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Abstract: We consider extending the Standard Model by an anomaly-free and possibly

flavour non-universal U(1)X gauge symmetry, whose breaking gives a Z ′ boson that does

not affect electroweak precision observables at tree-level or at 1-loop. Provided it does

not also couple to electrons, such a Z ′ boson would be largely invisible to an electroweak

precision machine like FCC-ee or CEPC. We show that, while this class of Z ′ models can

also evade tests of quark flavour violation, the constraint of anomaly-cancellation implies

that valence quarks, muons, and taus are all charged under U(1)X , with the up quark

charge being necessarily large. The conclusion holds even if one augments the SM by three

right-handed neutrinos to try and absorb anomalies. This means such Z ′ bosons cannot

simultaneously hide below the TeV scale from pp → ℓℓ Drell–Yan measurements at the

LHC and, even if we entertain esoteric models in which the lepton charges are numerically

very small, we cannot escape dijet searches at the LHC. For equitable quark and lepton

charges, pp→ ℓℓ already excludes such a Z ′ up to M/g ≳ 10 TeV, with a reach of 20 TeV

expected by the end of the High-Luminosity LHC. The dijet bounds currently sit around

5 TeV, while sensitivity up to 10 TeV could be achieved at HL-LHC. We thus find an

excellent complementarity between FCC-ee and HL-LHC in covering all anomaly-free Z ′

bosons up to several TeV.
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1 Introduction

In Ref. [1] it was shown that very few single-particle extensions of the Standard Model

(SM) can escape running into electroweak precision observables (EWPOs) at 1-loop level.

The level of precision anticipated at FCC-ee, particularly on its Z-pole run, promises to

probe all such states up to scales of several TeV, depending on the gauge and Lorentz

representation of the particle.

The exceptions are: (i) a scalar diquark field that is coupled only to top quarks;

(ii) a vector SU(2)L triplet, or W ′, whose flavour-violating couplings to light quarks are
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precisely tuned against its flavour-conserving couplings; (iii) a vector SU(3) octet coupled

only to top quarks; and (iv) a vector singlet, or Z ′, with couplings to fermions that satisfy

certain linear equations.1 Of these options, it is hard to imagine the W ′ with such tuned

couplings to the SM fermions emerging from any reasonable UV model, and moreover it

is already ruled out to M/g ≳ 1000 TeV by its flavour-violating impact on neutral meson

mixing, making its accidental invisibility on the Z-pole a moot point. The two coloured

options, while tuned to escape the 1-loop RGEs, nonetheless exhibit a large-ish running

into EWPOs at next-to-leading order that scales with the top Yukawa and the strong gauge

coupling [4] and, more importantly, they will already be probed up to several TeV by the

LHC thanks to their direct couplings to gluons. For the final case, namely the Z ′, there is

a wide family of possible solutions, which can arise from a reasonable UV model in which

the SM is extended by some gauged U(1)X symmetry. Since the Z ′ is a gauge singlet, and

its couplings can be flavour conserving, it is unclear prima facie whether any of these Z ′

models can simultaneously hide from other experiments, principally at the LHC.

In this paper, we look to fill the remaining gap, by asking if any of these Z ′ models that

are invisible on the Z-pole can also escape constraints from current experiments and remain

viable at a low-scale, let’s say at M/g ≲ TeV, beyond FCC-ee. The answer is a resounding

no. We find that the complementary constraints that already exclude such electroweakly-

invisible Z ′ bosons come not from indirect flavour measurements, as anticipated in [1], but

from direct searches at high-energy.

To show this, we will assume the Z ′ is the heavy gauge boson associated to a spon-

taneously broken U(1)X gauge symmetry. Then the U(1)X charges of SM fermions must

be chosen such that gauge anomalies cancel. This imposes a system of linear and non-

linear constraints which must be solved over the rational numbers. We find that these

constraints become extremely restrictive when combined with those conditions that result

from requiring Z-pole invisibility. In particular, we show that:2

• Right-handed up and charm quarks are charged under U(1)X

• At least two generations of right-handed down-type quarks are charged under U(1)X

• At least two generations of right-handed leptons are charged under U(1)X

• The up-quark charge is moreover large, necessarily satisfying 2|u| ≥ max(|di|, |ei|),
meaning the Z ′ coupling to protons is unsuppressed.

1Colourless scalar fields transforming in the 4-plet of SU(2)L, with hypercharge 1/2 or 3/2, do not

contribute to the RGEs for SMEFT operators constrained by the Z-pole, but they do however generate

finite 1-loop contributions to the CHD operator [2, 3], that shifts the W mass. As shown in [3], these effects

can be pushed to higher order (in loops or the 1/Λ expansion) by considering the custodially symmetric

combination of these two scalar fields, which could originate from a scalar transforming in the 16 of custodial

SO(4) symmetry. Such a model might leave its largest imprint on Higgs self-coupling measurements.
2In a similar spirit Ref. [5] found that anomaly cancellation when combined with constraints related to

explaining the (g− 2)µ anomaly, such as it was in 2022, ends up being very predictive concerning the space

of viable models.
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All of these statements hold even if we consider augmenting the SM fermion content by

arbitrarily many right-handed neutrinos charged under U(1)X to try and ‘soak up’ gauge

anomalies.

The result is that such a Z ′ model is, inevitably, strongly constrained already at the

LHC, with current constraints already excludingM/g up to 5 TeV. To reach this conclusion,

we try to decouple as many further constraints as possible. Firstly, if right-handed electrons

are charged, then there are also strong constraints coming from LEP-II e+e− → l+l− cross-

section measurements. As highlighted in recent studies [6, 7], the power of the electroweak

programme at FCC-ee is not limited to extreme precision on the Z-pole: we infer that

the Z ′ models we consider, if coupled to eR, would be probed up to 30 TeV at FCC-ee by

measurements off the Z-peak. By assigning the two non-zero lepton charges to muon and

tau, and demanding the electron charge be zero, these constraints from e+e− colliders such

as FCC-ee disappear. In this case, we provide an analytic parametrization of all the viable

U(1)X charge solutions, which ends up equivalent to solving for Pythagorean triples.

Continuing with our search for an invisible Z ′, even if we decouple electrons in addition

to the Z-pole running, there remain strong constraints coming from LHC pp → ℓℓ Drell–

Yan measurements, which are very strong especially for muons in the final state, and

given that up and down quarks must have unsuppressed couplings to the Z ′ in order to

not run into the EWPOs. We find current LHC data from pp → ℓℓ at high-pT requires

M/g ≳ 10 TeV, which should improve to reach roughly 20 TeV after the High-Luminosity

LHC (HL-LHC). Finally, one can try to weaken also these pp → ℓℓ constraints by finding

viable charge assignments in which the lepton charges are numerically much smaller than

the quark charges. But even in this case, we cannot help running into strong constraints

coming from di-jet searches at the LHC, which give very strong constraints within the

kinematical reach of the searches which extends up to 5 TeV. We give a crude estimate of

the bounds from di-jet resonance searches, which apply only for narrow-width Z ′s, using

Ref. [8], and also estimate bounds from non-resonant searches performed using angular

distributions of dijets [9].

The outline of the paper is as follows. In §2 we recap the conditions for a Z ′ to

not run into the EWPOs from [1]. In §3 we review the conditions on a Z ′ to arise from

an anomaly-free U(1)X extension of the SM, and highlight an interplay between these

conditions and those from not running into the Z-pole. In §4 we systematically explore

the space of Z ′ models satisfying these criteria, deriving the various statements sketched in

the Introduction. Then in §5 we sketch the main phenomenological bounds on the models,

coming from 4-lepton, semi-leptonic, and 4-quark probes. We compare various benchmark

models, and those that do run into the EWPOs, in Fig. 1, before concluding in §6.

2 Electroweak neutrality

We assume the Z ′ comes from a gauged U(1)X extension of the SM, and we label the charges

of the various SM fields by {qi, li, ui, di, ei, H} in what we hope is an obvious notation. For

simplicity, we suppose the U(1)X symmetry is spontaneously broken by a SM singlet scalar
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field ϕ, with unit charge under U(1)X , that gets a vev ⟨ϕ⟩ = vX/
√
2, resulting in the Z ′

getting a mass MX = gXvX .

2.1 Constraints from 1-loop SMEFT running into the Z-pole

We begin by recapping the linear constraints on the U(1)X charges that should be satisfied

to not run into EWPOs up to one-loop level, which was studied in [1]. The SMEFT

operators that effect the EWPOs at tree-level are, in the Warsaw basis,

{[O(1,3)
Hℓ ]ii, [O

(1,3)
Hq ]ii, [OHe]ii, [OHu]ii (i = 1, 2 only), [OHd]ii, OHD, OHWB, [Oℓℓ]1221} . (2.1)

For the Z ′ gauge boson to not shift EWPOs at tree-level therefore requires the Higgs is

neutral, H = 0, and that the Z ′ has no flavour off-diagonal coupling to left-handed muon-

electron bilinears. This can be achieved either via a universal coupling to both (l1 = l2) or

by alignment between the electron and muon mass and flavour eigenstates. We see shortly

that cancelling also the one-loop running into (2.1) implies the former scenario.

At one-loop and at leading order in the SMEFT Wilson coefficients, many additional

SMEFT operators run into the set (2.1). Neglecting all Yukawa couplings other than yt,

and keeping the running with all three SM gauge couplings g1,2,3, it is straightforward

to identify the conditions for the Z ′ to not run into the EWPOs, in other words to be

‘electroweakly neutral’ at this order. Recapping from [1]:

• Running with the top Yukawa coupling yt vanishes iff q3 = u3. This is the condition

for U(1)X permitting a renormalisable top Yukawa coupling, which we want to enforce

anyway;

• Running with the SU(2)L gauge coupling g2 vanishes iff all left-handed fermion fields

are neutral under U(1)X , i.e. li = qi = 0 ∀i ∈ {1, 2, 3}. Note this implies [Cℓℓ]1221 is

not generated at tree-level. Together with the previous condition, this also implies

u3 = 0, so the top quark is neutral under U(1)X ;

• Lastly, running with the U(1)Y gauge coupling g1 vanishes iff the further linear

condition on the remaining non-zero charges is satisfied:∑
i

(−ei + 2ui − di) = 0 . (2.2)

We discuss the implications of this final condition when we turn to anomaly cancellation.

