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Abstract: While the calculation of scattering amplitudes at higher orders in perturbation
theory has reached a high degree of maturity, their usage to produce physical predictions
within Monte Carlo programs is often hampered by the slow evaluation of the multi-loop
amplitudes, especially so for amplitudes calculated numerically. As a remedy, interpolation
frameworks have been successfully used in lower dimensions, but for higher-dimensional
problems, such as the five dimensions of a 2 → 3 phase space, efficient and reliable solutions
are sparse.

This work aims to fill this gap by reviewing state-of-the-art interpolation methods,
and by assessing their performance for concrete examples drawn from particle physics.
Specifically, we investigate interpolation methods based on polynomials, splines, spatially
adaptive sparse grids, and neural networks (multilayer perceptron and Lorentz-Equivariant
Geometric Algebra Transformer). Our additional aim is to motivate further studies of the
interpolation of scattering amplitudes among both physicists and mathematicians.
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1 Introduction

Particle physics today demands precision calculations of scattering amplitudes to find hints
of physics beyond the Standard Model (BSM) in the data from current colliders. Even
more precision is needed to ensure the feasibility of exploiting the much more precise data
expected from future colliders.

Impressive progress has been made in the calculation of QCD corrections at next-to-
next-to-leading order and beyond to the most important processes at the Large Hadron
Collider (LHC) [1–3], however most of them are restricted to processes involving relatively
few kinematic scales or masses. This is due to the fact that analytic calculations of the
required two-loop amplitudes become rapidly unfeasible as the number of external legs
and/or particle masses is increasing. For numerical methods the growth in complexity with
the number of scales is more tractable. Therefore, the domains of two-loop amplitudes
beyond 2 → 2 scattering, involving 5 or more kinematic scales, as well as the domains of
multi-loop corrections in electro-weak or BSM theories, involving many different masses, are
the ones where numerical methods to calculate the virtual amplitudes can prove extremely
useful. On the other hand, the usefulness in phenomenological applications is strongly
tied to the speed and accuracy at which these amplitudes can be evaluated. In a realistic
Monte Carlo evaluation of total or differential cross sections, typically millions of phase-
space points need to be evaluated. For this important use case it is unfeasible to embark
on a lengthy numerical evaluation of the amplitude for each individual phase-space point.

Therefore, a promising way to make the usage of numerical methods for multi-loop
amplitudes more practical is to precompute the values of the amplitudes at some set of
points, often a grid, and rely on interpolation to evaluate them at other phase-space points,
i.e. for events produced by the Monte Carlo program. However, interpolation for 2 → 3

processes needs to be performed on a five-dimensional phase space, which makes it a highly
non-trivial task.

The intention of this work is to present a selection of state-of-the-art multidimensional
interpolation methods and study their practical usage and performance, having the physics
use case in mind. While there is vast mathematical literature on interpolation, the test
functions used in mathematics often have different properties than the functions related to
loop amplitudes. The purpose of this article is to connect the mathematical literature with
the physics use cases that so far were mostly limited to interpolation in dimensions lower
than five.

The remaining part of this paper is structured as follows: in Section 2 we give a brief
introduction to amplitudes and cross sections. We formulate the interpolation problem and
define the error metrics and test functions we use to benchmark the approximation methods.
In Sections 3–6, four categories of methods are described. Section 3 is about polynomial
interpolation, Section 4 about B-splines, Section 5 about sparse grids and Section 6 about
machine learning techniques. In these sections, the main results are presented in the form
of plots of the approximation error against the amount of training data. We conclude
in Section 7 by summarizing the results of the previous sections. Further details on the
parametrization of the test functions are given in Appendix A.
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2 Setting the stage

2.1 What is an amplitude?

In a proton–proton collider of collision energy
√
s, the number of times a reaction

p+ p︸ ︷︷ ︸
protons

→ a(q1) + b(q2)︸ ︷︷ ︸
partons

→ c(p1) + d(p2) + . . .︸ ︷︷ ︸
particles

(2.1)

takes place is proportional to the differential cross section of the process [4], which, assuming
that the squared masses of partons a and b are much smaller than s, is

dσ =
1

2ŝ
|M(q1, q2, p1, p2, . . . )|2 dΦdρa,b(ŝ, s), (2.2)

where M is the scattering amplitude for the process a+ b → c+ d+ . . . , dΦ is the element
of the Lorentz-invariant phase space, given in terms of the four-momenta qi, pi, and masses
mi as

dΦ = (2π)4 δ4(q1 + q2 −
∑

i

pi)
∏

i

d4pi
(2π)4

2πδ(p2i −m2
i ) θ(p

(0)
i ), (2.3)

and dρ is the probability of finding partons a and b with collision energy
√
ŝ in the colliding

proton pair, given via the parton distribution functions fa, fb as

dρa,b(ŝ, s, µF ) = dŝ

∫
fa(x1, µF ) fb(x2, µF ) δ(ŝ− sx1x2) dx1 dx2. (2.4)

Parton distribution functions themselves are well studied and readily available via [5]. The
amplitude is normally calculated within perturbation theory as an expansion in a small
coupling parameter, e.g. the strong coupling αs:

|M|2 ≡ A =
∞∑

k=0

(αs

2π

)k
Ak. (2.5)

Each subsequent term of this expansion is much harder to calculate than the previous one,
so when calculating A2, one can consider A0 and A1 to be readily available. Tools exist
for the automated calculation of A up to the next-to-leading order [6–10]; beyond that, the
calculations are usually custom-made for each process.

The differential cross section depends on the parameters that fully characterize the
phase space. These are two for 2 → 2 processes, five for 2 → 3, nine for 2 → 4, etc. There is
a freedom to choose these parameters; common choices are energy or Mandelstam variables,
sij = (pi + pj)

2, and angular variables. In what follows, we denote these parameters as x⃗,
and choose them such that the physical region of the process is a hypercube: x⃗ ∈ (0; 1)d.

The primary use of amplitudes is to calculate cross sections—either the total values
over the whole phase space: σ ≡

∫
dσ, or differential over some phase-space partitioning

defined either via some observable quantity O: dσ/dO, or via a sequence of them, as in
e.g. [11].
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2.2 Our goal

Assume that we can calculate most parts of a squared amplitude A quickly and precisely,
but one part, e.g. a subleading order in αs, is slow or expensive to evaluate. Let us denote
this part as a : (0; 1)d → R. We aim to approximate a by some function ã, from the
knowledge of the values of a at some data points x⃗1, . . . , x⃗n: ai ≡ a(x⃗i). We are interested
in algorithms to choose x⃗i and to construct ã such that it is “close enough” to a, while
requiring as few data points as possible, as to minimize the expensive evaluations of a.

2.3 How to define the approximation error?

There are different ways to precisely define what “close enough” means, and no single
definition works equally well for all observables and phase-space regions of interest, so a
choice of what to prioritize must be made.

In this paper we choose dσ/dx⃗ as the probability density of interest, and define the
approximation error as the distance between probability densities dσ/dx⃗ based on ã and a,
measured via the L1 norm:1

ε =
||f̃ − f ||1
||f ||1

, where f(x⃗) ≡ a(x⃗)
1

2ŝ

∣∣∣∣
d(Φ, ρ)

dx⃗

∣∣∣∣
︸ ︷︷ ︸
≡weight w(x⃗)

. (2.6)

The choice of the L1 norm ensures that this quantity is independent of the choice of vari-
ables x⃗. In statistics, it is known as total variation distance (up to an overall normalization).
This distance weighs different phase-space regions proportional to their contribution to the
total cross section (via the factor w), and guarantees that for any phase-space subregion R,
using ã(x⃗) instead of a(x⃗) will result in the error of σR being no more than ε

(
αs
2π

)k ||f ||1.
We target ε of at most 1%.

Note that the precision of the total cross section comes at the expense of precision
in tails of differential distributions: for parts of the phase space that do not contribute
much to the total cross section, such as the very-high-energy region, only low precision is
guaranteed by a bound on ε. An alternative definition of the error, ε = max |ã/a−1|, would
ensure equal relative precision for all bins of any differential distribution, but would come
at the expense of the interpolation spending most effort on phase-space regions where only
few (or zero) experimental data points can be expected at the LHC. This is the trade-off
involved in error target choices; to apply the methods we study, each application would
need to choose its own appropriate error measure.

