift in
mW+ − mW− when varying these two terms, either independently or coherently, moves the
result towards zero by 1.2σ, compared with the mW+ − mW− measurement with the nominal
uncertainty model. In the extreme configuration where the alignment term is varied by 3σ,
resulting in mW+ − mW− ≈ 0, the extracted mW differs from our nominal result by 0.6 MeV.

A.13 Results with alternative parton distribution functions

We performed the mW measurement using alternative PDF sets, with and without scaling fac-
tors, following the procedure described in Section A.8. The results are shown in Table A.7 and
Fig. A.18.

The scaling procedure, combined with the uncertainty profiling and in situ data constraints,
improves the consistency between the mW results obtained with the different PDF sets. If no
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Table A.6: Uncertainties in the W-like mZ and mW measurements, comparing the mass differ-
ence between charges and the nominal charge combination, using nominal (upper) and global
(lower) impacts.

Source of uncertainty
Nominal impact (MeV)

in mZ+ − mZ− in mZ in mW+ − mW− in mW

Muon momentum scale 23.1 5.6 21.6 4.8
Muon reco. efficiency 7.1 3.8 7.2 3.0
W and Z angular coeffs. 14.5 4.9 18.7 3.3
Higher-order EW 0.2 2.2 1.5 2.0
pV

T modeling 0.6 1.7 7.4 2.0
PDF 0.9 2.4 11.8 4.4
Nonprompt-muon background — — 7.5 3.2
Integrated luminosity <0.1 0.3 0.1 0.1
MC sample size 4.9 2.5 3.0 1.5
Data sample size 13.9 6.9 4.7 2.4
Total uncertainty 32.5 13.5 30.3 9.9

Source of uncertainty
Global impact (MeV)

in mZ+ − mZ− in mZ in mW+ − mW− in mW

Muon momentum scale 21.2 5.3 20.0 4.4
Muon reco. efficiency 6.5 3.0 5.8 2.3
W and Z angular coeffs. 13.9 4.5 13.7 3.0
Higher-order EW 0.2 2.2 1.5 1.9
pV

T modeling 0.4 1.0 2.7 0.8
PDF 0.7 1.9 4.2 2.8
Nonprompt-muon background — — 4.8 1.7
Integrated luminosity <0.1 0.2 0.1 0.1
MC sample size 6.4 3.6 8.4 3.8
Data sample size 18.1 10.1 13.4 6.0
Total uncertainty 32.5 13.5 30.3 9.9

Table A.7: The mW values measured for different PDF sets, with uncertainties scaled following
the procedure described in Section A.8 and with the default unscaled uncertainties.

PDF set
Extracted mW (MeV)

Original σPDF Scaled σPDF
CT18Z 80 360.2 ± 9.9
CT18 80 361.8 ± 10.0
PDF4LHC21 80 363.2 ± 9.9
MSHT20 80 361.4 ± 10.0 80 361.7 ± 10.4
MSHT20aN3LO 80 359.9 ± 9.9 80 359.8 ± 10.3
NNPDF3.1 80 359.3 ± 9.5 80 361.3 ± 10.4
NNPDF4.0 80 355.1 ± 9.3 80 357.0 ± 10.8
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Figure A.18: Difference in mW values for six alternative recent PDF sets, when using the orig-
inal uncertainty for the given set (left) and when the uncertainties are scaled to accommodate
the central prediction of the other sets (right). Each point corresponds to the result obtained
when using the indicated PDF set and its uncertainty for the simulated predictions. The inner
bar shows the uncertainty from the PDF, and the outer bar shows the total uncertainty. The
nominal result, using CT18Z, is shown by the black line, with the CT18Z PDF and total uncer-
tainty shown in dark and light gray, respectively. The uncertainty scaling procedure described
in Section A.8 improves the consistency of the mW values across the PDF sets and with the
nominal result.

uncertainty scaling is used, the results vary by 8.1 MeV, from 80 355.1 ± 9.3 MeV (NNPDF4.0)
to 80 363.2 ± 9.9 MeV (PDF4LHC21). If we use the uncertainty scaling, the spread of results is
reduced to 6.2 MeV, ranging from 80 357.0 ± 10.8 MeV (NNPDF4.0 with uncertainties scaled by
5.0) to 80 363.2 ± 9.9 MeV (PDF4LHC21 with no scaling factor). The spread of these values is
within the total PDF uncertainty of our nominal measurement (performed with CT18Z).