At this point, we already wish to emphasize that the condition from g2 running means

these Z ′ models are intrinsically chiral, coupling only to right-handed fermion fields. While

anomaly-cancellation is still possible (see §3), this does however immediately imply that

full Yukawa coupling matrices are not permitted at the renormalisable level. Rather, only

certain elements of the Yukawa matrices are permitted at dimension-4; encouragingly, the

top Yukawa coupling q3H
cu3 is always permitted thanks to the top quark being neutral,

which was implied by requiring no 1-loop running into the Z-pole with yt or g3. But

otherwise, some additional dynamics is needed to populate the full Yukawa matrices, and
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one can push this to a higher scale without destabilising the lowest layer of new physics

that we assume is associated to the Z ′.3

2.2 Electroweak neutrality beyond the Z-pole

As mentioned in the Introduction, the electroweak program of FCC-ee extends beyond the

virtues of its tera-Z run, as emphasized for instance in the studies [6, 7] (see also [10–12]).

Of particular relevance to our Z ′ models, FCC-ee measurements above the Z-peak will put

strong constraints on 4-fermion operators involving electrons.

The constraints on such operators coming from LEP-II, in particular from e+e− →
ℓ+ℓ− cross-section and forward-backward asymmetry measurements, are already strong

and probe a model in which the electron is charged up to scales of several TeV (as we

show for our class of Z ′ models in §5.2). At FCC-ee, the bounds on dimension-6 4-lepton

operators containing electrons will jump to 20 ÷ 30 TeV [7]. Therefore, in our hunt for a

light Z ′ model that could escape detection at FCC-ee, it had better not couple to electrons

either, and so we should restrict to solutions in which e1 = 0 also. We do so in §4.3.

2.3 Flavour Neutrality

The condition that all left-handed quarks and leptons are neutral under U(1)X means that

such models can evade most constraints coming from flavour violation probes. This is

because, while for left-handed quarks we know there is non-zero misalignment between the

flavour and gauge eigenstates in order to reproduce the CKM matrix, the right-handed

quarks can be aligned. If only right-handed fields are charged under the Z ′, this means

that models can be consistently constructed in which the Z ′ does not induce any flavour

violation. More realistically, the quark flavour violation will be suppressed by the size of

mixing angles amongst the right-handed quark fields, which must be sufficiently small.4

The same goes for leptons. So, this class of Z ′ models that are invisible to electroweak

precision have a consistent limit in which they are invisible also to tests of flavour violation.

This means that flavour-conserving constraints on 4-fermion operators will dominate the

phenomenology, as we will see in §5.

3 Anomaly cancellation

The U(1)X extension of the SM should also be anomaly-free. In a U(1)X extension of

the SM there are six possible triangle anomalies involving U(1)X gauge bosons and SM

gauge bosons, including the mixed anomaly between U(1)X and gravity. Requiring these

3Viewed from a different perspective, the chiral and flavour non-universal nature opens up the possibility

that U(1)X can explain aspects of the flavour puzzle: some Yukawa couplings must originate from higher-

dimensional operators which are therefore suppressed with respect to the renormalisable top quark Yukawa

coupling. But our focus here is on the phenomenology of the Z′ and not on solving the flavour puzzle.
4Small right-handed mixing angles are a face-value expectation from the gauged U(1)X symmetries that

we end up considering. This is because right-handed fields acquire non-universal charges under U(1)X and

so in general we expect different EFT suppression factors appearing in each column of the Yukawa matrices,

resulting in hierarchically suppressed right-handed mixing. See §4.6.
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perturbative anomalies cancel5 results in six homogeneous polynomial equations that must

be solved over the rationals: four are linear, one is quadratic, and one is cubic in the charges.

One of the linear conditions, namely the mixed anomaly with SU(2)L, is automatically

satisfied because we already learnt that all SU(2)L doublets must be U(1)X neutral to

avoid the running into EWPOs with g2.

Before we get started solving these equations, the reader might object that, since the

U(1)X gauge symmetry is necessarily spontaneously broken, it is possible for gauge anoma-

lies to be cancelled in the low-energy EFT by Wess–Zumino–Witten (WZW) terms [15, 16]

à la Preskill [17], that we suppose arise from integrating out some heavy chiral fermions

that ultimately restore anomaly cancellation in the underlying renormalisable theory. But

it is reasonable to discard this class of EFTs in our pursuit of a Z ′ that is invisible on the Z-

pole. Firstly, if the heavy fermions that cancel anomalies are SM singlets, they can at most

cancel the pure ’t Hooft anomaly associated with gauging U(1)X and the mixed anomaly

between U(1)X and gravity. Such states are simply heavy right-handed neutrinos, and

we discuss this extension of the SM field content explicitly in §4.4, finding that our main

conclusions go through unchanged. Secondly, if we entertain heavy chiral fermions that

cancel mixed anomalies between U(1)X and the SM, then they must be charged (although

not necessarily chirally) under the SM gauge group. If they are electroweakly-charged, as

in e.g. Ref. [18], the extra chiral fermions couple directly to the electroweak gauge bosons

and so give 1-loop contributions to the EWPOs anyway, so we should strike out this option

in our pursuit of an invisible Z ′. If they are coloured, they radically alter the LHC phe-

nomenology of such a model, with the heavy quarks likely providing the leading signature

to target rather than the Z ′.6

We therefore stick to the simpler scenario in which the U(1)X charges are chosen so

that all gauge anomalies cancel given the SM chiral fermion contributions only, with the

exception of possible right-handed neutrino contributions that we treat in §4.4.

3.1 Linear anomaly conditions

Given the mixed anomaly with SU(2)L is automatically satisfied, there are three linear

anomaly cancellation conditions (ACCs) to solve, plus the two non-linear ones. Allowing

a right-handed electron charge for now, recall there are eight rational charges left to fix,

namely {u1, u2, di, ei} where i ∈ {1, 2, 3}. To proceed, it is convenient to define the sums

of charges:

D =
∑
i

di, E =
∑
i

ei , (3.1)

since it is these sums that appear in all the linear anomaly conditions, given their invariance

under permuting family indices. Note the ‘g1 running’ condition (2.2) is then 2(u1+u2) =

5In a U(1)X extension of the SM it is sufficient to consider only the cancellation of perturbative gauge

anomalies. As long as we do not add an odd number of chiral fermions with SU(2)L isospin j ∈ 2Z+ 1/2,

there are no non-perturbative gauge anomalies to further consider [13, 14].
6Note that, precisely because the heavy quark is posited to cancel a mixed anomaly between colour and

U(1)X , we cannot make it arbitrarily heavier than the Z′, without simultaneously making the Z′ arbitrarily

weakly coupled to the SM fermions.
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E+D. The mixed anomalies with SU(3)c and U(1)Y (the one with a singleX leg) vanish iff

u1+u2 = −D and 8(u1+u2) = −2D−6E respectively, which implies E = D = −(u1+u2).

The g1 running condition is then only satisfied if

u1 + u2 = 0 ⇒ E = D = 0 . (3.2)

All the linear constraints are now satisfied. Note that the mixed anomaly with gravity

automatically vanishes without needing to enforce it as a constraint, because the other

conditions already imply that the sums of charges for every fermion type equal zero.

One can also flip the logic, and consider first imposing all the linear ACCs including

the mixed anomaly with gravity. It is known that this forces the ‘sums of charges’ D, E

etc to be a linear combination of hypercharge and B −L, and so knowing also that all the

left-handed fields are neutral immediately imply all sums of charges are zero. Then the

1-loop running with g1 into Z-pole observables cancels exactly upon summing over flavours

of each type of fermion. For instance, the contributions of 4-lepton SMEFT operators Oiijjee

that arise from integrating out the Z ′ into the Higgs-bilepton current are

ĊiiHe ∼
3∑
j=1

ei

ei

Zµ

ej
∝ g21

3∑
j=1

ej = 0 by ACCs, (3.3)

where a square dot denotes a dimension-6 operator obtained from integrating out the Z ′

at tree-level, here a 4-fermion operator with (R̄R)(R̄R) chiral structure, while a circular

dot denotes a SM coupling, in this case a gauge coupling. Separate cancellations occur

when summing over down-type and up-type quarks in the loop. The same goes for the

OHu and OHd Higgs-fermion bilinears at 1-loop. Thus the modifications of Z couplings to

right-handed fermions, sometimes denoted δgZfR ii for f ∈ {u, d, e}, vanish at this order.

This diagrammatic argument also makes it clear that the cancellations are exact only

because we are neglecting the masses of the leptons and quarks running inside the loop.

This assumption corresponds to dropping the dependence of the SMEFT RGEs on all

Yukawa couplings other than yt in Ref. [1]. We infer that the leading corrections to such

Z couplings should scale with m2
b,c,τ/M

2
X , noting that there are no contributions with tops

running in the loop because u3 = q3 = 0. Comparable contributions would likely come

from including dimension-8 operators for a TeV scale Z ′, given mbmX

m2
Z

∼
(
mX

2 TeV

)2
.

3.2 Corollary: zero 1-loop RGE with yt and gi

This non-renormalisation at 1-loop of the Z boson current is an example of a more general

feature of the class of Z ′ models we have arrived at. The 1-loop RGEs, keeping only

effects in yt and the gauge couplings gi, in fact vanish completely for all dimension-6

SMEFT operators, not just the subset (2.1) that enter the EWPOs at tree-level. It is

again straightforward to see this by considering 1-loop diagrams – or by inspecting the

complete formulae for 1-loop RGEs derived in Refs. [19–21].
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Yukawa dependence. Firstly, let us consider running of any SMEFT operators with yt
in these models. Because the charges of u3, q3, and H are all required to be zero by our

electroweak neutrality conditions, we do not generate any dimension-6 SMEFT operators

at tree-level that can connect to a top Yukawa insertion, meaning all the 1-loop diagrams

involving one SMEFT coefficient and insertions of the top Yukawa vanish. For example,

fifi

ytyt
q3q3

u3u3

H

=

fifi

ytyt
HH

u3u3

q3

= 0 (3.4)

because the 4-fermion operator vanishes at tree-level, and likewise for any dimension-6

SMEFT operator involving Higgses. Thus, if we drop all Yukawa couplings other than

yt, there is no 1-loop running with Yukawas for these models from the matching scale (at

which the Z ′ is integrated out) down to the electroweak scale.