2.4 How to prioritize different phase-space regions?

Summarizing Section 2.3, we approximate a(x⃗), and encode the relative importance of
different phase-space regions into w(x⃗). But can we incorporate this importance information
to improve the approximation procedure? There are multiple options:

1. Instead of constructing an approximation for a(x⃗) directly, we can construct an ap-
proximation f̃(x⃗) for f(x⃗) ≡ a(x⃗)w(x⃗), and then set ã(x⃗) = f̃(x⃗)/w(x⃗).

1Here and throughout, we define the Lp-norm ||f ||p as
(∫

|f(x⃗)|p dx⃗
)1/p.
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2. For methods based on regression, we can choose the data points xi such that they
cluster more in regions where w(x⃗) is greater.

3. For adaptive methods, we can approximate a(x⃗), but use the quantity aw in the
adaptivity condition, so that regions where aw (and not just a) is approximated the
worst are refined first.

4. We can find a variable transformation from x⃗ to y⃗ that cancels w, and interpolate in y⃗

instead of x⃗. In other words, choose τ with x⃗ = τ(y⃗) such that w(x⃗) |dτ(x⃗)/dy⃗ | = 1,
so that

∫
aw dx =

∫
ady.

We know of no general way to construct such transformations in the multidimensional
case, but a popular approach is to approximate τ as its rank-1 decomposition: τ(y⃗) =∏

i τi(yi); this is the basis of the Vegas integration algorithm [12]. Higher-rank
approximations are, of course, also possible.

2.5 The test functions

In the remainder of the article we assess the performance of the most promising interpolation
algorithms studied in numerical analysis when applied to the following five test functions.

Test function f1:
Leading-order (tree-level) amplitude for qq̄ → tt̄H taken as a 5-dimensional function
over the phase space as described in [13]. Specifically,

a1 = ⟨Mqq̄tt̄H
0 |Mqq̄tt̄H

0 ⟩, f1 = a1 ×
∣∣∣∣

dΦtt̄H

d(fracstt̄ , θH , θt, φt)

∣∣∣∣×
1

2ŝ

dρqq̄
dβ2

× Jtt̄H , (2.7)

with the phase space parameters set as

β2 =
10

100
+

86

100
x1, fracstt̄ = x2, θH = πx3, θt = πx4, φt = 2πx5, (2.8)

Jtt̄H =

∣∣∣∣
d(β2, fracstt̄ , θH , θt, φt)

dx⃗

∣∣∣∣ =
86

50
π3. (2.9)

The phase space parameters are described in more detail in Appendix A.1. To specify
ρqq̄ it is possible to use eq. (2.4) together with one of the well known parton distribution
functions, but to be more self-contained, we use the following generic form of ρ:

1

2ŝ

dρqq̄
dβ2

∝ (1− c1β
2)2

(1− c2β2)(1− c3β2)
, (2.10)

and set c = {1.0132, 0.9943, 0.3506}, which approximates ρ computed using the par-
ton distribution functions from [14]. The overall proportionality constant is omitted
here because it cancels in the error definition of eq. (2.6).

The amplitude a1 possesses multiple discrete symmetries. For us of immediate interest
are the symmetry under φt → −φt (parity invariance), and the symmetry of the swap
{q, t} ↔ {q̄, t̄}. These two symmetries are present in all higher order corrections to
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this amplitude too; the leading order is additionally symmetric under the swap q ↔ q̄.
In terms of the variables xi, this works out to

φt → −φt : a1(x5) = a1(1− x5), (2.11)

{q, t} ↔ {q̄, t̄} : a1(x3, x4) = a1(1− x3, 1− x4), (2.12)

q ↔ q̄ : a1(x3, x5) = a1(1− x3, x5 + 1/2). (2.13)

As an illustration, slices of the amplitude a1 in x1–x2 and x1–x4 space are as follows:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x4

1.0

The same slices for the function f1 are:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x4

1.0

Test function f2:
One-loop amplitude contributing to qq̄ → tt̄H, taken as a 5-dimensional function.
This amplitude has an integrable Coulomb-type singularity at fracstt̄ → 0, which
needs to be tamed for interpolation to work well. We do this by subtracting the
singular behaviour using eq. (2.67) from [15], i.e.:

a2 = 2Re

[
⟨Mqq̄tt̄H

0 |Mqq̄tt̄H
1 ⟩ − π2

βtt̄
⟨Mqq̄tt̄H

0 |Ttt̄|Mqq̄tt̄H
0 ⟩

]
, (2.14)

f2 = a2 ×
∣∣∣∣

dΦtt̄H

d(fracstt̄ , θH , θt, φt)

∣∣∣∣×
1

2ŝ

dρqq̄
dβ2

× Jtt̄H , (2.15)

where Ttt̄ is a colour operator defined in [15] and βtt̄ is the velocity of the tt̄ system,
in our variables given by

β2
tt̄ ≡ 1−


1 + fracstt̄



(
1 + 1

2
mH
mt√

1− β2
− 1

2

mH

mt

)2

− 1





−1

. (2.16)
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Both the phase space and ρqq̄ are the same as for f1. The amplitude a2 possesses two
of the symmetries of a1:

a2(x5) = a2(1− x5), and a2(x3, x4) = a2(1− x3, 1− x4). (2.17)

Slices of the amplitude a2 in x1–x2 and x1–x4 space are as follows:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x4

1.0

The same slices for the function f2 are:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x4

1.0

Test function f3:
Leading-order (tree-level) amplitude for gg → tt̄H,

a3 = ⟨Mggtt̄H
0 |Mggtt̄H

0 ⟩, f3 = a3 ×
∣∣∣∣

dΦtt̄H

d(fracstt̄ , θH , θt, φt)

∣∣∣∣×
1

2ŝ

dρgg
dβ2

× Jtt̄H , (2.18)

with the same kinematics and phase space as for f1, and dρgg/dβ
2 chosen via the

ansatz of eq. (2.10) with c = {1.0134, 0.7344, 0.0987}.
The amplitude a3 possesses the same symmetries as a1, given in eq. (2.13).

Slices of the amplitude a3 in x1–x2 and x1–x4 space are as follows:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x4

1.0
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The same slices for the function f3 are:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x4

1.0

Test function f4:
One-loop amplitude contributing to gg → tt̄H, taken as a 5-dimensional function,
with the Coulomb-type singularity subtracted in the same way as for a2, i.e.

a4 = 2Re

[
⟨Mggtt̄H

0 |Mggtt̄H
1 ⟩ − π2

βtt̄
⟨Mggtt̄H

0 |Ttt̄|Mggtt̄H
0 ⟩

]
, (2.19)

f4 = a4 ×
∣∣∣∣

dΦtt̄H

d(fracstt̄ , θH , θt, φt)

∣∣∣∣×
1

2ŝ

dρgg
dβ2

× Jtt̄H , (2.20)

where βtt̄ is given in eq. (2.16), and the rest is the same as for f3.

The amplitude a4 possesses the same symmetries as a3 and a1, given in eq. (2.13).

Slices of the amplitude a4 in x1–x2 and x1–x4 space are as follows:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x4

1.0

The same slices for the function f4 are:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x4

1.0

Test function f5:
Leading-order (one-loop) amplitude for gg → Hg, taken as a 2-dimensional function,

a5 = ⟨MggHg
1 |MggHg

1 ⟩, f5 = a5 ×
dΦHg

dθH
× 1

2ŝ

dρgg
dβ2

× JHg, (2.21)
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with the phase-space parameters set as

β2 =
33

100
+

66

100
x1, θH = θ0 + (π − 2θ0)x2, (2.22)

JHg =

∣∣∣∣
d(β2, θH)

dx⃗

∣∣∣∣ =
66

100
(π − 2θ0), (2.23)

the phase-space density being

dΦHg

dθH
=

1

16π

1

ŝ

√
λ(ŝ,m2

H , 0) sin θH =
β2 sin θH

16π
, (2.24)

and dρgg/dβ
2 chosen via the ansatz of eq. (2.10), with c = {1.0012, 0.9802, 0.3357}.

The introduction of θ0 as a cutoff is needed because a5 diverges as 1/ sin2 θH at
θH → 0 and θH → π. We choose not to interpolate the region around the diver-
gence, because in practical calculations it should be regulated by infrared subtraction
or appropriate kinematic cuts; we only consider the phase-space region where the
transverse momentum pT of the Higgs boson H is greater than a cutoff pT,0. Then:

sin θ0 = pT,0
2
√
ŝ√

λ(ŝ,m2
H , 0)

= 2
pT,0
mH

√
1− β2

β2
, (2.25)

We choose pT,0 corresponding to the lower boundary of the β2 region from eq. (2.22):

pT,0
mH

=
1

2

β2
min√

1− β2
min

, (2.26)

such that at β2 < β2
min no phase space point passes the pT cut. This works out to

pT,0 ≈ 25 GeV.