A.14 Additional validation checks of experimental inputs

A number of additional tests were performed to ensure that the analysis is robust with respect
to variations in the selections used.

The mZ extraction from Z → µµ events is performed in subsets of events defined by the relative
location of the two muons in the CMS detector. Figure A.19 shows that the nominal mZ result
is compatible with the results obtained when both muons are central (|ηµ | < 0.9), one is central
and one is forward, or both are forward. The same exercise is performed depending on ηµ , by
requiring both muons on the ηµ < 0 half of the detector, both on the positive half, and one in
each half of the detector, with the same conclusions.

Concerning the W-like mZ and mW analyses, the mV extraction is performed in 24 bins of ηµ .
The results are shown in Fig. A.20, where the compatibility with the nominal result can also be
appreciated.

Other tests that were performed and also showed no incompatibility with the corresponding
nominal result include:

1. Performing the W-like mZ and mW analyses splitting events by the sign of ηµ , for each
half of the CMS detector separately.

2. Performing the mW analysis reducing the pµ
T range considered by removing 4 GeV on the

high end, on the low end, and on both ends.
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Figure A.19: The difference between the nominal mZ value measured from the Z → µµ events
and the result where mZ is allowed to vary, in three regions of the ηµ of the two muons. The
results binned in |ηµ | (both central, one central and one forward, and both forward) are shown
on the left and results binned in ηµ (both negative, one positive and one negative, and both
positive) are shown on the right. The result of a fit with three mZ parameters is compared with
the result with a single mZ parameter and the compatibility of the results is also shown, as
assessed via the saturated goodness-of-fit test. The points show the mZ result for the indicated
ηµ region and the horizontal bars represent the calibration (orange line), statistical (red line),
and total (black line) uncertainties. The black vertical line represents the result with a single mZ
parameter, with the three shaded gray bands representing the statistical (dark grey), calibration
(intermediate grey), and total (light grey) uncertainties.
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Figure A.20: For the W-like mZ analysis (left) and the mW measurement (right) the result of a
fit with 24 mV parameters corresponding to different ηµ ranges is compared with the nominal
mV fit result. The χ2-like compatibility of the two fits is also shown, assessed via the saturated
goodness-of-fit test. The points show mV result for the indicated ηµ region, and the horizontal
bars represent the calibration (orange line), statistical (red line), and total (black line) uncertain-
ties. The black vertical line shows the result with a single mV parameter, with the shaded gray
bands representing its statistical, calibration, and total uncertainties.
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3. Performing the mW analysis treating the normalization of the W signal process uncon-
strained. A scaling factor of 0.979 ± 0.026 is obtained, in agreement with the SM expecta-
tion of unity.

Tabulated results are provided in the HEPData record for this work [98].
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Data availability
Release and preservation of data used by the CMS Collaboration as the basis for publications
is guided by the CMS data preservation, re-use and open access policy.

Code availability
The CMS core software is publicly available in our GitHub repository.
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P. Major , G. Pásztor , G.I. Veres

Faculty of Informatics, University of Debrecen, Debrecen, Hungary
B. Ujvari , G. Zilizi

HUN-REN ATOMKI - Institute of Nuclear Research, Debrecen, Hungary
G. Bencze, S. Czellar, J. Molnar, Z. Szillasi

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Csorgo33 , F. Nemes33 , T. Novak

Panjab University, Chandigarh, India
S. Bansal , S.B. Beri, V. Bhatnagar , G. Chaudhary , S. Chauhan , N. Dhingra35 ,
A. Kaur , A. Kaur , H. Kaur , M. Kaur , S. Kumar , T. Sheokand, J.B. Singh ,
A. Singla

University of Delhi, Delhi, India
A. Bhardwaj , A. Chhetri , B.C. Choudhary , A. Kumar , A. Kumar , M. Naimuddin ,
K. Ranjan , M.K. Saini, S. Saumya