The leading RG running with Yukawa couplings will, for generic models in our class,

be due to the bottom quark Yukawa yb ∼ 0.01 (using the value of yb at a scale µ = 1

TeV [22], assuming SM RGE up to that scale). This generates y2b -suppressed running into

4-fermion operators with (L̄L)(R̄R) chirality structure, from the diagrams

fifi

ybyb
q3q3

d3d3

H

=⇒ Ċ33ii
qf ∼ y2b

g2X
M2
X

Xd3Xfi f ∈ {u, d, e} , (3.5)

This would give, for instance, a very small contribution to e+e− → bb̄ but only if e1
were charged. The more important contribution, phenomenologically, would likely be yb-

suppressed running into Z-pole observables, due to

fifi

ybyb
HH

d3d3

q3

=⇒ ĊiiHf ∼ y2b
g2X
M2
X

Xd3Xfi f ∈ {u, d, e} , (3.6)

leading to very small RG-induced modifications to the Z-boson couplings, including Z →
bRbR, Z → µRµR, and Z → τRτR measured at the Z-pole. Given our Z ′ couples at tree-

level only to right-handed fermions, there are no other diagrams to consider for running

into any operators due to Yukawa dependence.

– 8 –



Small as these contributions already are, we shall see in §4.3 that the class of solutions

that decouple from FCC-ee both on and off the Z-pole necessarily has one di vanishing,

and it is attractive to take this to be d3 = 0 due to the flavour structure implied by U(1)X
(§4.6). In those models, the leading Yukawa running is now quadratic in yc ∼ 3 × 10−3,

and so is a truly tiny RG effect compared to the leading ‘tree-level’ phenomenology that

we will study in §5.

Gauge coupling dependence. The running with the gauge couplings can be captured

via diagrams like that we already discussed in (3.3), which gives the modification to the

gauge boson currents from which one can obtain the running into 4-fermion operators

and Higgs-bifermion operators. Again these contributions cancel exactly upon setting all

Yukawas other than yt to zero, although the cancellation is qualitatively different in the

two cases. For the Yukawa running, we saw the largest contributions (the yt running)

were simply set to zero by choosing U(1)X charge assignments that decouple from the

Higgs and top; for the gauge running, on the other hand, the U(1)X charge assignment

leads to a precise cancellation between non-vanishing one-loop diagrams like that in (3.3).

This cancellation follows from flavour universality of the SM gauge interactions, combined

with the strict flavour non-universality of the U(1)X force, in particular the ‘tracelessness’

conditions D = E = U = 0 that followed from anomaly cancellation plus our Z-pole

running criteria. This general argument shows that it is not only the gi-dependent running

into the Higgs-bifermions operators constrained on the Z-pole that vanishes at one-loop,

but also the gi-dependent running into 4-fermion operators. This applies even for those

4-fermion operators that are generated at tree-level, viz.

Ċiijjff ′ ∼
∑

f ′′∈{u,d,e}

3∑
k=1

fi

f̄i

f ′j

f ′j

f ′′k

= 0 . (3.7)

As above, the cancellations are only perfect because we neglect the mass of all the SM

fermions running in the loop, and so there will be small corrections to the gi running that

scale with the light Yukawas.

Finite parts. Finally, we comment on the finite parts of the 1-loop diagrams that should

enter into the computation of low-energy observables, going beyond the leading log RGE

approximation to the running. Such finite contributions have been found to be quantita-

tively important effects to include in phenomenological studies of tera-Z, for instance in

Ref. [23]. In our case, the cancellation of the 1-loop diagrams will hold not only for the

divergent parts of the loop integral that are captured via the SMEFT RGEs, but also for

the finite parts. This is clear because the relevant U(1)X charges enter simply as overall

pre-factors in the computation of each diagram.
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3.3 Non-linear anomaly conditions

Continuing with our discussion of anomaly cancellation, there remain two non-linear con-

ditions on the charges that should be satisfied for gauge anomalies to cancel. The non-

linearity here means that the conclusions we can deduce from enforcing these constraints,

which requires some elementary number theory, are somewhat less obvious, but no less

powerful.

First, the mixed anomaly with hypercharge corresponding to a triangle diagram with

two X legs, that is quadratic in charges, vanishes iff

4u21 =
∑
i

d2i + e2i , (3.8)

where we used u2 = −u1. Secondly, the cubic anomaly, corresponding to a triangle diagram

with three X legs, vanishes iff

0 =
∑
i

3d3i + e3i , (3.9)

where we have used the fact that the linear constraints already imply u31 + u32 = u31 +

(−u1)3 = 0. In summary, we need to solve the non-linear equations (3.8) and (3.9) subject

to the linear constraints
∑

i di =
∑

i ei = 0.

4 Classifying Z ′ models with electroweak neutrality

4.1 Valence quarks are charged

We can deduce some immediate consequences of the non-linear ACCs. The right-hand-side

of eq. (3.8) is a sum of squares which implies the left-hand-side is non-negative. Hence, a

non-sterile7 solution requires

u1 ̸= 0, u2 = −u1 . (4.1)

Thus, both the right-handed up and charm quarks are unavoidably charged under U(1)X .

The coupling to up quarks in particular means that production of the Z ′ boson in pp

collisions has no flavour suppression, and so there will be strong constraints from the LHC.

Also notice that (3.8) does not only imply that the up quark has non-zero charge, but

also that its charge is large, because:

2|u| ≥ max(|di|, |ei|) , (4.2)

7We define a ‘sterile solution’ to be one in which all U(1)X charges of SM fields are zero, in which case

the Z′ boson would decouple entirely, modulo a possible kinetic mixing with the hypercharge gauge boson.

If the kinetic mixing parameter ϵXµνB
µν is turned on, the Z′ mimics a heavy copy of the SM hypercharge

gauge boson, picking up couplings to the Higgs and all SM fermions after diagonalising the gauge field

kinetic terms. The effective scale in that case would be Λ = M/(ϵgX), with the combination ϵgX being the

effective coupling, and this Z′ would be probed up to scales of order 80 TeV [1] by the FCC-ee Z-pole run

due to the direct couplings to all SM fields. Of course, such a Z′ could also be very light (M ≪ MZ) and

weakly-coupled, in which case it would serve as a dark photon – a phenomenologically different beast to

the heavy, strongly coupled extensions of the SM that we are concerned with here.
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i.e. the up charge (multiplied by two) is at least as big as the largest lepton or down-type

quark charge. It follows immediately that the Z ′ has large coupling to protons and so is

abundantly produced in a proton-proton collider.

Knowing this, the next most important thing to know phenomenologically is whether

the Z ′ also couples to charged leptons, and how many flavours thereof. If it does, the Z ′

will contribute to Drell–Yan production of di-lepton pairs at the LHC (§5.3). And even if

it does not, or if the lepton charges can be numerically suppressed, condition (4.1) implies

the Z ′ will contribute to di-jet production at the LHC, which gives strong constraints for

a Z ′ coupled to up quarks [8] as is the case here (§5.4).
We also emphasize that the up-type quarks necessarily have all different charges under

U(1)X , viz. (u1, u2 = −u1, u3 = 0). This means there are no Z ′ models with U(2)u quark

flavour symmetry, which would require u1 = u2, that satisfy our criteria for electroweak

neutrality. But, as discussed in §2, this does not necessarily mean there are strong bounds

from e.g. kaon mixing or other precision flavour probes, because the strong U(2)-breaking

is only present for right-handed quarks and there the mixing angles can be consistently

tuned to be arbitrarily small.

4.2 At least two leptons are charged

It is quick to show that at least one right-handed lepton is necessarily charged, or else the

U(1)X is sterile i.e. all charges are zero. To see this, let us try setting all three RH lepton

charges ei to zero. The cubic anomaly constraint becomes

0 = d31 + d32 + d33 . (4.3)

Rather famously, this equation has no rational solutions in which all di are non-zero, but

rather the only solutions satisfy d1d2d3 = 0, of the form d1 = −d2, d3 = 0 (up to permuting

flavour indices). Substituting this into the quadratic, together with ei = 0, we get

2u21 = d21 , (4.4)

which has no rational solutions. Thus, by contradiction, we establish that at least one ei
charge must be non-zero for there to exist rational solutions. But then the linear condition

E =
∑

i ei = 0 can only be satisfied if at least two ei be non-zero. Thus, in addition

to coupling to up and charm quarks, an anomaly-free Z ′ that does not run into the Z-

pole observables necessarily couples at tree-level to (at least) two flavours of leptons. This

combination of couplings means there are strong constraints coming from LHC Drell–Yan

data at high-pT (§5.3), including at least one light flavour lepton channel.

At least two down-type quarks are charged. The same mathematical argument

used in §4.2 applies to the down quarks: that is, (3.8) and (3.9) together imply the di
cannot all be zero, or else there would be no rational solution for the ei charges, and then

the linear constraint D =
∑

i di = 0 implies at least two of the di are non-zero.
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4.3 Classifying solutions with one neutral lepton

As advertized in §2.2, to decouple the Z ′ from FCC-ee, indeed even from old LEP-II data,

means it should not couple to the electron at tree-level. It is therefore of interest to set

e1 = 0 and study the space of solutions satisfying this condition.8 The space of all such

Z ′ models, satisfying our anomaly-free and electroweak-neutrality criteria, is equivalent to

the set of Pythagorean triples and so admits a straightforward analytic parametrization,

as follows.

We know
∑
ei = 0 from the linear equations, therefore if we suppose one lepton is

neutral, taking e1 = 0 wlog, then all solutions are of the form e2 = −e3. The cubic then

becomes
∑

i d
3
i = 0, which implies by Fermat’s theorem that di ∝ {0, 1,−1} also up to

permutation. Therefore, all solutions in which one right-handed lepton is neutral are of

the ‘parity-symmetric’ form, namely for each right-handed field of type f ∈ {u, d, e} the

charge assignment is (f1, f2, f3) = Xf (1,−1, 0) up to permutation. The Xf values, which

we can define to all be non-negative without loss of generality, must then be chosen to

satisfy the quadratic, which becomes

2X2
u = X2

d +X2
e . (4.5)

For example, one solution is Xu = Xd = Xe = 1, which we discuss further below when

we turn to phenomenology. Equation (4.5) can be mapped to Pythagoras’ equation, by

rewriting it as

X2
u =

(
Xd −Xe

2

)2

+

(
Xd +Xe

2

)2

; (4.6)

since Xd and Xe are either both even or both odd to satisfy (4.5), we know (Xd ±Xe)/2

are themselves both integers. The complete solution (over the integers) to Pythagoras’

equation has been known for over two millenia. The set of all Z ′ models of interest can

thence be parametrized in terms of two integers p, q ∈ Z2,

Xu = p2 + q2, Xd = p2 + 2pq − q2, Xe = q2 + 2pq − p2 , (4.7)

from Euclid’s formula. We pick out some benchmarks to study in §5.