The amplitude a5 is symmetric under the swap of the incoming gluons, i.e.

a5(x2) = a5(1− x2). (2.27)

The amplitude a5 (left) and the function f5 (right) depend on x1 and x2 as follows:

0.00.0
x1→

1.0← x2

1.0

0.00.0
x1→

1.0← x2

1.0

In all cases we use GoSam [9] to evaluate the amplitudes, and set m2
H/m2

t = 12/23.
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2.6 How to use test function symmetries?

When the test functions are symmetric under discrete transformations, as ours are, there
are multiple ways to take advantage of this:

1. Make the interpolant obey the same symmetries by construction.

2. Duplicate symmetric data points, i.e. if f(x) = f(1 − x), then for each xi also add
1− xi to the data set (but still count this as a single evaluation of f).

3. Reduce the interpolation domain, i.e. if f(x) = f(1− x), only construct the approxi-
mation for x ∈ [0, 1/2], and use the symmetry to obtain the values in x ∈ [1/2, 1].

2.7 How to evaluate the approximation error?

To evaluate eq. (2.6) we use Monte Carlo integration. It can be formulated based on different
kinds of testing samples:

uniform: x⃗1, . . . x⃗m ∼ 1, ε =

∑m
i=1 |(ãi − ai)wi|∑m

i=1 |aiwi|
, (2.28)

partially unweighted: x⃗1, . . . , x⃗m ∼ w, ε =

∑m
i=1 |ãi − ai|∑m

i=1 |ai|
, (2.29)

leading-order unweighted: x⃗1, . . . , x⃗m ∼ aLO w, ε =

∑m
i=1 |(ãi − ai)/aLO,i|∑m

i=1 |ai/aLO,i|
. (2.30)

The first of these is natural for the selected variables x⃗, the second is important because
it is independent of the choice of x⃗ (and can be approximated by e.g. the widely used
Rambo sampling technique [16]), and the third is important because it is oriented at the
approximate probability distribution of physical scattering events, encoded in the leading
order amplitude, aLO.

While each sampling method must yield the same result asymptotically, in practice we
are interested in using as few testing evaluations as possible. In Figure 1 we compare the
error convergence when using the different sampling methods for test function f2. Here we
see that the error becomes stable for all methods after m ∼ 1000 samples.

Note that a uniform sample can be generated both via Monte Carlo, i.e. randomly,
and with a low-discrepancy sequence (such as the Sobol sequence). In Figure 1 we present
results for both options, and while sampling from a low-discrepancy sequence gives a more
uniform coverage of the parameter space, we see only marginal improvements in the error
convergence.
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Figure 1: Approximation error ε of f2, as defined in eq. (2.6), evaluated via eq. (2.28),
eq. (2.29), and eq. (2.30), with respect to the number of testing points m. The uniform
samples are taken both randomly (MC) and from a low-discrepancy sequence (Sobol). The
approximations are constructed using sparse grid interpolation from Section 5, with different
numbers of data points n. The error bands are created from 10 independent testing sets
for each m.

3 Polynomial interpolation

The classic interpolation method is polynomial interpolation [17, 18]. In the univariate
case f̃ is constructed as a polynomial of degree n − 1 that exactly passes through the n
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interpolation nodes xi. It can be written in the Lagrange form as

f̃(x) =
n∑

i=1

fi li(x), li(x) ≡
∏

j ̸=i

x− xj
xi − xj

, (3.1)

or slightly rewritten in the barycentric form [19] as:

f̃(x) =

n∑

i=1

wi

x− xi
fi

n∑

i=1

wi

x− xi

, wi =
∏

j ̸=i

1

xi − xj
. (3.2)

The barycentric interpolation formula is general enough that with an appropriate choice of
the weights wi, any rational interpolation can be expressed by it; the weights given here,
however, correspond to the purely polynomial interpolation of eq. (3.1).2 This is our form
of choice for evaluation due to its numerical stability and simplicity.

The error of a polynomial approximation is given by

f(x)− f̃(x) =
f (n)(ξ)

n!

n∏

i=1

(x− xi), (3.3)

where ξ is some function of x. To minimize this error a priori without the precise knowledge
of f (n), one can choose the nodes xi such that they would minimize

∏
i(x − xi) over the

domain of interest. Doing so is important because a naive choice of equidistant nodes leads
to the Runge phenomenon [21]: the approximation error explodes close to the boundaries,
increasingly worse with higher degree of the polynomial. E.g. for 10 nodes on the interval
of [−1; 1]:

-1.0 -0.5 0.0 0.5 1.0
-0.010
-0.005
0.000

∏
i(
x
−

x
i)

1
3.1 Chebyshev nodes of the first kind

The product
∏

i(x − xi) is minimized in the sense of the infinity norm by the Chebyshev
nodes of the first kind, which are traditionally given for the domain [−1; 1] as

xi = cos

(
2i− 1

2n
π

)
, i = 1, . . . , n. (3.4)

These nodes achieve a uniform
∏

i(x− xi) over the interval:

-1.0 -0.5 0.0 0.5 1.0-0.002

0.000

0.002

∏
i(
x
−

x
i)

1
2Rational interpolation methods, specifically of the non-linear kind, such as the AAA algorithm [20],

have established themselves as the most efficient one-dimensional interpolation methods, but generalizations
to many dimensions are not developed well enough for us to consider them.
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3.2 Chebyshev polynomials

Corresponding to these nodes are the Chebyshev polynomials of the first kind :

Tk(x) = cos(k arccos(x)). (3.5)

Specifically, eq. (3.4) are the zeros of Tn(x). These polynomials are orthogonal with respect
to the weight 1/

√
1− x2:

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =





π if n = m = 0,

π/2 if n = m ̸= 0,

0 if n ̸= m.

(3.6)

Note that the nodes in eq. (3.4) are nothing more than equidistant points in ϕ = arccos(x),
and the corresponding polynomials are simply an even Fourier series in ϕ. This is why a
transformation from the function values {fi} to the coefficients of the decomposition into
Chebyshev polynomials {ci},

f̃(x) =
∑

i

ci Ti(x), (3.7)

is just a Fourier transform (specifically, a discrete cosine transform). Still, for interpola-
tion purposes, the barycentric form of eq. (3.2) is preferable, since both eq. (3.7) and the
monomial form suffer from rounding errors that prevent their usage for n ≳ 40.

3.3 Chebyshev nodes of the second kind

A related set of points that avoids the Runge phenomenon is Chebyshev nodes of the second
kind (a.k.a. Chebyshev–Lobatto nodes), traditionally given as

xi = cos

(
i− 1

n− 1
π

)
, i = 1, . . . , n. (3.8)

Unlike eq. (3.4), these points are not located at the zeros of Tn(x), but rather at the extrema
and the end points, with the advantage of being nested: the set of n of these is exactly
contained in the set of 2n − 1. This comes at the price of

∏
i(x − xi) not being uniform

over the interval:

-1.0 -0.5 0.0 0.5 1.0-0.004

0.000

0.004

∏
i(
x
−

x
i)

1The property of being nested is important for adaptive interpolation constructions, because
larger grids can reuse the results of smaller ones that they contain.

Unfortunately the inclusion of the end points can make this construction impractical
for scattering amplitudes. For example, f2 can not be evaluated at exactly x2 = 0 due to
loss of numerical precision, and evaluation at x1 = 1 is possible, but best avoided, because
evaluation time typically grows when approaching this boundary.
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3.4 Approximation error scaling

It is known that polynomial interpolation at Chebyshev nodes is logarithmically close to
the best polynomial interpolation of the same degree [17]. The approximation error itself
depends on how smooth the function f is [18, 22, 23]. If f has ν − 1 continuous derivatives
and the variation of f (ν) is bounded, then

||f − f̃ ||2 ≤
4 ||f (ν)||1
πν(n− ν)ν

, for n > ν. (3.9)

If f is analytic, and can be analytically continued to an ellipse in the complex plane with
focal points at ±1 and the sum of semimajor and semiminor axes ρ (a Bernstein ellipse),
then

||f − f̃ ||2 ≤
4Mρ−n

ρ− 1
, where M = max |f(x)| in the ellipse. (3.10)

3.5 Gauss nodes

Closely related to Chebyshev nodes, and often considered superior, are Gauss nodes and
Gauss–Lobatto nodes, which are the location of zeros and extrema (respectively) of the
Legendre polynomials. These have the advantage that a quadrature built on them (Gauss
quadrature) is exact for polynomials up to degree 2n − 1, while the same for Chebyshev
nodes (Clenshaw–Curtis quadrature) is only exact for polynomials up to degree n − 1. In
practice, however, the approximation error of both is very close [24, 25], and since Gauss
nodes are much harder to compute compared to eq. (3.4), we do not consider them further.

