

Testing Lepton Flavour Universality in $b \rightarrow s\ell^+\ell^-$ decays at LHCb Sara Celani

What is Lepton Flavour Universality (LFU)?

For the Standard Model of particle physics the 3 lepton generations are identical except for their masses

LFU is an "Accidental symmetry" of the Standard Model, well verified e.g. in $J/\psi \to \ell\ell$ (with a precision of ~0.5% on relative BR)

Standard Model Model

Why $b \rightarrow s\ell^+\ell^-$ decays?

Flavour changing neutral current are ideal to study LFU:

- Very small SM amplitude (forbidden at tree level), sensitive to new physics contributions
- New particles can enter loops and/or create new diagrams

How to test LFU?

With ratios of branching fractions, as:

$$R_{X_s} = \frac{\mathscr{B}(B \to X_s \mu^+ \mu^-)}{\mathscr{B}(B \to X_s e^+ e^-)} X_s = K, K^*, K\pi\pi...$$

- Predicted to be exactly 1 in the SM (except for e/μ mass differences)
- Sensitive to differences between lepton species
- Small uncertainties from QCD theoretical corrections

Already observed evidence of deviation!

R_K found to be 3.1 σ away from the expected value of 1. <u>arXiv:2103.11769</u>

Why the LHCb detector?

- Single arm forward spectrometer ($2 < \eta < 5$)
- Specialised in precision measurements of decays of particles containing b quarks
- \triangleright Electrons reconstruction more challenging than muons ϱ
 - ▶ They can emit bremsstrahlung photons leading to a not trivial energy reconstruction

A specific decay: $B^+ \to K^+ \pi^+ \pi^- \ell^+ \ell^-$

- $ightharpoonup R_{K\pi\pi}$ measured as a double ratio, using the resonant high-stat control channel $B o K\pi\pi(J/\psi o\ell\ell)$
- $ightharpoonup B o K\pi\pi(J/\psi o \ell\ell)$ does not happen via loop or boxes diagrams, thus not sensitive to new physics
- angle $R_{K\pi\pi}$ value unaffected, but reduced uncertainties coming from differences in leptons reconstruction ightharpoons

Efficiencies from simulation

Fit to the B meson mass shape in the four decay modes

JHEP 08 (2017) 055 LHCb LHCb $\cdots B^0 \rightarrow K^{*0} J/\psi$ Run1 $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ Run1 **≥**12000 Combinatorial 5000 | $\supseteq 10000$ $\blacksquare \overline{\Lambda}_b^0 \rightarrow K^+ \overline{p} J/\psi$ $\overline{B}_s^{0} \rightarrow K^{*0} J/\psi$ Candidate 2000 1000 1000 1000 4000 5200 5300 5500 5400 5500 5000 6000 $m(K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-})$ [MeV/c²] $m(K^{+}\pi^{-}e^{+}e^{-})$ [MeV/ c^{2}] How to check if the estimations of the efficiencies are correct? $\Re(R \to K\pi\pi I/\nu ((\to u^+u^-)))$

By computing the single ratio $r_{J/\psi} = \frac{\mathscr{B}(B \to K\pi\pi J/\psi(\to \mu^+\mu^-))}{\mathscr{B}(B \to K\pi\pi J/\psi(\to e^+e^-))} \equiv 1$

Simulation does not describe perfectly the detector response (e.g. trigger decisions)

Several corrections needed to resemble as much as possible the data

Outlook

Yields from fits

Available dataset allows to measure for the first time $\mathcal{B}(B \to K\pi\pi ee)$ and test LFU in the very rich $K\pi\pi$ system

- ▶ More detailed studies will be possible with the Future Run 3 dataset
- $ightharpoonup R_{K\pi\pi}$ value still blinded, hope to have results soon!