4.4 Including right-handed neutrinos

We have found that combining the requirements of electroweak neutrality (on and off the

Z peak) with anomaly cancellation is very predictive for Z ′ extensions of the SM: to sum

up, it implies the Z ′ couples at tree-level to up and charm quarks, at least two down-type

quarks, muons, and taus, and that all inequivalent solutions up to family permutations are

parametrized by a pair of integers.

One might wonder whether the above constraints can be relaxed by including up to

three right-handed neutrinos, with non-universal charges {ni} with which one can try to

‘absorb’ gauge anomalies. Given the linear conditions excluding the mixed anomaly with

8To investigate solutions with three non-zero ei charges, one could apply the geometric tools pioneered

in the most general SM×U(1)X case in Refs. [24–26].
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gravity, none of which notice the inclusion of SM singlets, imply that U = D = E = 0, in

order to not re-introduce the mixed anomaly with gravity we require alsoN :=
∑3

i=1 ni = 0.

Then, the only modification is that the cubic becomes

0 =
∑
i

3d3i + e3i + n3i . (4.8)

Since the quadratic equation is not modified, the conclusion that right-handed up and

charm quarks are charged is unchanged. Phenomenologically, there is no way to decouple

the di-jet constraints.

At first glance it appears slightly more encouraging to try to find solutions in which, say,

all the charged leptons decouple, if we are hoping to hide from LHC Drell–Yan constraints.

Setting all ei = 0, we now open up non-trivial solutions to the cubic in which all three di
are non-zero thanks to the inclusion of {ni}. The quadratic constraint would then be

4u21 = d21 + d22 + d23 . (4.9)

Considered in isolation, this equation has infinitely many solutions that can be straight-

forwardly parametrized in terms of four rational variables (by a generalisation of Euclid’s

formula), with all di necessarily even. But it turns out that none of these solutions intersect

the linear constraints imposed above. To show this, our strategy is to substitute the linear

constraint D =
∑

i di = 0 into this quadratic to reduce the number of variables by one,

and then appeal to Legendre’s theorem on the ternary quadratic form.

It is convenient to perform a change of variables on the {di}. Following [27], for

instance, we define d32 := d3 − d2 and d̄ := −2d1 + d2 + d3. Note that the linear map from

{d1, d2, d3} to {D, d32, d̄} and its inverse are rational. In the new variables, the quadratic

becomes 3d232 + d̄2 + 2D2 = 24u21. In this form, it is easy to impose the linear condition,

which is just D = 0, giving

d232 + 3

(
d̄

3

)2

= 2(2u1)
2 . (4.10)

We have cast the quadratic equation in the form ax2+by2 = cz2, where the coefficients a, b

and c are coprime and square-free positive integers. By Legendre’s theorem, this does not

admit any rational solutions for {x, y, z} because the Legendre symbol (ac|b) = (2|3) = −1.9

Accordingly, there are no rational solutions for our original variables {u1, di} to which

{x, y, z} are related by a rational linear transformation.

We thus prove by contradiction that there exist no anomaly-free non-sterile solutions

that satisfy our Z-pole invisibility criteria in which the charged leptons are all neutral,

even allowing for arbitrarily many right-handed neutrinos with any rational charges. As

before, the linear constraint E =
∑
ei = 0 then implies at least two ei are non-zero,10

which implies the Z ′ must couple at tree-level to either electrons or muons. As argued

9Recall that, in number theory, the Legendre symbol (a|p) is, given an odd prime p, defined to equal 1

if a is congruent to a (non-zero) perfect square modulo p, equal to 0 if a is a multiple of p, and equal to

−1 otherwise. In the case at hand, we have that (2|3) = −1 because every square is congruent to 0 or 1

modulo 3.
10The same proof can be given to show that at least two down-type quarks are also charged.
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above, in order to hide the Z ′ from e+e− colliders, i.e. to make the Z ′ invisible both on

and off the Z-peak at FCC-ee, we learn unambiguously that such a Z ′ couples at tree-level

to muons as well as quarks, making it ideal to search for at the LHC.

4.5 Compatibility with semi-simple UV completions

While Z ′ extensions of the SM might be motivated by many phenomenological reasons,

for instance to explain various ‘anomalies’ in flavour physics or to explain aspects of the

flavour puzzle, one theoretical argument against such extensions is that they typically run

counter to our desire for unification into a semi-simple gauge group. Unification remains

attractive for curing the SM of the Landau pole associated with hypercharge while also

explaining the observed quantization of hypercharge. Extending the SM gauge group by a

second U(1)X factor near the TeV scale doubles the challenge of unifying into a semi-simple

gauge group; to get an idea, note that if there were only one generation of SM fermions (or

equivalently if we impose flavour universality), then only the choice B − L is compatible

with a semi-simple UV gauge embedding.

With three generations, there are significantly more options for gauged U(1)X exten-

sions of the SM that have semi-simple embeddings: the options were completely classified

in Ref. [28], assuming up to three RH neutrinos, by considering all possible Lie algebra

embeddings of su(3)⊕ su(2)⊕ a ↪→ g ↪→ su(48) consistent with the SM fermion representa-

tion (where a denotes an abelian Lie algebra containing hypercharge, g is the semi-simple

Lie algebra we wish to embed in, and su(48) is the maximal SM flavour symmetry with all

interactions turned off), and then checking for (local and global) anomaly cancellation.

We now ask which of these extensions satisfy our additional criteria for not running at

1-loop into the EWPOs. The key observation that makes this in fact very simple is that

electroweak neutrality required all LH fermions be neutral, as explained in §2. Given that,

we can infer that the only anomaly-free U(1)X choices with semi-simple embeddings are of

the form [28]

ui = di = ei = ni = (a, b,−a− b) (4.11)

up to permutations within families. The condition from yt and g3 running, which imposed

u3 = 0, then restricts us to a unique solution up to an overall normalisation

ui = di = ei = ni = (1,−1, 0) , (4.12)

where again we are free to permute the family indices for d, e, and n, which leads to different

phenomenology (see §5). So, strikingly, there is a unique anomaly-free U(1)X extension

of the SM that doesn’t run into the Z-pole observables and which has a semi-simple UV

completion. We further emphasize that including (at least two) right-handed neutrinos is

now essential to reveal this possibility.

This U(1)X charge assignment embeds inside an Sp(4)R ‘electroweak flavour unifica-

tion’ symmetry, studied in [29–31], in which right-handed up- and down-type fields (both

quarks and leptons) of two generations are unified into 4-dimensional multiplets which must
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be implemented alongside quark-lepton unification via the SU(4) of Pati and Salam [32].11

The Sp(4)R symmetry could be further embedded inside an Sp(6)R; a candidate semi-

simple embedding is then given by the group SU(4) × Sp(6)L × Sp(6)R, which can break

down to the SM via our SM ×U(1)X extension. An alternative embedding of the right-

handed U(1)X is inside the group SO(6)R. All of these options are free of local and global

gauge anomalies.

This unique charge assignment forms one of our benchmarks when we come to study the

phenomenology in §5; from the phenomenological perspective it is an instructive benchmark

because of the equal couplings to quarks and leptons.

4.6 Comments regarding quark and lepton flavour structures

All the chiral extensions of the SM considered above do not permit the full Yukawa coupling

matrices at the renormalisable level. As mentioned in §2, the conditions H = q3 = u3
do, at least, guarantee the top quark Yukawa coupling is consistent with the SM×U(1)X
gauge symmetry for all models we consider. Beyond that, the gauge non-invariance of

many elements of the Yukawa matrices means they must be populated by higher-dimension

operators, which requires further states in the UV beyond just the U(1)X gauge field and

the scalar field that breaks it, such as vector-like fermions. The Yukawa matrices in these

models are therefore expected to possess hierarchical structure, with (at least) an order-1

top quark Yukawa coupling. Since our goal in this paper is not to address the flavour puzzle,

but rather to explore the phenomenological complementarity of different experiments in

probing anomaly-free Z ′ models, we are content to make only a few comments concerning

flavour textures.

The parity-symmetric solutions in §4.3, for instance, admit a full column of each

Yukawa matrix Yu,d,e at the renormalisable level. For up-type quarks this must be the

third column, and for down-type quarks it is natural to assume the same since then yb is

also unsuppressed. But for leptons, we already took e1 = 0 for phenomenological reasons.

Such U(1)X symmetries therefore admit the first column of the lepton Yukawa but not

the second or third. A natural implementation of these model presumably entails a differ-

ent mechanism deeper in the UV (such as an additional gauge symmetry) that results in

suppression of ye.

Finally, it is worth remarking that the quark Yukawa textures näıvely predicted by

gauging U(1)X are consistent with small mixing angles amongst the right-handed quarks,

since, if we take d3 = 0 to be the neutral right-handed down quark flavour, then we generally

expect Yu,d,e ∼
(
δ ϵ 1
δ ϵ 1
δ ϵ 1

)
, where ϵ and δ are small parameters related to the breaking of

U(1)X .
12 With such a texture, right-handed rotations would have the form VR ∼

(
1 δ δϵ
· 1 ϵ
· · 1

)
,

which further justifies our expectation that models in this class can have small flavour-

violation and thus be more-or-less flavour neutral.

11The results of [28], for instance via the TestYourOwnCharges.nb Mathematica notebook provided here,

can be used to deduce other semi-simple UV completions for this Z′ model, all of which feature either some

electroweak flavour unification for right-handed fields, or feature SO(10) unification for all three families.
12For instance, in a Froggatt-Nielsen-like setup [33], these take the form (vX/M)n where M is the mass

of a heavy femrion and n is some integer.
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5 Phenomenology off the Z pole

The set of Z ′ models that we have identified in the previous Sections, which are anomaly-

free and do not run at 1-loop into Z-pole observables, all feature couplings to right-handed

quarks and leptons, but nothing else. When the Z ′ is integrated out at tree-level, these

models give rise to a set of flavour-conserving 4-fermion SMEFT operators with ‘RR’

chirality structure, which we can categorise into 4ℓ, 2q2ℓ, and 4q operators. The former

are strongly constrained if there is a coupling to electrons, by cross-section measurements

at electron-positron colliders (§5.2). Seeking invisibility at lepton colliders, this motivates

coupling the Z ′ only to muon and tau leptons. The semi-leptonic operators, being flavour-

conserving, are then best constrained by Drell–Yan data from the LHC (§5.3), which are

reasonably strong for all lepton flavours in the final state. To hide from Drell–Yan pp→ ℓℓ

also, we can try to further restrict to Z ′ models in which the lepton charges are numerically

very small. But even in this most invisible case, the 4q operators can be constrained from

di-jet resonance searches at the LHC (§5.4).
We neglect the effects of renormalisation group (RG) running of the SMEFT operators

from the matching scale Λ down to the relevant experimental energy scale. As explained

in §3.2, this enters only at higher-order in the Wilson coefficients and/or is suppressed by

light Yukawa couplings. For the models we focus on with e1 = 0 and d3 = 0, the leading

RG effects are suppressed by y2c ∼ 10−5 in addition to the loop factor and heavy mass

scale, and are thus totally negligible.