3.6 Multiple dimensions

The simplest generalization to multiple dimensions is to take the set of nodes {x⃗i} to be
the outer tensor product of the Chebyshev nodes of eq. (3.4) for each dimension,

{x⃗i} = {xi1} ⊗ · · · ⊗ {xid}, (3.11)

with possibly different node count in each dimension, ni. This corresponds to interpolation
via nested application of eq. (3.2), or via the decomposition

f̃(x⃗) =

n1∑

i1=1

· · ·
nd∑

id=1

ci1...id Ti1(x1) · · ·Tid(xd). (3.12)

A detailed study of the interpolation error of this construction is presented in [26]. Roughly
speaking, it is similar to eq. (3.9) and eq. (3.10), except instead of n one must use ni, which
are of the order of d

√
n, leading to progressively slower convergence as d increases. This is

known as the curse of dimensionality [27].

3.7 Dimensionally adaptive grid

The tensor product construction is fairly rigid in that it allows for no local refinement;
only the per-dimension node counts ni can be tuned. Such tuning is sometimes referred
to as dimensional adaptivity, and it can be beneficial. To examine that, let us inspect
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Figure 2: Two-dimensional slices of the 5-dimensional coefficients c corresponding to the
decomposition of f1 into a tensor product of Chebyshev polynomials as given in eq. (3.12).
On all plots the horizontal axis is i, the vertical is j.

the coefficients ci1...i5 corresponding to f1: their two-dimensional slices are presented in
Figure 2. From these we can learn that the coefficients decay much faster in the 5th
dimension compared to the rest.

To make use of this insight, let us study Figure 3, where the scaling of c is depicted in
each dimension. If we want to sample so that coefficients in each direction are close to each
other (to prevent oversampling), we would need to maintain the ratio of e.g.

n1 : n2 : n3 : n4 : n5 ≈ 2 : 4 : 2 : 3 : 1. (3.13)

Better results would of course be obtained if instead of a fixed ratio, we would choose the
best ni ratio for each value of n; this, however, can only be done a posteriori.

3.8 Discussion

Polynomial interpolation is a well understood interpolation method. It achieves exponential
convergence rates for analytic functions in one dimension, and is easy to evaluate accurately
via the barycentric formula. It should be considered a safe and dependable default method.

Its performance in multiple dimensions, however, is held back by the tensor product
grid construction, that automatically comes with the curse of dimensionality. It is also
sensitive to singularities close to the interpolation space: the closer the singularity, the
worse the convergence becomes—this is particularly inconvenient for amplitudes, which are

– 15 –



0 5 10 15 20 25
i

5
4
3
2
1
0 log10 max|ci1, i2, i3, i4, i5 |/max|c|

i1

i2

i3

i4

i5

Figure 3: The maximal value of the 5-dimensional coefficients c for f1 along each of the
dimensions, corresponding to the decomposition of eq. (3.12).

very often not analytic at boundaries. Finally, the method is inflexible: the node sets
that do not suffer from the Runge phenomenon are quite rigid, and if an interpolant was
constructed with n data points, one can not easily add just a few more—the best one can
do is to use a nested node set, as in Section 3.3, and roughly double n. Similarly, if an
interpolant was constructed on a subset of the full phase space, there is no good way to
smoothly extend it to the rest of the phase space by adding new data.

In Figure 4 we present the approximation errors depending on the number of data
points n, corresponding to different was to use polynomial interpolation in practice: dif-
ferent sampling schemes, symmetry handling options, and ways to include weights. The
“a” method corresponds to interpolating the amplitude a directly, while f corresponds to
option 1 from Section 2.4. The methods marked with “half-domain” correspond to option 3
from Section 2.6, while the rest correspond to option 2.

Looking at the results, we can conclude:
• Should the interpolant be constructed on a or f? Including the weight w (i.e. option 1

from Section 2.4) helps a lot for very peaky functions (f5), but seems to slightly hinder
others. Possible reason is that w is not analytic at the boundaries, which polynomial
interpolation is sensitive to.

• How should the symmetries be included? Domain reduction (i.e. option 3 from Sec-
tion 2.6) significantly helps f3 and f4, makes almost no difference for f1 and f2, and
slightly hinders f5, for which data duplication (i.e. option 2) is better.

• Does factoring out the known peaky behaviour from the interpolant help? Yes, cancelling
the 1/ sin2 θH factor from the f5 interpolant brings a modest, but notable improvement.
Subtracting this peak could have been even better though.

• Does dimensional adaptivity help? It only makes a notable improvement for f1.
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Figure 4: Approximation error of
f1, f2, f3, f4, and f5 using the ten-
sor product Chebyshev polynomial
interpolation of eq. (3.12), depend-
ing on the ratio of ni, the function
interpolated, and the symmetry han-
dling. The number of evaluations n

takes into account the symmetries of
each function. The grey lines in the
background are results for methods
discussed in subsequent sections.
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4 B-spline interpolation

An alternative way to prevent the Runge phenomenon in polynomial interpolation is to
limit the power of the polynomial, and use a basis of splines. A spline of degree p is a p− 1

times continuously differentiable piecewise polynomial. In this section we use B-splines
(basis splines) [28, 29], which is the standard basis choice for spline interpolation.

B-splines have been applied in engineering applications in the context of the finite
element method [30] and in graphics as non-uniform rational B-splines (NURBS) [31]. B-
splines have also been successfully used for interpolating amplitudes in lower-dimensional
cases [32, 33], which makes this a particularly interesting method for us to compare with.
Spline interpolation has also been applied in the context of PDF fits [34].

In this section we define the B-spline basis functions and show how to define multi-
dimensional B-spline interpolants on tensor product grids. We then present the resulting
approximation errors from using uniform B-splines and finish with a discussion of the ob-
tained performance.

4.1 B-spline basis functions

A B-spline basis function of degree p and index i is defined recursively through the Cox-de
Boor formula [35, 36]:

Ni,0(x) =

{
1 if ti ≤ x ≤ ti+1,

0 otherwise,

Ni,p(x) =
x− ti

ti+p − ti
Ni,p−1(x) +

ti+p+1 − x

ti+p+1 − ti+1
Ni+1,p−1(x),

(4.1)

where ti are the coordinates of knots—the locations at which the pieces of the piecewise
function meet.

Knots define a knot vector t⃗, which is a sequence of m + 1 non-decreasing numbers
(t0, . . . , tm). The knot vector should be chosen such that the resulting B-spline basis spans
the space of polynomials. This can be checked via the local Marsden identity [37]. In
practice it is fulfilled by either using multiple coinciding knots at the boundaries or by
extending the range of the knot sequence [38]. The most straightforward choice of knot
vector is therefore the uniform construction, with p auxiliary knots placed outside the
interpolation domain. The basis functions resulting from such uniform knot vectors for
p = 1, 2, 3 are shown in Figure 5.

Another common choice is the not-a-knot construction, where knots coincide with data
points, except at p− 1 points, which are omitted. Since in the even degree case this results
in an odd number of not-a-knots, this knot vector is better defined for odd degree B-splines.
Note that the linear case simplifies to the uniform construction since there 0 not-a-knots in
this case.

From eq. (4.1) it can be seen that the basis functions are non-negative, form a partition
of unity, and have local support. Moreover, thanks to the recursive nature of eq. (4.1),
there are efficient algorithms that make B-splines fast to evaluate compared to other spline
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Figure 5: Linear, quadratic and cubic B-spline basis functions from eq. (4.1) with uniform
knot vectors, for different i.

functions [39]. This is especially true for B-splines with uniform knot vectors, since the
denominators in eq. (4.1) are constant. In the not-a-knot case the knot distances are not
all equal, but can be precomputed in advance.

4.2 B-spline interpolants

A one-dimensional B-spline interpolant is a linear combination of n+ 1 basis functions

b(x) =
n∑

i=0

Ni,p(x) · ci, (4.2)

where the ci are interpolation coefficients sometimes referred to as control points. The most
straightforward extension to the d-dimensional case is through a tensor product construction

B(x⃗) =
d∏

j=1

bj(x⃗j). (4.3)

To fully constrain a B-spline with n+ 1 basis functions in each direction, (n+ 1)d interpo-
lation nodes are required. The interpolation nodes can partially be selected freely but need
to satisfy the Schoenberg–Whitney conditions, which are degree dependent and state that
for each knot ti there must be at least one data point x such that ti < x < ti+p+1. More-
over, the properties of the basis functions imply that a B-spline interpolant is numerically
stable [40].