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
S. Baradia , S. Barman36 , S. Bhattacharya , S. Das Gupta, S. Dutta , S. Dutta, S. Sarkar

Indian Institute of Technology Madras, Madras, India

https://orcid.org/0000-0001-8988-2035
https://orcid.org/0000-0002-2403-5801
https://orcid.org/0000-0002-8009-3723
https://orcid.org/0000-0001-7804-9902
https://orcid.org/0009-0001-1997-2841
https://orcid.org/0000-0001-6506-3107
https://orcid.org/0000-0003-0193-3032
https://orcid.org/0000-0001-6696-349X
https://orcid.org/0000-0001-8989-8387
https://orcid.org/0009-0008-4575-5729
https://orcid.org/0000-0002-3190-7962
https://orcid.org/0000-0002-6198-8388
https://orcid.org/0000-0003-1644-7678
https://orcid.org/0000-0002-0869-5631
https://orcid.org/0000-0001-5071-9783
https://orcid.org/0000-0002-8597-9259
https://orcid.org/0000-0002-0726-1452
https://orcid.org/0000-0001-9828-9778
https://orcid.org/0000-0003-0456-7250
https://orcid.org/0000-0003-4337-0098
https://orcid.org/0000-0003-2618-9203
https://orcid.org/0009-0009-1748-974X
https://orcid.org/0000-0003-2808-7315
https://orcid.org/0000-0002-4021-4260
https://orcid.org/0000-0001-7040-9846
https://orcid.org/0000-0003-1539-923X
https://orcid.org/0000-0001-9894-2095
https://orcid.org/0000-0002-7069-9019
https://orcid.org/0000-0002-7467-2980
https://orcid.org/0000-0002-7703-3973
https://orcid.org/0000-0002-0965-2748
https://orcid.org/0000-0002-5223-9342
https://orcid.org/0000-0003-2774-204X
https://orcid.org/0000-0002-6237-5209
https://orcid.org/0000-0002-0408-2811
https://orcid.org/0000-0003-3887-5358
https://orcid.org/0000-0001-9456-383X
https://orcid.org/0000-0002-0029-493X
https://orcid.org/0000-0001-6070-7698
https://orcid.org/0000-0002-1931-6027
https://orcid.org/0000-0001-6277-7171
https://orcid.org/0000-0001-5061-7031
https://orcid.org/0000-0002-2375-5401
https://orcid.org/0000-0001-6958-4196
https://orcid.org/0000-0001-8448-883X
https://orcid.org/0000-0003-4958-0408
https://orcid.org/0000-0001-5680-8357
https://orcid.org/0000-0001-5212-4353
https://orcid.org/0000-0003-0287-1937
https://orcid.org/0000-0002-4280-2541
https://orcid.org/0000-0002-6360-0869
https://orcid.org/0000-0002-8440-0487
https://orcid.org/0000-0002-0805-0809
https://orcid.org/0000-0002-5903-5481
https://orcid.org/0009-0009-3752-6253
https://orcid.org/0000-0002-7440-4396
https://orcid.org/0000-0003-3247-8909
https://orcid.org/0000-0002-9937-3063
https://orcid.org/0000-0002-2225-7160
https://orcid.org/0000-0002-7193-800X
https://orcid.org/0000-0003-0091-477X
https://orcid.org/0000-0001-8810-0388
https://orcid.org/0000-0001-9608-3901
https://orcid.org/0000-0001-9783-0315
https://orcid.org/0000-0002-3154-6925
https://orcid.org/0000-0003-1740-6974
https://orcid.org/0000-0002-5043-2958
https://orcid.org/0000-0002-8305-6661
https://orcid.org/0000-0001-5559-0106
https://orcid.org/0000-0002-5476-0414
https://orcid.org/0000-0003-0707-9762
https://orcid.org/0000-0002-5440-4356
https://orcid.org/0000-0003-0498-4265
https://orcid.org/0000-0002-0480-0000
https://orcid.org/0000-0002-9110-9663
https://orcid.org/0000-0002-1451-6484
https://orcid.org/0000-0001-6253-4356
https://orcid.org/0000-0003-1992-0336
https://orcid.org/0000-0002-8392-9610
https://orcid.org/0000-0003-0168-3336
https://orcid.org/0000-0001-6974-4129
https://orcid.org/0000-0002-7200-6204
https://orcid.org/0000-0002-1640-9180
https://orcid.org/0000-0003-3609-4777
https://orcid.org/0000-0002-8659-7092
https://orcid.org/0000-0002-3440-2767
https://orcid.org/0000-0001-9212-9108
https://orcid.org/0000-0001-9029-2462
https://orcid.org/0000-0003-2550-139X
https://orcid.org/0000-0002-7544-3258
https://orcid.org/0000-0001-7495-1923
https://orcid.org/0000-0001-5029-1887
https://orcid.org/0000-0003-3407-4094
https://orcid.org/0000-0002-5180-6595
https://orcid.org/0000-0003-4542-386X
https://orcid.org/0000-0002-5540-3750
https://orcid.org/0000-0001-7842-9518
https://orcid.org/0000-0001-9860-7262
https://orcid.org/0000-0001-8891-1674
https://orcid.org/0000-0002-8110-4957
https://orcid.org/0000-0001-9650-8121