5.1 Benchmark Models

To assess the strength of the various bounds, it is instructive to define two benchmark

(BM) solutions, both within the class identified in §4.3 for which electrons are neutral, as

follows:

Benchmark 1: (Xe = Xu,d) (Xe, Xu, Xd) ∝ (1, 1, 1) , (5.1)

Benchmark 2: (Xe ≪ Xu,d) (Xe, Xu, Xd) ∝ (1, 29, 41) . (5.2)

The first BM model has equal charges for quarks and leptons, and gives a suitable BM for

assessing the strength of the Drell–Yan constraints. As discussed in §4.5, this benchmark

is special from the theoretical point of view because it is the only possible Z ′ extension in

our class that has a semi-simple UV completion. The second BM has a numerically very

small lepton charge,13 for which the Drell–Yan constraints also become subleading, leaving

us with LHC dijet searches as the leading constraints.

We point out that a benchmark in which Xe ≫ Xu,d, which we might hope to decouple

from the LHC entirely and make truly invisible by coupling only to RH taus and muons,

is not possible: this is because it is Xu that appears on the RHS of the quadratic ACC,

which recall was X2
d +X

2
e = 2X2

u, and so Xu cannot be made small. In particular, we have

the strict inequality

Xe ≤
√
2Xu . (5.3)

13To obtain BM2, the Pythagorean triple solving (4.6) corresponds to a right-angled triangle whose

perpendicular sides are of near-equal length, in this case the (20, 21, 29) triangle.
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Thus, the benchmarks in (5.1) cover the two main limiting cases available to us, in which

leptons either have comparable charge to quarks, or they have far smaller charge.

5.2 4ℓ: e+e− → ℓℓ

If the Z ′ couples at tree-level to electrons, there are bounds coming from measurements of

the e+e− → ℓiℓi cross-section (and forward-back asymmetry measurements) at electron-

positron colliders. There are strong constraints already coming from the LEP-II measure-

ments, which we calculate here for the Z ′ models of interest. The reach of FCC-ee will far

exceed the LEP-II bounds, thanks to the proposed set of FCC-ee runs above the Z-pole.

The LEP-II constraints have been computed recently for Z ′ models in e.g. Refs. [34,

35], based on the χ2 likelihood computed in [36]. The observables that go into computing

the likelihood are the cross-sections σℓℓ := σ(e+e− → ℓ+ℓ−) for ℓ ∈ {e, µ, τ}, and the

forward-backward asymmetry observables (defined as the forward cross-section minus the

backward cross-section), for µ+µ− and τ+τ− final states. The relevant Wilson coefficients

turned on in our Z ′ models are O11jj
ee , where j can be any lepton flavour; without turning

on the electron coupling, there are no bounds at leading order. It is therefore instructive

to hone in on the ‘model-independent’ constraint that is unavoidable if we turn on only the

electron coupling, which is the bound from σee on C1111
ee = −g2XX2

e /(2M
2
X), where Xe is

the e1 charge under U(1)X . The 95% C.L. constraint, obtained from the χ2 − χ2
min = 3.84

contour (given we have a single independent model-parameter),14 is

MX

XegX
≳ 5.2 TeV . (5.4)

We remark that, if the Wilson coefficient C1111
ee had the opposite sign, we find the bound

would be 2 ÷ 3 times weaker than this (i.e. 2 TeV), which reflects an underlying mild

tension in the e+e− → e+e− data from LEP-II. This is in agreement with the results

shown in [36, Fig. 1].

Of course, we already learnt that at least the tau or muon charge must also be turned

on to satisfy the anomaly cancellation criteria, which only strengthens the bounds. For

example, consider a ‘parity symmetric’ solution of the kind discussed in §4.3, with elec-

tron and muon charged equal and oppositely (for which the lepton Yukawa would mimic

those for the quarks, i.e. with yτ being renormalisable). The SMEFT Lagrangian is

L = − g2X
M2

X
X2
e (ēRγµeR − µ̄RγµµR)

2. Including also σµµ and the muon forward-backward

asymmetry LEP-II measurement in the χ2 likelihood, the bound increases a little to

MX

XegX
≳ 5.9 TeV . (5.5)

If one considered the option with eR and τR charged, and µR neutral, including this time

the σττ and τ FB asymmetry observables, then the bound increases with respect to (5.4)

by only 40 GeV or so.

14We are very grateful to Lukas Allwicher for sharing code for the LEP-II χ2 likelihood that we used in

this Section, and for related helpful discussions.
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All these bounds onMX/XegX would leap forward in reach with FCC-ee, thanks to its

planned sequence of high-statistics runs above the Z-peak. As recently shown in Ref. [7],

the expected increase in reach, for example for the C1111
ee Wilson coefficient that is most

important here, is by nearly an order of magnitude. In fact, given we know that the Z ′

must couple to at least tau or muon in addition to electrons, the strongest relevant bounds

from [7] are on the (necessarily RR chirality) operators O11,22
ee and O11,33

ee , which reach up

to15
MX

gX
≳ 30 TeV (FCC-ee above Z-peak) , (5.7)

which actually well exceeds the scale of 7 TeV (in the case of flavour-universal couplings

to SM fermions) that is probed due to 1-loop running into the Z-pole observables [1].

Therefore, as anticipated, we should discard this option in our hunt for a Z ′ that is invisible

to FCC-ee.

5.3 2q2ℓ: pp→ ℓℓ

Even if we decouple the Z ′ from electrons, it must then couple to both µR and τR, which

leads to important bounds from Drell–Yan pp → µµ and pp → ττ measurements at the

LHC. Here we use the HighPT package [37] to estimate the current strength of these con-

straints. The underlying ATLAS and CMS searches [38, 39] that go into our likelihood use

139 fb−1 of LHC data. A similar implementation of the bounds from Drell–Yan can be

performed using the smelli software [34, 40, 41].

Here we focus on the solutions found in §4.3 in which the electron is neutral. Even

though all charges are specified by two integer parameters p and q via (4.7), it is transparent

to write things in terms of Xu,d,e for now. Integrating out the Z ′ gives the following tree-

level dimension-6 semi-leptonic SMEFT operators

L =∓
g2X
M2
X

XeXu(τ̄RγµτR − µ̄RγµµR)(ūRγ
µuR − c̄Rγ

µcR) (5.8)

∓
g2X
M2
X

XeXd(τ̄RγµτR − µ̄RγµµR)(d̄Rγ
µdR − s̄Rγ

µsR) (5.9)

The sign ambiguities out the front correspond to permuting the signs of ui or di charges,

keeping the ei permutation fixed.

To get a feel for the bounds, it is helpful to consider benchmark 1 (BM1) defined in

(5.1). Given present data, there is a significant dependence of the bound that we extract

on the possible sign choices in (5.8), which trace back to fluctuations in the data giving

15We also point out that lepton flavour universality violation (LFUV) is generically predicted by these

models; to recap, it is forced upon us by anomaly cancellation, which implies both that
∑

i ei = 0 and that

at least one ei is non-zero. FCC-ee provides new opportunities for LFUV tests, such as measuring the ratio

Rτ/µ =
σ(e+e− → τ+τ−)

σ(e+e− → µ+µ−)
, (5.6)

as discussed in [7]. Such LFUV ratios would provide competitive probes of these Z′ scenarios, although

they are not independent from the more-typical ‘Rl’ ratios that were measured at LEP.
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preference for non-zero values of the Wilson coefficients turned on by our Z ′ model. We

obtain

MX

gX
≳


6.7 TeV, C2211

eu > 0, C2211
ed > 0

13.8 TeV, C2211
eu < 0, C2211

ed > 0

9.2 TeV, C2211
eu > 0, C2211

ed < 0

11.3 TeV, C2211
eu < 0, C2211

ed < 0

(5.10)

We thus learn that, for equitable quark and lepton charges, the bounds from LHC Drell–

Yan pp→ ℓℓ data are strong, roughly excluding the Z ′ up to scales of 10 TeV or so.

These bounds, which are already probing very high scales due to the order-1 coupling

of the Z ′ to both valence quarks and to charged leptons, will continue to strengthen as the

LHC analyses more data, albeit slowly since the statistical uncertainty on the measured

event rates goes down with the square root of the gain in luminosity. By the end of the

High Luminosity LHC upgrade, assuming an integrated luminosity of 3 ab−1 of pp collision

have been accrued, and that the predicted Standard Model background rate is measured

in all bins of the high-pT Drell–Yan distributions, we project the bound to be

MX

gX
≳ 22 TeV (High-Luminosity LHC) , (5.11)

which we obtained again using the HighPT package [37], with the bound being largely

driven by the di-muon search, and where we average over the bounds one would obtain

with the four different choices for the relative signs of charges, as in (5.10).

Even though we discarded the options in which electrons are charged in our hunt for

an invisible Z ′ due to the very strong constraints one would obtain at FCC-ee above the

Z-peak, we can give the corresponding HL-LHC projections in the other two scenarios for

completeness, that is, in which electron and tau are charged and in which electron and

muon are charged. We find

MX

gX
≳ 19 TeV for BM1 (eτ), (5.12)

MX

gX
≳ 24 TeV for BM1 (eµ), (5.13)

where again we averaged over the various sign choices. Unsurprisingly, the option in which

both light leptons are charged is expected to get the strongest constraint from Drell–Yan.