4.3 Discussion

In Figure 6 the performance of B-spline interpolation is compared to the other methods
described in this paper. For the 2-dimensional f5, percent-level accuracy is obtained with
O(102 − 103) points. For the 5-dimensional test functions, the same accuracy requires
O(104 − 105) points. In most cases a significant performance gain is obtained by using
higher degrees than linear, but beyond cubic splines we see no significant improvements.
In a few cases, such as for f3 and f4, quadratic splines perform slightly better than cubic
splines. The difference between interpolating on the amplitude or directly on the test
function is shown for f1, f3 and f5. For f1 and f3 it is better to not include the weights
during interpolation, while for f5 it is better to include it except for very large n.
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Besides performance there are additional considerations with B-splines and the tensor
product construction in general. One problem is that the construction is made impractical
due to the fact that the location of knots and interpolation nodes depend on the total
number of points. Consider a situation where a B-spline has been constructed with 1000
data points and the subsequent validation indicates that ∼ 100 more points are required to
achieve the desired precision target. To then construct a new B-spline with 1100 evaluations,
the existing 1000 evaluations would have to be discarded, because the inclusion of additional
points would slightly shift the placement of the previous nodes. A special case which avoids
this problem is when the number of evaluations is exactly doubled, since in the uniform
construction this is equivalent to inserting a new knot and data point between each existing
one. In the situation described above, constructing a B-spline using 2000 points would then
be the most efficient way to proceed. A more consistent way of avoiding this problem is
to combine B-splines with some adaptive strategy. We show in Section 5 how this can be
done in the context of sparse grids.

Another potential issue with B-splines based on tensor product constructions, is that
function evaluations at the boundary are required. This can be challenging for scattering
amplitudes since evaluating at the boundaries can be less precise and more time-consuming
than in the bulk of the phase space, as observed in e.g. [13]. For such cases, the boundary of
the interpolation space can be shifted to a point where the evaluation is reasonable, meaning
that the approximation would not cover some parts of the phase space. Alternatively,
methods that incorporate extrapolation, such as the modified bases on adaptive sparse
grids from Section 5, can be used to alleviate this problem.
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Figure 6: Approximation error using lin-
ear, quadratic and cubic B-splines. Uni-
form knot vectors are used for f1–f4 and
not-a-knot knot vectors for f5. For f1, f3,
and f5 the difference between interpolat-
ing on the amplitude (a) or directly on the
test function (f) is shown. The grey lines
in the background are results for methods
discussed in other sections.
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5 Sparse grids

The methods described in the previous sections are based on the tensor product construction
of eq. (3.11), which results in a full grid. A sparse grid construction aims to omit points from
the full grid that do not significantly contribute to the interpolant, and in this way alleviate
the curse of dimensionality. Such constructions were first described by Smolyak [41] and
have since then found use in a wide variety of applications [42–49].

In this section we first introduce sparse grids built on a hierarchical linear basis. Next,
we describe how to incorporate spatial adaptivity and upgrade the basis to higher degree
polynomials. Finally, we study the impact these constructions have on the approximation
quality.

5.1 Classical sparse grids

Sparse grids can be constructed in two main ways, either with the combination technique
using a linear combination of full grids [50], or through a hierarchical decomposition of
the approximation space [45]. In this section we use the latter approach, since it makes it
straightforward to incorporate spatial adaptivity.

First, let us restrict to functions that vanish at the boundaries. In this case, a one-
dimensional basis can be constructed with rescaled “hat” functions that are centred around
the grid points xl,i = i · 2−l, i ∈ {0, 1, ..., 2l}:

ϕl,i(x) ≡ ϕ

(
x− i · 2−l

2−l

)
, ϕ(x) ≡ max(1− |x|, 0), (5.1)

where l is the grid level. Since these basis functions have local support, it is possible to
define hierarchical subspaces Wl through the hierarchical index sets Il by

Wl ≡ span{ϕl,i : i ∈ Il}, Il ≡ {i ∈ N : 1 ≤ i ≤ 2l − 1, i is odd}. (5.2)

The function space of one-dimensional interpolants is then defined as the direct sum of all
subspaces up to a maximum grid level k

Vk ≡
⊕

l≤k

Wl. (5.3)

The extension to the multivariate case is via a tensor product construction

Φ
l⃗,⃗i
(x⃗) ≡

d∏

j=1

ϕlj ,ij (xj), (5.4)

with multi-indices i⃗ = (i1, ..., id), l⃗ = (l1, ..., ld) and d-dimensional grid points
x⃗⃗
i,⃗l

= (xl1,i1 , ..., xld,id). Similarly to the one-dimensional case, the hierarchical subspaces
are defined to be

W
l⃗
≡ span{Φ

l⃗,⃗i
: i⃗ ∈ I

l⃗
}, I

l⃗
≡ {⃗i : 1 ≤ it ≤ 2lt − 1, it is odd, 1 ≤ t ≤ d}. (5.5)
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1Figure 7: Sparse grid structure in two dimensions for k = 2, 3, 4.

Grid type d\k 2 4 6 8 10

Full
d = 2 25 289 4225 6.6 · 104 1.1 · 106
d = 5 3125 1.4 · 106 1.2 · 109 1.1 · 1012 1.1 · 1015

Sparse
d = 2 5 49 321 4097 9.2 · 103
d = 5 11 315 5503 6.1 · 104 5.5 · 105

Table 1: Number of grid points from the full and sparse constructions, for dimensions 2
and 5.

A multidimensional full-grid function space V F
k can now be naively constructed with the

direct sum
V F
k ≡

⊕

|⃗l|∞≤k

W
l⃗
, (5.6)

where |⃗l|∞ = max(l1, . . . , ld). The mechanism of the sparse grid is to instead limit the
selection of subspaces according to

V S
k ≡

⊕

|⃗l|1≤k+d−1

W
l⃗
, (5.7)

where |⃗l|1 = l1 + · · · + ld. This avoids including basis functions that are highly refined in
all directions simultaneously, which is what causes the number of grid points to explode in
high dimensional cases.

Figure 7 shows nodes of the resulting two-dimensional sparse grids for k = 2, 3, 4. Ta-
ble 1 shows the difference in the number of grid points between sparse and full constructions,
for dimensions 2 and 5. Of course, omitting grid points can never increase the approxima-
tion quality, but the aim is to achieve a close approximation quality, while omitting most
points. For sufficiently smooth functions, it is known that the asymptotic accuracy of a full
grid interpolant scales with the mesh-width hk = 2−k as O(h2k), while for a sparse grid it
decreases only by a logarithmic factor to O(h2k(logh−1

k )d−1) (see [45]).
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Figure 8: Modified linear hat-basis for sparse grid levels l = 1, 2, 3 and different i.

5.2 Boundary treatment

Since the basis functions of eq. (5.1) do not have support at the grid boundaries, we can, so
far, only handle target functions that vanish at the boundary. There are two main ways to
incorporate boundary support into sparse grids. One possibility is to add boundary points
to the grid [45], but for even moderately high dimension this causes the number of points to
increase significantly, and defeats the main purpose of the sparse construction. The other
option is to use so-called modified basis functions [45] that linearly extrapolate from the
outermost grid points:

φl,i(x) ≡





1 if l = 1 ∧ i = 1,{
2− 2l · x if [0, 1

2l−1 ]

0 else
if l > 1 ∧ i = 1,

{
2l · x+ 1− i if x ∈ [1− 1

2l−1 , 1]

0 else
if l > 1 ∧ i = 2l − 1,

ϕl,i(x) otherwise.