58

M.M. Ameen , P.K. Behera , S.C. Behera , S. Chatterjee , G. Dash , P. Jana ,
P. Kalbhor , S. Kamble , J.R. Komaragiri37 , D. Kumar37 , T. Mishra , B. Parida38 ,
P.R. Pujahari , N.R. Saha , A.K. Sikdar , R.K. Singh , P. Verma , S. Verma , A. Vijay

Tata Institute of Fundamental Research-A, Mumbai, India
S. Dugad, G.B. Mohanty , M. Shelake, P. Suryadevara

Tata Institute of Fundamental Research-B, Mumbai, India
A. Bala , S. Banerjee , S. Bhowmik , R.M. Chatterjee, M. Guchait , Sh. Jain , A. Jaiswal,
B.M. Joshi , S. Kumar , G. Majumder , K. Mazumdar , S. Parolia , A. Thachayath

National Institute of Science Education and Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Odisha, India
S. Bahinipati39 , C. Kar , D. Maity40 , P. Mal , K. Naskar40 , A. Nayak40 , S. Nayak,
K. Pal , P. Sadangi, S.K. Swain , S. Varghese40 , D. Vats40

Indian Institute of Science Education and Research (IISER), Pune, India
S. Acharya41 , A. Alpana , S. Dube , B. Gomber41 , P. Hazarika , B. Kansal ,
A. Laha , B. Sahu41 , S. Sharma , K.Y. Vaish

Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi42 , A. Jafari43 , M. Zeinali44

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Bashiri, S. Chenarani45 , S.M. Etesami , Y. Hosseini , M. Khakzad , E. Khazaie ,
M. Mohammadi Najafabadi , S. Tizchang46

University College Dublin, Dublin, Ireland
M. Felcini , M. Grunewald
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B. Huber , V. Innocente , T. James , P. Janot , O. Kaluzinska , O. Karacheban27 ,
G. Karathanasis , S. Laurila , P. Lecoq , E. Leutgeb , C. Lourenço , M. Magherini ,
L. Malgeri , M. Mannelli , M. Matthewman, A. Mehta , F. Meijers , S. Mersi ,
E. Meschi , V. Milosevic , F. Monti , F. Moortgat , M. Mulders , I. Neutelings ,
S. Orfanelli, F. Pantaleo , G. Petrucciani , A. Pfeiffer , M. Pierini , M. Pitt , H. Qu ,
D. Rabady , B. Ribeiro Lopes , F. Riti , M. Rovere , H. Sakulin , R. Salvatico ,
S. Sanchez Cruz , S. Scarfi , C. Schwick, M. Selvaggi , A. Sharma , K. Shchelina ,
P. Silva , P. Sphicas59 , A.G. Stahl Leiton , A. Steen , S. Summers , D. Treille ,
P. Tropea , D. Walter , J. Wanczyk60 , J. Wang, S. Wuchterl , P. Zehetner , P. Zejdl ,
W.D. Zeuner