5.4 4q: pp→ jj

The closest we get to an invisible Z ′ is one in which the lepton charge, while necessarily

non-zero, is very small compared to the quark charges, as provided for instance by BM2 in

(5.1). If we normalise the gauge coupling so that the largest charge is unity, then the lepton

charge is a few percent, and the semi-leptonic signal in Drell–Yan is much suppressed. Of

course, the physical, normalisation-independent quantities to compare between different Z ′

models are not charges or gauge couplings, but rather the ratios between different Wilson

coefficients generated by the Z ′. In particular, for BM2 we have the scaling

|C4q| ∼
Xu,d

Xe
|C2q2l| ∼

(
Xu,d

Xe

)2

|C4l| , (5.14)
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with Xu/Xe = 29 and Xd/Xe = 41, meaning that 4-quark operator coefficients are over

an order-of-magnitude larger than the semi-leptonic operator coefficients studied in §5.3.
This Z ′ could therefore hide only in its contribution to qq̄ → qq̄ Drell–Yan and thus in

di-jet searches at the LHC, the results of which were helpfully recast for narrow-width

BSM mediators in generic SM gauge representations in Ref. [8] based on ATLAS [42, 43]

and CMS [44, 45] resonant searches. EFT-based non-resonant analyses for di-jets were

performed in [9, 46].

Note that for this type of benchmark model, i.e. featuring |Xe| ≪ |Xu,d|, the anomaly

cancellation condition 2X2
u = X2

d + X2
e ≈ X2

d directly implies |Xd| ≈
√
2|Xu| which, in

light of the results of [8], makes the dd and uu channels roughly equally strong. We can

thus characterize BM2 via the approximate set of charges

Xd = 1, Xu ≈ 1√
2
, Xe ≪ 1 , (5.15)

where we choose a normalisation for the gauge coupling gX in which the largest charge,

that of down-type quarks, is unity.

Our goal in this Subsection is to use the results of [8, 9] to crudely estimate conservative

bounds on such a Z ′ model coming from dijet resonant and non-resonant searches. The

four resonant searches searches cover different overlapping regions of the kinematical range

mjj ∈ (0.05, 5) TeV. We emphasize that the bound we estimate from the resonant searches,

following [8], is qualitatively different from those for 4l and 2q2l that we studied in previous

Subsections, which were obtained by integrating out the heavy Z ′ and matching onto the

4-fermion SMEFT operators to bound the effective scale ΛX = MX/gX . For the narrow

resonance di-jet search, the result is not a mass-independent bound on the scale as in §§5.2
and 5.3, but a bound that only holds within the kinematical range MX ≤ 5 TeV – indeed,

as we next show, we cannot reliably get a bound even for this full range.

Constraining such a BSM non-resonant contribution that lifts the tails of the invari-

ant mass distribution is a qualitatively different challenge for dijet distributions than for

dileptons (§5.3), both experimentally and theoretically (see e.g. [9, 46, 47], where angular

distributions of the dijet system are leveraged). While it is beyond the scope of this work to

recast the experimental analyses to our model case, we nonetheless compare the resonant

search bounds with an EFT-derived bound from [9] in the case that most closely matches

our model, which gives a similar ballpark bound.

Narrow dijet resonance search. To reliably interpret the resonance search to put a

bound on our Z ′, the latter should be a narrow resonance with ΓX/MX ≲ 0.1. We can

compute the width by summing over the partial widths to qq̄ bilinears:

ΓX
MX

=
g2X
8π

(2|Xu|2 + 2|Xd|2 + . . . ) ≈
3g2X
8π

, (5.16)

where the . . . indicates the partial width to leptons which, for this BM2, is negligible. The

narrow width condition thus puts an upper bound on the gauge coupling:

gX <

√
4π × 0.1

|Xu|2 + |Xd|2
≈ 0.9 (BM2), (5.17)
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given the choice of charge normalisation in (5.15). The dijet resonance search constraints

from [8] can only be reliably used when this condition on gX is satisfied. Because we

are interpreting a resonance search, we do not integrate out the Z ′ and match to SMEFT.

Rather, the relevant Lagrangian is described by the following couplings of the Z ′ to quarks,

L = gXXu(uγ
µPRu− cγµPRc)Xµ + gXXd(dγ

µPRd− sγµPRs)Xµ . (5.18)

Given the equal-size first and second generation quarks, and the fact that the parton

distribution functions (PDFs) are much suppressed for the second generation with respect

to the first, we can drop the charm and strange quark contributions from now on.

From digitising the plot in [8], the perturbativity limit gX ≲ 0.9 (from ΓX/MX < 1)

implies that we can use the constraint on the coupling to dd̄, which is XdgX ≈ gX , out to

masses MX ≤ 4.2 TeV. Likewise in the uū channel, the bound can be used up to slightly

higher Z ′ masses MX ≤ 4.4 TeV, where we use the fact that XugX ≈ gX/
√
2 from (5.15).

Then at this end-point of validity, we can exclude this value of the mass and coupling; for

that mass, all couplings gX > 0.9 are then robustly excluded. To compare with our other

EFT-derived constraints, which all depend on a scale ∼ M/(gX) rather than a mass and

coupling individually, we can phrase the bound as

MX

gX
≥ 4.9 TeV, valid for MX ≤ 4.4 TeV . (5.19)

We admit that this is a very crude estimate of the bound on our Z ′ coming from di-jet, but

it is equally very conservative: we use only the resonance search, and we use it only in the

region where the width over mass is < 0.1. This is already sufficient to demonstrate that

the bound is strong, at the level on 5 TeV on effective scale, meaning this Z ′ is far from

being invisible at the LHC. The bound is driven by the large coupling to up quarks, which

we showed is necessary for all Z ′ models that do not run into the Z-pole, which clearly

emphasizes the perfect complementarity between the LHC and a future FCC-ee machine

in probing any Z ′ extension of the SM that is not sterile.

4-quark operator bound from dijet angular distributions. In Ref. [9] the CMS

collaboration perform an analysis of the angular distributions in dijet final states to obtain

bounds on 4-quark effective operators using 35.9 fb−1 of 13 TeV data, for which the inter-

pretation is not restricted by a kinematical upper limit on the mass. The scenario they

consider that is closest to our family of Z ′ models is one with flavour-universal couplings to

only right-handed quarks (corresponding to the Wilson coefficient ηRR in the experimental

analysis [9]). Given BM2 has a similar strength coupling to uR and dR, we are not too

far from this flavour-universality limit. Translating to our SMEFT Lagrangian, and taking

both Xu and Xd to be approximated by the smaller of the two in our benchmark in order

to get a conservative estimate of the bound, we infer the following EFT-derived bound on

the Z ′ scale

MX

gX
≥ 3.5 TeV valid for all MX (up to perturbativity) . (5.20)
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We reiterate that this bound would correspond to a Z ′ with couplings Xu = Xd = 1/
√
2,

whereas for our ‘leptophobic’ anomaly-free class of models (realised by BM2 in (5.15)) we

have Xu ≈ 1/
√
2 and a larger Xd = 1, so if we performed a proper recast for BM2 one

would expect the EFT bound to be somewhat stronger than (5.20) thanks to the enhanced

down-quark coupling.

5.5 Comment on low-energy probes of LFUV

For completeness, we make some comments about low-energy flavour probes before moving

to our summary. Recall from footnote 15 that our Z ′ models necessarily feature LFUV,

with all three RH lepton charges being different. We there mentioned the possibility of

probing this in e+e− colliders, from measuring the LFUV ratio Rτ/µ (indeed, there would

already be bounds coming from measurements of Rτ and Rµ at LEP). One might further

wonder whether there are low-energy probes of this LFUV, for instance in B-meson decays

and the class of RH := BR(B → Hµµ)/BR(B → Hee) measurements, where B is a b-

hadron and H is some other hadron. These observables are extremely sensitive probes of

new physics due to the change of quark flavour, typically b→ s (as in RK(∗) [48], RKs and

RK∗+ [49], the very recent Rϕ measurement which tests LFUV in B0
s → ϕℓ+ℓ− [50]), for

which the SM contribution is extremely suppressed.

The heavy Z ′ bosons under consideration can significantly impact these observables if

it connects a flavour-violating bs vertex to a LFUV leptonic current. For left-handed bs

currents, the Z ′ has no direct coupling to left-handed fields and so the BSM contribution

goes through the same penguin loop as for the SM process, and is a negligible correction.

There is, however, a right-handed contribution at tree-level that violates LFU. This will be

linear in the right-handed mixing angles between bR and sR which, as we discussed in §2,
are expected to be small in these models and can be consistently taken to zero to decouple

the corresponding bounds.

It is perhaps worth noting that there are large, tree-level contributions to quark flavour

conserving LFU tests. While high-precision measurements can here be made, for instance

in J/ψ decays (with ΓJ/ψ→e+e−/ΓJ/ψ→µ+µ− measured to be unity up to 1% precision [51]

in the KEDR experiment [52]), these decays occur at tree-level in the SM and via photon

exchange, and so the Z ′ will give a relative shift of order g2XM
2
J/ψ/e

2M2
X which is completely

undetectable for the multi-TeV scale Z ′ mass that is forced upon us by the LHC dijet

constraints alone.

Lastly, there are no LFUV effects in tau decays, because we only have neutral current

LFUV but no concomitant LFV, which means that any process necessarily features an even

number of taus and so cannot affect τ decays.

5.6 Comparison of benchmark models

We now put together our findings by comparing the dominant bounds for the benchmark Z ′

models considered in the main text, and also comparing against three benchmark scenarios

studied in [1] that do run into the EWPOs, in Fig. 1. As we have argued, the conditions of

electroweak neutrality plus anomaly cancellation require an order-1 coupling to up quarks,
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which unavoidably results in strong bounds from the LHC experiments. The main phe-

nomenological differences are then driven by which leptons are also charged (notably if

electrons are charged, the Z ′ will be extremely well-probed at FCC off the Z-peak) and by

whether the lepton charge is comparable to the quark charge or is numerically very small.

The expected sensitivities that we plot in Fig. 1 are for FCC-ee projections both on and

off the Z-pole, where for the former we use [1] and for the latter we use [7]. For Drell–Yan

we plot High-Luminosity LHC projections, which are straightforwardly extrapolated from

current bounds assuming HL-LHC will accumulate an integrated luminosity of 3 ab−1. For

the dijet constraints we perform a similar näıve rescaling of the bound to an integrated

luminosity of 3 ab−1, using in this case the non-resonant search as quoted in (5.20) for the

case of BM2, for which a very slow improvement of Λ scaling with the eighth root of the

luminosity ratio is expected (similar to the non-resonant pp → ℓℓ case). An extrapolation

of the resonant search result is much harder to estimate, because the improvement of the

dijet reach depends crucially on the kinematic endpoints of the search. For the first three

benchmarks described below, which correspond to the scenarios in [1], the coupling to

quarks is vector-like (and flavour-universal in two cases) rather than right-handed as for

BMs 1 and 2, and so we use the bounds for a different signal model in the non-resonant

dijet analysis of CMS [9] to perform our HL-LHC extrapolation.