(5.8)

Figure 8 shows the modified linear basis for k = 1, 2, 3. It is apparent that sparse grids are
best suited for functions whose boundary behaviour is less important than that in the bulk
to the overall structure. The interpolant is constructed as a linear combination of basis
functions in V S

k according to

u(x⃗) =
∑

|⃗l|1≤k+d−1

∑

i⃗∈I⃗
l

α
l⃗,⃗i
· Φ

l⃗,⃗i
(x⃗), (5.9)

where the interpolation coefficients α
l⃗,⃗i

are referred to as hierarchical surpluses since at each
level they correct the interpolant from the previous level to the target function. They are
thus also a measure of the absolute error at each level in each direction, which makes the
interpolant u(x⃗) well suited for local adaptivity. The basis functions Φ

l⃗,⃗i
(x⃗) are constructed

from either eq. (5.1) or eq. (5.8) depending on if the target function vanishes at the boundary
or not. The process of determining the coefficients α

l⃗,⃗i
is known as hierarchization. This can

in principle be done in the same way as for any interpolation method; construct and solve
a linear system of equations where the interpolant is demanded to reproduce the target
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function at each interpolation node. A more efficient way, however, is available for bases
satisfying the fundamental property:

φl,i (2
−li) = 1 and φl,i (2

−l(i− 1)) = φl,i (2
−l(i+ 1)) = 0, (5.10)

In this case the coefficients can be calculated on the fly: the grid is initialized by normalizing
the first coefficient to the central value α1⃗,⃗1 = f(0.5, . . . , 0.5); points x⃗

l⃗,⃗i
are then added,

one at a time, and the coefficients are defined as the corrections

α
l⃗,⃗i

= f(x⃗
l⃗,⃗i
)− f̃(x⃗

l⃗,⃗i
), (5.11)

where f̃(x⃗
l⃗,⃗i
) is the current approximation with the already added points and f(x⃗

l⃗,⃗i
) is the

true function value.

5.3 Spatially adaptive sparse grids

While the classical sparse grid construction uses significantly fewer points than a full grid,
it is completely blind to how the target function varies across the parameter space. In many
high dimensional problems, it is typical that some regions are more important than others.
This information is exploited by spatially adaptive sparse grids, where the grid points that
contribute most to the interpolant are refined first (see [45, 51]). Refining a grid point
means adding all its neighbouring points at one level lower to the grid.

Determining which points are more important relies on some heuristic criterion. A
common strategy is to use the surplus criterion, where the point with the largest hierarchical
surplus is refined first. This is the greedy strategy. Its disadvantage is that it might get
stuck refining small regions of the parameter space. To avoid this, in [45] it is proposed to
weigh the surplus criterion by the volume of the support of the corresponding basis function,
2−|⃗l|1 , resulting in the balanced strategy.

Figure 9 shows the difference between greedy and balanced refinement on a two-
dimensional grid. We find that greedy refinement might perform slightly better for our
error metric if the structure of the target function is simple enough, while balanced refine-
ment is significantly more reliable for more complicated target functions.

5.4 Higher degree basis functions

The one-dimensional basis of rescaled hat functions in eq. (5.1) is straightforward to imple-
ment and avoids the Runge phenomenon due to its piecewise nature. The drawback is that
the linear approximations come with low interpolation performance, as we have previously
observed in Section 4.

There are many ways to make the extension to higher polynomial degrees. Here we
differentiate between two types of basis functions: those that fulfil the fundamental property
eq. (5.10) and those that do not.

Fundamental basis functions allow for fast hierarchization and make it easy to construct
efficient evaluation algorithms. In addition to the linear basis from Section 5.1 we test the
more general polynomial piecewise functions (C0-elements) [45, 52], as well as fundamental
B-splines [48]. For these benchmarks we make use of the sparse grid toolbox SG++ [45],
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for the two-dimensional test function f5.

where both of these basis functions are already implemented. Beyond fundamental basis
functions we also investigate extended not-a-knot B-splines as described in [49, 53].

C0 elements

Higher degree polynomials can be defined on the hierarchical structure by using grid points
on upper levels as the polynomial nodes [45, 52]. This implies the maximum degree p is
bounded by the maximum grid level. For sparse grids without boundaries the relation is
p ≤ l−1. This can be seen already for the linear case in Figure 8, since on levels 1 and 2 the
basis functions are constant and linear respectively. The drawback of this extension is that
despite the higher degree, the smoothness is not increased and the interpolant will only be
continuous. For this reason these basis functions are usually referred to as C0 elements.

Fundamental B-splines

The fundamental B-spline basis is constructed with the aim of fulfilling the fundamental
property of eq. (5.10), while preserving useful properties of B-splines, for example smooth-
ness. The construction is introduced in [48], and it works by applying a translation-invariant
fundamental transformation to the hierarchical B-spline basis. Besides fulfilling the fun-
damental property, this transformation preserves the translational invariance of B-splines
which improves performance during evaluation. The modified basis that extrapolates to-
ward the boundaries is defined similarly to the linear case. We refer to [48] for more details
on the derivation. For both this and the C0 elements, the implementations in SG++ are
used for the benchmarks.

Extended not-a-knot B-splines

In this section we summarize the main equations and statements on extended not-a-knot
B-splines presented in [49, 53]. The extension mechanism ensures that polynomials are
interpolated exactly, which in many cases increases the quality of interpolation. The basis
consists of extended not-a-knot B-splines on lower levels, and Lagrange polynomials on
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p ei,j=0, i = 1, . . . , p+ 1 ei,j=2l , i = 2l − 1− p, . . . , 2l − 1

1 [2,−1] [−1, 2]

3 [5,−10, 10,−4] [−4, 10,−10, 5]

5

{
[8,−28, 42,−35, 20,−6] if l = 3,

[8,−28, 56,−70, 56,−21] if l > 3.

{
[−6, 20,−35, 42,−28, 8] if l = 3,

[−21, 56,−70, 56,−28, 8] if l > 3.

Table 2: B-spline extension coefficients for the upper and lower boundaries, taken from [53].
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Figure 10: Extended not-a-knot cubic B-spline basis functions at sparse grid levels
l = 1, 2, 3 and different i. At level 1 there are not enough points to define the B-spline
and a linear Lagrange polynomial is used instead.

upper levels where there are too few points for the B-spline to be defined. A basis function
of odd degree p, level l and index i is defined as

bp,ext.
l,i (x) =

{
bpl,i +

∑
j∈Jl(i) ei,j b

p
l,j when l ≥ Λext.,

Ll,i(x) when l < Λext.,
(5.12)

where Λext. = ⌈log2(p + 2)⌉, and ei,j are extension coefficients that only depend on the
degree. For p = 1, 3, 5 these coefficients are listed in Table 2. The bpl,i are not-a-knot B-
splines (see Section 4) and Ll,i(x) are regular Lagrange polynomials defined with a uniform
knot vector t = (0, 2−l, . . . , 1) as

Ll,i(x) =
∏

1≤m≤2l−1,
m ̸=i

x− tm
ti − tm

, i = 0, . . . , 2l. (5.13)

The index set Jl(i) defines the extension of the B-spline. It determines to which interior
basis functions the boundary basis functions are added. An interior basis function of index
i includes the boundary basis function if i is among the first or last p + 1 interior indices.
Formally the index set is defined as Jl(i) = {j ∈ Jl | i ∈ Il(j)}, where Jl = {0, 2l} and
Il(0) = {1, . . . , p + 1}, Il(2

l) = {2l − 1 − p, . . . , 2l − 1} (see [53]). The basis functions
described by eq. (5.12) are shown in Figure 10 for the cubic case. The linear case simplifies
to the linear hat-basis described in Section 5.1.
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5.5 Discussion

In Figure 12 we compare the approximation error from spatially adaptive sparse grids,
constructed with balanced refinement, against the other methods described in this paper.
A comparison between different refinement criteria is given in Figure 11 for test functions f1,
f3 and f5, using the modified linear basis. In some cases the greedy construction is slightly
better, but for example the results for f3 demonstrate the danger of this refinement strategy.
The balanced construction results in a much smaller approximation error, which hints at
the greedy algorithm getting stuck refining local structures. In practice, it is difficult to
predict when refining greedily is better, and in such cases the advantage seems to not be
very significant. Moreover, greedy refinement is not very robust against numerical artefacts
and noise in the training data. For these reasons we prefer to use some form of balanced
refinement, since this is much safer in practice.

We also try to weigh the refinement criterion by the phase-space weight w from eq. (2.29).
For f1 and f3 this results in a more uniform target function, and the resulting sparse grid
becomes similar to the balanced construction without weighting. We therefore see only
minor differences in the results from balanced and weighted refinement.

For other basis choices we see significant improvements for all test functions when
increasing the degree with the piecewise polynomial and fundamental B-spline bases. With
the extended not-a-knot B-splines we see an even better improvement for f5, but for f1–f4
the performance is at best similar to the linear case. In particular for f3 and f4 the cubic
and quintic cases converge very poorly. This result is unexpected since these bases have
been applied to high-dimensional test functions with good results in [53]. We reproduce
those benchmarks with our implementation and also cross-check the new results for our test
functions with SG++.

The improvements of the spatially adaptive sparse grids over the non-adaptive full grid
methods at low amounts of training data are modest. We see in each test function that the
scaling is better, however, and that at high amounts of training data the improvements are
more significant.