PSI Center for Neutron and Muon Sciences, Villigen, Switzerland

https://orcid.org/0000-0002-8407-3236
https://orcid.org/0000-0001-8486-4604
https://orcid.org/0000-0003-4702-4598
https://orcid.org/0000-0002-1542-0855
https://orcid.org/0000-0003-0914-7474
https://orcid.org/0000-0001-8057-9152
https://orcid.org/0000-0003-2093-7856
https://orcid.org/0000-0002-6342-6215
https://orcid.org/0000-0002-6076-4083
https://orcid.org/0000-0003-0112-1691
https://orcid.org/0000-0002-3656-0259
https://orcid.org/0000-0001-9057-5614
https://orcid.org/0000-0002-8511-7958
https://orcid.org/0000-0002-9702-6359
https://orcid.org/0000-0003-2346-1590
https://orcid.org/0000-0002-0122-313X
https://orcid.org/0000-0003-2688-8047
https://orcid.org/0000-0003-2950-976X
https://orcid.org/0000-0002-4532-6464
https://orcid.org/0000-0001-6508-5090
https://orcid.org/0000-0001-6436-7547
https://orcid.org/0000-0002-4985-6964
https://orcid.org/0000-0003-0027-7969
https://orcid.org/0000-0003-1581-6152
https://orcid.org/0000-0001-8808-4533
https://orcid.org/0000-0002-1941-9333
https://orcid.org/0000-0001-9634-848X
https://orcid.org/0000-0003-3606-1780
https://orcid.org/0000-0003-2821-4249
https://orcid.org/0000-0003-3036-7965
https://orcid.org/0000-0001-7390-1457
https://orcid.org/0000-0003-3737-4121
https://orcid.org/0000-0002-1654-2846
https://orcid.org/0000-0002-7533-2283
https://orcid.org/0000-0002-0798-9806
https://orcid.org/0000-0001-7767-4810
https://orcid.org/0000-0001-5080-0821
https://orcid.org/0000-0002-5213-3708
https://orcid.org/0000-0001-7191-1125
https://orcid.org/0000-0002-8087-3199
https://orcid.org/0000-0002-0315-4107
https://orcid.org/0000-0001-8264-0287
https://orcid.org/0000-0002-7225-7310
https://orcid.org/0000-0002-2993-8663
https://orcid.org/0000-0002-4030-2551
https://orcid.org/0000-0002-1905-1874
https://orcid.org/0000-0002-7088-8557
https://orcid.org/0000-0001-7301-0670
https://orcid.org/0000-0002-0367-4022
https://orcid.org/0000-0002-7205-2040
https://orcid.org/0000-0003-0687-5214
https://orcid.org/0000-0002-4824-1087
https://orcid.org/0000-0002-1077-6553
https://orcid.org/0000-0003-2726-7111
https://orcid.org/0009-0000-8013-2289
https://orcid.org/0000-0002-3224-956X
https://orcid.org/0000-0002-7737-5121
https://orcid.org/0000-0003-4295-5668
https://orcid.org/0000-0001-7481-7273
https://orcid.org/0000-0002-5180-4020
https://orcid.org/0000-0002-9157-1700
https://orcid.org/0000-0002-4974-8330
https://orcid.org/0000-0002-6797-7209
https://orcid.org/0000-0002-6823-8854
https://orcid.org/0000-0003-2424-1303
https://orcid.org/0000-0002-6941-8478
https://orcid.org/0000-0002-6366-837X
https://orcid.org/0000-0002-3792-7665
https://orcid.org/0000-0002-4747-9106
https://orcid.org/0000-0001-9416-1742
https://orcid.org/0000-0002-4359-836X
https://orcid.org/0000-0001-8540-1097
https://orcid.org/0000-0002-4927-4921
https://orcid.org/0000-0001-8822-4727
https://orcid.org/0000-0002-8336-3282
https://orcid.org/0000-0002-2988-9830
https://orcid.org/0000-0002-6515-5666
https://orcid.org/0000-0001-8679-4443
https://orcid.org/0000-0002-8072-795X
https://orcid.org/0000-0003-3474-2099
https://orcid.org/0000-0001-5420-586X