The benchmarks we include in Fig. 1, and the corresponding bounds, are:

• ‘Higgs’: the Z ′ couples at tree-level to the Higgs and to all SM fermion generations,

resulting in tree-level corrections to EWPOs. For instance, this could arise from

gauging a linear combination of B − L and hypercharge [53]. This scenario will be

probed up to 80 TeV or so by FCC-ee Z-pole run. Similarly strong Z-pole bounds

would apply to less-minimal U(1)X extensions as long as the Higgs is charged, such

as those associated with gauging a component of flavour non-universal hypercharge,

e.g. in [54–58].

• ‘Universal’: this toy Z ′ model does not couple to the Higgs, but couples universally

to all SM fermion generations. An anomaly-free realisation of this scenario would

be to gauge U(1)B−L. It was shown that 1-loop running into EWPOs means this

scenario will be probed to 8 TeV by the FCC-ee Z-pole run alone [1]. But in fact,

we observe that for this charge assignment showcased in [1] the running into EWPOs

with yt in fact cancels exactly, due to u3 = q3, so this 8 TeV bound comes primarily

from the running with g2. We therefore point out that, for a chiral Z ′ model coupled

differently to u3 and q3, the reach of the FCC-ee tera-Z run would likely far exceed 8

TeV thanks to strong running with yt. We supplement this with the bound recently

obtained in [7] by projecting FCC-ee off-peak constraints; to plot the ballpark bound

of 30 TeV in Fig. 1, we take the bounds on 4-lepton operators that are flavour-

conserving and probe the highest scales, which are O1122
ll,ee , and O1133

ll,ee , coming from

e+e− → µ+µ−(τ+τ−) cross-section measurements and related observables. We see

that the off Z-peak measurements actually probe higher scales than due to RGE

running into the EWPOs, but this is in large part due to the cancellation of the yt
running for this benchmark model as already noted. Since this model also has order-1
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Figure 1: A comparison of the expected reach in M/g of FCC-ee vs. HL-LHC for a set of

benchmark Z ′ models which are designed to cover, qualitatively speaking, all anomaly-free U(1)X -

extensions of the SM. The first three scenarios are well-probed by EWPOs measured on the Z-pole

at FCC-ee, as shown in [1]. The other four scenarios correspond to Z ′ models that do not run into

the EWPOs at 1-loop, as classified in this paper. All such models necessarily have order-1 coupling

to valence quarks, and so strong LHC bounds cannot be avoided. BM1 has equal couplings to RH

quarks and RH leptons; if electrons are charged the model will we probed up to around 30 TeV by

FCC-ee runs above the Z-pole, while even if electrons are not charged, pp→ ℓℓ measurements at the

LHC already exclude all BM1 variants up to 10 TeV, with HL-LHC projections reaching above 20

TeV. The final option BM2 has numerically tiny lepton charges, and so escapes all leptonic probes.

But, as we show in the text, nothing that escapes the Z-pole at 1-loop can also escape the bounds

from dijet searches at the LHC. We here estimate the sensitivity of HL-LHC in dijet searches by

performing a näıve luminosity rescaling of the non-resonant search performed by CMS in [9].

couplings to quarks, we perform a projection for the expected HL-LHC sensitivity

in Drell–Yan pp → ℓℓ using HighPT [37], including all three lepton flavour channels,

which would already surpass 30 TeV even before the FCC-ee begins running. Lastly,

for dijets we extrapolate the non-resonant bound from [9] relevant for a vector-like

4-quark operator, to obtain a strong projected sensitivity of 11 TeV.

• ‘3rd Gen’: this toy Z ′ model does not couple to the Higgs or to light fermions, but

couples to all third generation SM fermions. An anomaly-free realisation of this

scenario would be to gauge U(1)B3−L3 . The expected reach from EWPOs at FCC-ee

was here shown to be 1.6 TeV from the 1-loop RGE running in [1], which is again

subject to the huge caveat that the running with yt accidentally cancels exactly due to

assigning u3 = q3 for the benchmark. Studies at the level of single SMEFT operator

bounds show that pure third generation 4-fermion operators would get bounds of

order 10 ÷ 15 TeV from the FCC-ee Z-pole run – see e.g. [7, 59]. For this third-

family aligned Z ′ there are no tree-level bounds from the off Z-peak data because

we do not couple to electrons, but at 1-loop the third generation 4-fermion operators

will run into operators involving electrons, and so are still bounded by off-Z-peak

measurements. In [7, Table VII] it was shown the bounds are of order 1.5 TeV, which
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we include in Fig. 1. We also compute the sensitivity to this benchmark Z ′ model

from pp → ττ Drell–Yan measurements at the LHC, again using HighPT [37]. For

this benchmark it is harder to estimate the HL sensitivity of the LHC dijet searches,

because there is no EFT scenario in the non-resonant search that is third-family

specific. In this case, we extract a very crude current bound of MX/gX ≳ 1 TeV or

so from the resonant search via the bb̄ production mode using [8], in a similar manner

to §5.4. For the other models, we saw the bounds from non-resonant and resonant

searches were similar in the region where both apply. If we assume similar holds for

this third-generation specific scenario, we can näıvely extrapolate with the gain in

luminosity to obtain a crude projection of 1.5 TeV or thereabouts.

• BM1 refers to our benchmark model 1 as introduced in the main text, (5.1). We

include bounds for three variants of this benchmark corresponding to permutations

of the lepton flavour assignment; the key difference is that when e1 ̸= 0 there is a

bound reaching 30 TeV from e+e− → ℓ+ℓ− off the Z peak. The HL-LHC Drell–Yan

estimates are also slightly different for the three variants (§5.3), but all are roughly

20 TeV. We estimate the HL-LHC dijet non-resonant bound directly from the ηRR
signal model used by CMS in [9], which is here appropriate because Xu = Xd = 1,

so we are able to set a slightly higher projection (than for BM2) of 9 TeV.

• BM2 refers to the second benchmark introduced in (5.1) in which the lepton charge

is very small compared to the quark charge. The most important bound in this case

will likely come from dijet measurements, where we rescale the non-resonant bound

(5.20) with the luminosity gain to the eighth root to reach 6 TeV. Even though the

lepton charge is very small, we find the expected sensitivity of HL-LHC Drell–Yan

searches reaches nearly 2 TeV, driven by the dimuon channel. We also include a

variant of BM2 (labelled BM2e in Fig. 1) in which electrons are charged for the sake

of comparison, showing (from [7]) that even with a numerically very small charge

|e1| = |d1|/41 the off Z-peak measurements can reach above 4 TeV in sensitivity,

largely thanks to the expected performance of bottom and charm tagging. The case

in which e1 = 0, labelled BM2µτ , is totally decoupled from the FCC-ee electroweak

program, like BM1µτ .

From Fig. 1 it is clear that there is excellent complementarity between e+e− and hh col-

liders for probing Z ′ models: in essence, the former puts strong constraints on the U(1)X
coupling to leptons and to the Higgs, both through precision measurements at the Z-pole

but also e+e− → ff̄ measurements off the Z-pole, while the latter constrains also the

U(1)X couplings to quarks. Moreover, the conditions from requiring anomaly cancellation

serve to tie the various charges together in an intricate way, so that there is no way to put

the charges just into, say, heavy generation right-handed leptons or just into heavy flavour

right-handed quarks, which would be the hardest scenario to detect.
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6 Conclusion

In this paper, we sought to ‘fill a gap’ left by [1], which demonstrated that almost all

single particle extensions of the SM will be probed at least to the TeV scale purely through

measuring EWPOs to very high precision, thanks to the mixing of operators under RG

running of the SMEFT. Essentially the only exception that could be viable at low effective

scales, considering also flavour probes and direct LHC bounds on coloured states, was found

to be a family of Z ′ extensions of the SM.

We here close this gap by showing that, by combining the requirements from not

running into the EWPOs with the requirements of gauge anomaly cancellation, any Z ′

that can escape the Z-pole cannot also escape the LHC, especially moving into the High-

Luminosity phase. This is primarily because all such Z ′s must have order-1 couplings to

up quarks. Anomaly cancellation also implies that at least two flavours of leptons must

be charged.16 We emphasize that options in which electrons are directly charged would

be probed up to 30 TeV by FCC-ee data off the Z-peak, surpassing the scales probed by

the Z-pole due to RGE running; this reinforces the findings of the recent study [7] that

measurements above the Z-pole should form an integral part of the electroweak program

at FCC-ee. Requiring the electron is neutral, we are able to classify all remaining anomaly-

free Z ′ models analytically in terms of a pair of integers, up to certain permissible family

index permutations.

Continuing in pursuit of an invisible Z ′, the two charged leptons that couple to the

Z ′ ought to be muons and taus. In this case, Drell–Yan pp → µµ, ττ measurements from

ATLAS and CMS put very strong bounds up to 10 TeV, which are projected to reach 20÷25

TeV after HL-LHC. In a last ditch attempt to evade also these bounds from pp → ℓℓ, we

are led to consider rather bizarre models in which the lepton charge is numerically very

small compared to the quark charge (which, incidentally, we prove cannot embed in any

semi-simple UV completion). Even in this esoteric corner of model space, there remain

strong constraints from LHC di-jet measurements that cannot be avoided, because the

coupling to up quarks must be order-1. A conservative estimate of the current bound sits

at 5 TeV. A näıve rescaling of the non-resonant bound on 4-quark operators coming from

angular dijet analyses to the HL-LHC target integrated luminosity would give a projected

sensitivity in the 6÷ 10 TeV range.

Reversing the argument: any anomaly-free Z ′ model that is not already constrained

above the 10 TeV mark after the LHC, for instance because it does not couple to light

generation quarks, will necessarily run with yt and/or the SM gauge couplings into the

Z-pole observables at 1-loop and so will be probed at FCC-ee. If the Higgs is charged

under U(1)X , it is strikingly clear from [1] that the sensitivity of FCC-ee will be unrivalled.

Thus, in addition to closing the gap left by [1], we can make a broader conclusion, which

is that there ought to be a perfect complementarity between a high-precision e+e− collider

(making the most of measurements both on and off the Z-pole) and the HL-LHC for

probing generic anomaly-free U(1)X extensions of the SM gauge group.