Taking interpolation performance aside, a major advantage of spatially adaptive sparse
grids is flexibility. Since it is difficult to predict how much training data is required to reach
a certain precision target for an unknown function, it is likely that training data needs to
be added iteratively. As is discussed in Section 3 and Section 4, non-adaptive methods are
very limited in this regard. A spatially adaptive sparse grid on the other hand is able to add
one point at a time, making it possible to validate during construction and in principle stop
at exactly the required number of points. If a non-adaptive method is used to reconstruct
an unknown function, we are likely to overshoot the required number of points, making the
effective number of function evaluations higher than what is represented by these results.
The results for the non-adaptive methods at a given training size are therefore the best case
scenario, while the sparse grid results are close to what one obtains in practice.
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Figure 11: Effect of refinement crite-
rion and choice of target function on
the approximation error for f1, f3 and
f5. The difference between interpolating
on the amplitude (a) as well as on the
test function (f) is shown. In addition,
we try interpolating on the amplitude
while suppressing the refinement condi-
tion with the phase-space weight. For
the comparison in this figure the linear
basis is used.
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Figure 12: Approximation error us-
ing spatially adaptive sparse grids with
different basis functions. Balanced re-
finement is used in all cases. For f1-
f4 interpolation is done on the ampli-
tude, while for f5 it is done directly on
the test function. The grey lines in the
background are results for methods dis-
cussed in other sections.
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6 Machine Learning Techniques

Machine learning techniques represent a very promising tool for amplitude interpolation [54–
59]. These techniques leverage the power of neural networks, approximator functions that
are structured as a sequence of operations dependent on learnable parameters. Neural
networks can be optimized to approximate any function of a set of inputs to arbitrary
precision—given sufficient time and data. This is accomplished by minimizing the loss
function, which characterizes how close the neural network results are to the desired ones.
The optimization of neural network parameters is performed by evaluating the loss function
on data subsets or batches and performing gradient descent to minimize the objective in an
iterative way. In our case, neural network trainings are framed as regression tasks, where
the output of the network is trained to match a target given an input.

The main advantage that this approach puts forward for the interpolation problem is its
versatility. Neural networks by default introduce a minimal bias in the interpolants they can
represent, so they can easily adapt to a wide variety of target distributions. Additionally,
networks are not limited to a single training or dataset for their optimization. This makes
them a prime tool for adaptive interpolation, since after an initial training their evaluated
shortcomings can be used as a guideline for optimization through subsequent retrainings.

However, neural network based interpolation techniques face a challenge in precision as
function complexity grows. Namely, the performance of neural networks steadily decreases
with increased particle multiplicity [56] and the inclusion of beyond tree-level contribu-
tions [57]. One way to partially mitigate this issue is to incorporate prior knowledge about
the amplitude symmetries into the learning task. In our case, we focus on the Lorentz
symmetry and work with architectures that are aware of the Lorentz invariance of the am-
plitudes. This feature is also present in all other interpolation methods discussed in this
paper, but there are several ways to implement it on neural networks. We explore two
ways of enforcing Lorentz invariance. On the one hand, we train a multilayer perceptron
(MLP) [60, 61] by feeding it only Lorentz invariant inputs. On the other hand, we use the
Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) [58, 59], a neural network
whose operations are constrained to be equivariant (or covariant) with respect to Lorentz
transformations.

To approximate our test functions, we train the networks on an as functions of the
phase-space points using a mean squared error (MSE) loss. We generate the training data
points uniformly over the phase space, using a low-discrepancy Sobol sequence. For the
testing data points, we use the leading-order-unweighted sampling described in eq. (2.30).
Additionally, we also build an extra dataset from unweighted samples for validation, a
routine checkup that is performed regularly during training to prevent overfitting and select
the best performing model constructed during training. The validation set size is always
10% of that of the training dataset until it reaches a size of 4000 points; after that it remains
constant for larger training sets.

Targets for tree-level processes are preprocessed with a logarithmic standardisation:

â =
log(a)− log(a)

σlog(a)
, (6.1)
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where log(yi) and σlog(yi) are the mean and standard deviation of the amplitude logarithm
distributions over the whole dataset. When dealing with f2 and f4, this preprocessing is
not valid, because a takes negative values. We circumvent this issue by reflecting the am-
plitude distribution with respect to its maximum value, and then applying the logarithmic
standardisation.

As for the inputs, all networks are trained on functions of the four-momenta of the sam-
pled points. We derive the four-momenta for each point from their original parametrization
presented in eq. (2.8) and eq. (2.22). When applying this mapping for f1–f4, we prepare the
tt̄ inputs so that the angle φt lies only in the range [0, π], which allows all neural networks
to take advantage of the parity symmetry of these functions.

All networks are trained for 5 × 105 steps with a batch size of 256, the Adam opti-
mizer [62] and a Cosine Annealing scheduler [63] with a maximum learning rate of 10−4

when training for the f1 − f4 test functions and 5 × 10−4 for the f5 test function. Due
to instabilities during training, we refrain from applying early stopping and we perform
validation checks every 300 iterations.

6.1 MLP

We use an MLP as the first baseline for this task. The MLP is built as a simple fully
connected neural network with GELU activation functions [64]. The inputs for the network
are pairwise momentum invariants sij . Alternative input choices have been tested, including
the phase space parameters introduced in eq. (2.8) and eq. (2.22), yielding worse results.

The MLP architecture consists of 5 hidden layers with 512 hidden channels each,
amounting to 106 learnable parameters. This configuration is chosen as a result of a scan,
as the one that performed the best for 105 data points. The inputs are preprocessed by
taking their logarithms and performing standardization as in eq. (6.1).

6.2 L-GATr

Equivariant neural networks constitute a very attractive option for any problem where
symmetries are well defined [58, 59, 65–67]. These networks respect the spacetime symme-
try properties of the data in every operation they perform. They do so by imposing the
equivariance condition, defined as

f (Λ(x)) = Λ (f(x)) , (6.2)

where x is a network input, f is a network operation and Λ is a Lorentz transformation.
By restricting the action of the network to equivariant maps, it does not need to learn the
symmetry properties of the data during training and its range of operations gets reduced
to only those allowed by the symmetry. This makes equivariant networks very efficient to
train and capable of reaching high performance with low amounts of training data.

L-GATr is a neural network architecture that achieves equivariance by working in the
spacetime geometric algebra representation [68]. A geometric algebra is generally defined as
an extension of a vector space with an extra composition law: the geometric product. Given
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two vectors x and y, their geometric product can be expressed as the sum of a symmetric
and an antisymmetric term

xy =
{x, y}

2
+

[x, y]

2
, (6.3)

where the first term can be identified as the usual vector inner product and the second
term represents a new operation called the outer product. The outer product allows for
the combination of vectors to build higher-order geometric objects. In this particular case,
[x, y] is a bivector, which represents an element of the plane defined by the directions of x
and y.

The spacetime algebra G1,3 can be built by introducing the geometric product on
the Minkowski vector space R1,3. The geometric product in this space is fully specified
by demanding that the basis elements of the vector space γµ satisfy the following anti-
commutation relation:

{γµ, γν} = 2gµν . (6.4)

This inner product establishes that the vectors γµ in the context of the spacetime algebra
have the same properties as the gamma matrices from the Dirac algebra. Both algebras
are very tightly connected, with the Dirac algebra representing a complexification of the
spacetime algebra.

With this notion in mind, we can now cover all unique objects in the spacetime algebra
by taking antisymmetric products of the gamma matrices. A generic object of the algebra
is called a multivector, and it can be expressed as

x = xS 1 + xVµ γµ + xBµν σµν + xAµ γµγ5 + xP γ5 with




xS

xVµ
xBµν
xAµ
xP




∈ R16 . (6.5)

In this expression, the components of the multivector are divided in grades, defined by the
number of gamma matrix indices that are needed to express them. Namely, xS1 constitutes
the scalar grade, xVµ γµ the vector grade, xBµνσµν the geometric bilinear grade, xAµ γµγ5 the
axial vector grade, and xPγ5 the pseudoscalar grade.

Apart from its extended representation power, the spacetime algebra offers a clear
way to define equivariant transformations with respect to the Lorentz group on a wide
range of geometric objects in Minkowski space. The main consideration is that Lorentz
transformations on algebra elements act separately on each grade [58, 69]. As a consequence,
any equivariant map must transform all components of a single grade in the same manner
and allow for different grades to transform independently.

