

# Electron Identification Performance in LHCb 2024 data



UNIVERSITAT DE BARCELONA



#### Pol Vidrier Villalba

Universitat de Barcelona / ICCUB on behalf of the LHCb Collaboration



#### Introduction and motivation

- LHCb detector largely upgraded for Run 3: brand-new tracking detectors, improved RICH and full software trigger
  - $\rightarrow$  x5 pile-up. Recorded 9.5 fb<sup>-1</sup> in 2024 (more than Run 1+2!)
- The performance of electron particle identification (PID) is of vital importance for LHCb and is evaluated with 2024 data

# Electrons in LHCb

- <u>DLL</u> uses information from PID detectors
- ProbNN adds tracking information
- Both use  $E_{e^{\pm}}/p_{track}$  and  $E_{brem}$  when available



- Electrons emit bremsstrahlung photons when they traverse detector material → energy loss
  - Brem recovery: extrapolate tracks from VELO and UT linearly to energy deposits in ECAL

$$p(e^{\pm}) = p(e_{track}^{\pm}) + p(\gamma_{brem})$$

## Methodology

- $B^+ \to J/\psi (\to e^+ e^-) K^+$ , highest yield and purity with electrons in final state
  - HLT2 Calibration line to select the candidates
  - Offline selection: linear cuts + BDT
- Tag & Probe:
  - tag: electron with tight PID requirement
  - probe: electron without PID requirement
    - → apply PID offline to measure efficiency

### Results Efficiency 8.0 LHCb Preliminary 2024 $e \rightarrow e$ Electrons with brem 0.6 → → PIDe DLLe>0 + PIDe DLLe>5 0.4 $\pi \rightarrow e$ 0.2 Momentum [GeV/c] Efficienc 80 $e \rightarrow e$ LHCb Preliminary 2024 ProbNNe Electrons with brem 0.6 ProbNNe>0.2 ProbNNe>0.8 0.4 0.2 Momentum [GeV/c]

## Fitting Model

Fit & Count: Simultaneous fits to ALL and PASS samples



#### $\pi \rightarrow e \text{ misID}$

- Important to evaluate when the algorithm wrongly identifies pions as electrons
- $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ , high yield and purity
- 2D fit on  $D^0$  and  $(D^{*+} D^0)$  mass

# **Conclusions and Prospects**

- The Calorimeter reconstruction was improved in order to cope with the increased pile-up in Run 3. The efficiency for the electron identification shows very good performance, while keeping the level of the  $\pi \to e$  misID under control
- For future work, provide flexible calibration for usage in analyses with any PID requirement

Contact: pol.vidrier.villalba@cern.ch