https://orcid.org/0000-0002-7766-6615
https://orcid.org/0000-0002-5642-3040
https://orcid.org/0000-0002-2897-5753
https://orcid.org/0000-0002-2264-2229
https://orcid.org/0000-0002-5754-4303
https://orcid.org/0000-0003-2570-9676
https://orcid.org/0000-0001-5854-7699
https://orcid.org/0000-0002-9228-5271
https://orcid.org/0000-0001-9573-3714
https://orcid.org/0000-0001-5085-7270
https://orcid.org/0009-0007-5021-3230
https://orcid.org/0000-0002-8502-2297
https://orcid.org/0000-0001-9179-4253
https://orcid.org/0000-0003-0422-6739
https://orcid.org/0009-0001-9331-5145
https://orcid.org/0000-0002-4526-2149
https://orcid.org/0000-0002-2938-2263
https://orcid.org/0000-0002-0538-1469
https://orcid.org/0000-0003-2267-6119
https://orcid.org/0000-0003-3209-2088
https://orcid.org/0000-0002-3727-0202
https://orcid.org/0000-0001-7339-4272
https://orcid.org/0009-0001-9010-8028
https://orcid.org/0000-0002-2785-3762
https://orcid.org/0000-0001-5115-5828
https://orcid.org/0000-0001-7507-8636
https://orcid.org/0000-0002-3198-0115
https://orcid.org/0000-0003-4838-3306
https://orcid.org/0000-0003-0885-6711
https://orcid.org/0000-0003-4108-3925
https://orcid.org/0000-0002-0113-7389
https://orcid.org/0000-0003-3748-8946
https://orcid.org/0000-0002-0433-4484
https://orcid.org/0000-0002-6530-3657
https://orcid.org/0000-0003-2155-6692
https://orcid.org/0000-0003-4502-6151
https://orcid.org/0000-0002-1173-0696
https://orcid.org/0000-0001-5846-3655
https://orcid.org/0000-0001-7199-0046
https://orcid.org/0000-0001-7432-6634
https://orcid.org/0009-0002-6473-1403
https://orcid.org/0000-0003-3266-4357
https://orcid.org/0000-0003-0889-4726
https://orcid.org/0000-0001-5328-448X
https://orcid.org/0000-0003-1939-4268
https://orcid.org/0000-0003-2461-5985
https://orcid.org/0000-0002-0250-8655
https://orcid.org/0000-0001-9239-0605
https://orcid.org/0000-0003-0823-447X
https://orcid.org/0000-0002-1466-9077
https://orcid.org/0000-0001-8048-1622
https://orcid.org/0000-0003-2181-7258
https://orcid.org/0000-0002-2751-0567
https://orcid.org/0000-0002-9991-195X
https://orcid.org/0009-0006-8689-3576
https://orcid.org/0000-0002-5144-9655
https://orcid.org/0000-0002-9860-1650
https://orcid.org/0000-0003-3742-0693
https://orcid.org/0000-0002-5725-041X
https://orcid.org/0000-0002-5456-5977
https://orcid.org/0000-0002-5397-252X
https://orcid.org/0009-0006-4366-3463
https://orcid.org/0000-0003-4244-2061
https://orcid.org/0009-0005-5952-9843
https://orcid.org/0000-0003-1899-2266
https://orcid.org/0000-0001-8584-9705
https://orcid.org/0000-0002-8562-1863
https://orcid.org/0000-0001-9955-9258
https://orcid.org/0009-0002-0555-4697
https://orcid.org/0000-0001-9554-7815


63

T. Bevilacqua61 , L. Caminada61 , A. Ebrahimi , W. Erdmann , R. Horisberger ,
Q. Ingram , H.C. Kaestli , D. Kotlinski , C. Lange , M. Missiroli61 , L. Noehte61 ,
T. Rohe , A. Samalan

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
T.K. Aarrestad , M. Backhaus , G. Bonomelli , A. Calandri , C. Cazzaniga ,
K. Datta , P. De Bryas Dexmiers D‘archiac60 , A. De Cosa , G. Dissertori , M. Dittmar,
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