This guideline allows for an easy adaptation of standard neural network layers to equiv-
ariant operations in the algebra. In the case of L-GATr, this adaptation is performed on
a transformer backbone. Transformers [70] are ideal architectures to deal with datasets
organized as sets of particles, since the attention mechanism can be leveraged to capture
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correlations between them in a very accurate way. L-GATr is built with equivariant ver-
sions of linear, attention, normalization and activation layers [70, 71]. It also includes a
new layer MLPBlock featuring the geometric product to further increase the expressivity
of the network. Its layer structure is

x̄ = LayerNorm(x)

AttentionBlock(x) = Linear ◦ Attention(Linear(x̄),Linear(x̄),Linear(x̄)) + x

MLPBlock(x) = Linear ◦ Activation ◦ Linear ◦ GP(Linear(x̄),Linear(x̄)) + x

Block(x) = MLPBlock ◦ AttentionBlock(x)

L-GATr(x) = Linear ◦ Block ◦ Block ◦ · · · ◦ Block ◦ Linear(x) . (6.6)

All of these layers are redefined to operate on multivectors and restricted to act on algebra
grades independently to ensure equivariance. Further details for each of the layers are
provided in Refs. [58, 59].

Through this procedure, we build knowledge about the Lorentz symmetry into the ar-
chitecture, but it can also be used to enforce awareness of the discrete symmetries described
in Section 2.6 besides the parity invariance present in f1–f4. Being a transformer, L-GATr
handles individual particle inputs independently and can enforce any exchange symmetry
on individual particles. This is performed in practice by including common scalar labels to
every set of particles that leave the amplitude invariant under permutation.

To operate with L-GATr, we need to embed inputs into the geometric algebra represen-
tation and undo said embedding once we obtain the outputs. For the interpolation problem,
inputs always consist of particle 4-momenta p, which can be embedded into multivectors as

xVµ = pµ and xS = xTµν = xAµ = xP = 0 . (6.7)

Each particle is embedded to a different multivector, resulting in the inputs being organized
as sets of particles or tokens. Each token also incorporates a distinct scalar label as part of
the inputs. The value for these labels is selected according to the permutation invariance
pattern of each process we study. This ensures that L-GATr also respects any instance of
particle exchange symmetry. The token labels are not part of the multivectors, they are
fed to the network as separate scalar inputs. Multivectors and scalars traverse the network
through parallel tracks, mixing with each other only at the linear layers.

As for the outputs, we make use of a global token, which is introduced as an extra
empty particle entry. This extra token holds no meaning at the input level, but at the
output level its scalar component represents the estimator for the target amplitude. As for
the inputs, in L-GATr we divide them by the standard deviation over each of the particle
momenta to prevent violating equivariance.

Our L-GATr build consists of a model with 8 attention blocks, 64 multivector channels,
32 scalar channels and 8 attention heads, resulting in 7× 106 learnable parameters.

6.3 Discussion

We show the results from both the MLP and L-GATr networks in Figure 13. Both networks
manage to clear the percent-level target accuracy on all test functions with a low amount of
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training points. Comparing our two architectures, the MLP is the best performer with very
small training datasets, whereas L-GATr always takes over in the large training dataset
limit. From this pattern we can infer that the MLP is slightly more effective at modelling
the amplitude distributions in low data regimes, whereas L-GATr becomes better with
more training data thanks to its larger capacity. We also observe a general slowdown in
improvement for all networks as we increase the training data.

Comparing with other methods, machine learning algorithms surpass all other interpo-
lation methods in the low data regime for all 5-dimensional test functions, and they are only
overtaken in the large data regime. Their improvement with respect to other approaches is
the biggest in the case of the higher order correction functions f2 and f4, signalling their
potential utility for the interpolation of more complex multi-loop amplitudes.

The only front where neural networks underperform is in the case of the f5 test function.
This is the only 2-dimensional function we test, and seeing less benefits from neural networks
in lower dimensions should not be surprising.

Another important result that we obtain from this study is that we have the ability to
train our neural networks on uniform samples and evaluate them on unweighted samples. If
we instead train and evaluate neural networks on datasets produced with a single sampling
method we observe only a marginal improvement over the results presented in Figure 13.
This is very advantageous for our problem, since that means that we can train our algorithms
on datasets produced by naive sampling methods and then evaluate them on physically
motivated distributions without a significant performance degradation.

Finally, it is possible to modify the training datasets dynamically to focus on those
regions in the target space that are poorly estimated in the initial stages of the training.
Such adaptive strategies are hard to balance in practice, since they involve extensive hy-
perparameter optimization and they are substantially slower than ordinary trainings. For
these reasons, we refrain from trying them out in this paper.
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Figure 13: Approximation error of all
test functions using the MLP and L-
GATr. The grey lines in the back-
ground are results for methods dis-
cussed in the previous sections. Error
bands are obtained as the standard de-
viation of the test function estimations
from 3 independent runs.
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7 Conclusions

We have presented a detailed investigation of several frameworks to interpolate multi-
dimensional functions, focusing on scattering amplitudes depending on a number of phase
space variables. We have used amplitudes related to tt̄H production (5-dimensional phase
space, test functions f1–f4) and Higgs+jet production (2-dimensional phase space, test func-
tion f5) at the LHC as test functions, and applied various ways of polynomial interpolation,
B-spline interpolation, spatially adaptive sparse grids, and interpolation based on machine
learning techniques, using a standard multi-layer perceptron and the Lorentz-Equivariant
Geometric Algebra Transformer.

Considering that the evaluation of amplitudes is costly, the main performance measure
is how the approximation error of the different interpolation methods scales with the number
of data points.

To measure the approximation error we notice that loop amplitudes typically have
peaks or show a steep rise towards the phase-space boundaries, but the contribution of
such regions to physical observables might be small, because it is suppressed by phase-space
density or parton distributions. With this in mind, we have used physically motivated error
metrics by weighing the approximation errors in certain phase-space regions proportional
to those regions’ contribution to the total cross section, targeting a precision of at least 1%.

For the 5-dimensional test functions, we find that machine learning techniques signifi-
cantly outperform the classical interpolation methods, in some cases by several orders of
magnitude. For the lower dimensional case, we see that most methods perform well enough,
but if very high precision is required, sparse grids are the best choice.

In fact, for all test functions we see that the performance of machine learning ap-
proaches starts to stagnate after a certain precision threshold, while classical interpolation
approaches scale smoothly. Since this threshold is fairly high, this still leaves machine learn-
ing techniques as the best practical choice in high dimensions, but does call for a further
investigation.

Another important measure for the usefulness of a particular method is its extendibility.
Since it is difficult to predict how much data is needed to reach the desired error target, it
is likely that more training data needs to be added between validations. Both the adaptive
methods and neural networks provide this option. Spatially adaptive sparse grids are par-
ticularly flexible: they allow for the addition of single points at a time and for an assessment
of which are approximated the worst, and thus need more points. Neural networks are fairly
insensitive to the data point distribution, which allows for more data to be easily added,
at the cost of a repeated training. Additionally, several methods based on them provide
uncertainty estimates on their predictions, such as Bayesian neural networks [56, 72–75] or
repulsive ensembles [76, 77]. These approaches may pave the way forward in validating the
reliability of machine learning techniques.

In summary, our investigations show that the construction of multi-dimensional ampli-
tude interpolation frameworks with a precision that is sufficient for current and upcoming
collider experiments is feasible and therefore numerical calculations for multi-scale loop
amplitudes continue to have a promising future.
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A Additional details

A.1 Phase space parametrisation for pp → tt̄H

The variables used for test functions f1 to f4 originate from a 2 → 3 phase space to produce
a top quark pair and a Higgs boson, where we use three angular variables and two variables
of energy type:

dΦtt̄H =
1

210π4ŝ stt̄

√
λ(stt̄,m

2
t ,m

2
t )
√
λ(ŝ, stt̄,m

2
H)×

Θ(
√
ŝ− 2mt −mH)Θ(stt̄ − 4m2

t )Θ([
√
ŝ−mH ]2 − stt̄) dstt̄ dΩtt̄ sinθH dθH (A.1)

with θH being the poar angle of the Higgs boson relative to the beam axis, dΩtt̄ =

sinθt dθt dφt and λ being the Källén function, λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca,
depending on the variables

ŝ = (p3 + p4 + p5)
2 , stt̄ = (p3 + p4)

2 (A.2)

and the masses. As the production threshold of the tt̄H system is located at s0 = (2mt +

mH)2, a convenient variable for a scan in partonic energy is

β2 = 1− s0
ŝ

(A.3)

such that β2 = 0 at the production threshold and β2 → 1 in the high energy limit. For
more details we refer to Ref. [13].
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