16We showed that none of these results are modified by the inclusion of an arbitrary number of right-

handed neutrino fields with which we might try to ‘soak up’ gauge anomalies.
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[34] A. Greljo, J. Salko, A. Smolkovič and P. Stangl, Rare b decays meet high-mass Drell-Yan,

JHEP 05 (2023) 087, [2212.10497].

[35] B. Allanach and A. Mullin, Plan B: new Z ′ models for b→ sll anomalies, JHEP 09 (2023)

– 28 –

https://doi.org/10.1016/0550-3213(83)90063-9
https://doi.org/10.1016/0003-4916(91)90046-B
https://doi.org/10.1007/JHEP08(2021)101
https://arxiv.org/abs/2105.06918
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP10(2013)087
https://arxiv.org/abs/1308.2627
https://doi.org/10.1007/JHEP01(2014)035
https://arxiv.org/abs/1310.4838
https://doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
https://doi.org/10.1103/PhysRevD.77.113016
https://arxiv.org/abs/0712.1419
https://arxiv.org/abs/2412.01759
https://doi.org/10.1007/JHEP05(2020)065
https://arxiv.org/abs/1912.04804
https://doi.org/10.1103/PhysRevD.101.075015
https://arxiv.org/abs/1912.10022
https://doi.org/10.1103/PhysRevLett.125.161601
https://arxiv.org/abs/2006.03588
https://doi.org/10.1007/JHEP02(2019)082
https://arxiv.org/abs/1812.04602
https://doi.org/10.1007/JHEP09(2022)159
https://arxiv.org/abs/2206.11271
https://doi.org/10.1007/JHEP09(2022)193
https://arxiv.org/abs/2201.07245
https://doi.org/10.1393/ncc/i2023-23023-0
https://doi.org/10.1393/ncc/i2023-23023-0
https://arxiv.org/abs/2206.04482
https://doi.org/10.1007/JHEP04(2023)030
https://arxiv.org/abs/2212.06163
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1007/JHEP05(2023)087
https://arxiv.org/abs/2212.10497
https://doi.org/10.1007/JHEP09(2023)173
https://doi.org/10.1007/JHEP09(2023)173


173, [2306.08669].

[36] A. Falkowski and K. Mimouni, Model independent constraints on four-lepton operators,

JHEP 02 (2016) 086, [1511.07434].

[37] L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari and F. Wilsch, HighPT: A tool

for high-pT Drell-Yan tails beyond the standard model, Comput. Phys. Commun. 289 (2023)

108749, [2207.10756].

[38] ATLAS collaboration, G. Aad et al., Search for heavy Higgs bosons decaying into two tau

leptons with the ATLAS detector using pp collisions at
√
s = 13 TeV, Phys. Rev. Lett. 125

(2020) 051801, [2002.12223].

[39] CMS collaboration, A. M. Sirunyan et al., Search for resonant and nonresonant new

phenomena in high-mass dilepton final states at
√
s = 13 TeV, JHEP 07 (2021) 208,

[2103.02708].

[40] J. Aebischer, J. Kumar, P. Stangl and D. M. Straub, A Global Likelihood for Precision

Constraints and Flavour Anomalies, Eur. Phys. J. C 79 (2019) 509, [1810.07698].

[41] P. Stangl, smelli – the SMEFT Likelihood, PoS TOOLS2020 (2021) 035, [2012.12211].

[42] ATLAS collaboration, M. Aaboud et al., Search for low-mass dijet resonances using

trigger-level jets with the ATLAS detector in pp collisions at
√
s = 13 TeV, Phys. Rev. Lett.

121 (2018) 081801, [1804.03496].

[43] ATLAS collaboration, G. Aad et al., Search for new resonances in mass distributions of jet

pairs using 139 fb−1 of pp collisions at
√
s = 13 TeV with the ATLAS detector, JHEP 03

(2020) 145, [1910.08447].

[44] CMS collaboration, A. M. Sirunyan et al., Search for narrow and broad dijet resonances in

proton-proton collisions at
√
s = 13 TeV and constraints on dark matter mediators and other

new particles, JHEP 08 (2018) 130, [1806.00843].

[45] CMS collaboration, A. M. Sirunyan et al., Search for high mass dijet resonances with a new

background prediction method in proton-proton collisions at
√
s = 13 TeV, JHEP 05 (2020)

033, [1911.03947].

[46] ATLAS collaboration, M. Aaboud et al., Search for new phenomena in dijet events using 37

fb−1 of pp collision data collected at
√
s =13 TeV with the ATLAS detector, Phys. Rev. D 96

(2017) 052004, [1703.09127].

[47] S. Alioli, M. Farina, D. Pappadopulo and J. T. Ruderman, Precision Probes of QCD at High

Energies, JHEP 07 (2017) 097, [1706.03068].

[48] LHCb collaboration, R. Aaij et al., Measurement of lepton universality parameters in

B+ → K+ℓ+ℓ− and B0 → K∗0ℓ+ℓ− decays, Phys. Rev. D 108 (2023) 032002, [2212.09153].

[49] LHCb collaboration, R. Aaij et al., Tests of lepton universality using B0 → K0
Sℓ

+ℓ− and

B+ → K∗+ℓ+ℓ− decays, Phys. Rev. Lett. 128 (2022) 191802, [2110.09501].

[50] LHCb collaboration, R. Aaij et al., Test of lepton flavour universality with B0
s → ϕℓ+ℓ−

decays, 2410.13748.

[51] KEDR collaboration, V. M. Aulchenko et al., Measurement of the ratio of the leptonic

widths Γee/Γµµ for the J/ψ meson, Phys. Lett. B 731 (2014) 227–231, [1311.5005].

[52] V. V. Anashin et al., The KEDR detector, Phys. Part. Nucl. 44 (2013) 657–702.

– 29 –

https://doi.org/10.1007/JHEP09(2023)173
https://doi.org/10.1007/JHEP09(2023)173
https://doi.org/10.1007/JHEP09(2023)173
https://arxiv.org/abs/2306.08669
https://doi.org/10.1007/JHEP02(2016)086
https://arxiv.org/abs/1511.07434
https://doi.org/10.1016/j.cpc.2023.108749
https://doi.org/10.1016/j.cpc.2023.108749
https://arxiv.org/abs/2207.10756
https://doi.org/10.1103/PhysRevLett.125.051801
https://doi.org/10.1103/PhysRevLett.125.051801
https://arxiv.org/abs/2002.12223
https://doi.org/10.1007/JHEP07(2021)208
https://arxiv.org/abs/2103.02708
https://doi.org/10.1140/epjc/s10052-019-6977-z
https://arxiv.org/abs/1810.07698
https://doi.org/10.22323/1.392.0035
https://arxiv.org/abs/2012.12211
https://doi.org/10.1103/PhysRevLett.121.081801
https://doi.org/10.1103/PhysRevLett.121.081801
https://arxiv.org/abs/1804.03496
https://doi.org/10.1007/JHEP03(2020)145
https://doi.org/10.1007/JHEP03(2020)145
https://arxiv.org/abs/1910.08447
https://doi.org/10.1007/JHEP08(2018)130
https://arxiv.org/abs/1806.00843
https://doi.org/10.1007/JHEP05(2020)033
https://doi.org/10.1007/JHEP05(2020)033
https://arxiv.org/abs/1911.03947
https://doi.org/10.1103/PhysRevD.96.052004
https://doi.org/10.1103/PhysRevD.96.052004
https://arxiv.org/abs/1703.09127
https://doi.org/10.1007/JHEP07(2017)097
https://arxiv.org/abs/1706.03068
https://doi.org/10.1103/PhysRevD.108.032002
https://arxiv.org/abs/2212.09153
https://doi.org/10.1103/PhysRevLett.128.191802
https://arxiv.org/abs/2110.09501
https://arxiv.org/abs/2410.13748
https://doi.org/10.1016/j.physletb.2014.02.046
https://arxiv.org/abs/1311.5005
https://doi.org/10.1134/S1063779613040035


[53] W. Altmannshofer, J. Davighi and M. Nardecchia, Gauging the accidental symmetries of the

standard model, and implications for the flavor anomalies, Phys. Rev. D 101 (2020) 015004,

[1909.02021].

[54] B. C. Allanach and J. Davighi, Third family hypercharge model for RK(∗) and aspects of the

fermion mass problem, JHEP 12 (2018) 075, [1809.01158].

[55] B. C. Allanach and J. Davighi, Naturalising the third family hypercharge model for neutral

current B-anomalies, Eur. Phys. J. C 79 (2019) 908, [1905.10327].

[56] J. Davighi and B. A. Stefanek, Deconstructed hypercharge: a natural model of flavour, JHEP

11 (2023) 100, [2305.16280].

[57] M. Fernández Navarro and S. F. King, Tri-hypercharge: a separate gauged weak hypercharge

for each fermion family as the origin of flavour, JHEP 08 (2023) 020, [2305.07690].

[58] M. Fernández Navarro, S. F. King and A. Vicente, Minimal complete tri-hypercharge theories

of flavour, JHEP 07 (2024) 147, [2404.12442].

[59] L. Allwicher, C. Cornella, G. Isidori and B. A. Stefanek, New physics in the third generation.

A comprehensive SMEFT analysis and future prospects, JHEP 03 (2024) 049, [2311.00020].

– 30 –

https://doi.org/10.1103/PhysRevD.101.015004
https://arxiv.org/abs/1909.02021
https://doi.org/10.1007/JHEP12(2018)075
https://arxiv.org/abs/1809.01158
https://doi.org/10.1140/epjc/s10052-019-7414-z
https://arxiv.org/abs/1905.10327
https://doi.org/10.1007/JHEP11(2023)100
https://doi.org/10.1007/JHEP11(2023)100
https://arxiv.org/abs/2305.16280
https://doi.org/10.1007/JHEP08(2023)020
https://arxiv.org/abs/2305.07690
https://doi.org/10.1007/JHEP07(2024)147
https://arxiv.org/abs/2404.12442
https://doi.org/10.1007/JHEP03(2024)049
https://arxiv.org/abs/2311.00020

	Introduction
	Electroweak neutrality
	Constraints from 1-loop SMEFT running into the Z-pole
	Electroweak neutrality beyond the Z-pole
	Flavour Neutrality

	Anomaly cancellation
	Linear anomaly conditions
	Corollary: zero 1-loop RGE with yt and gi
	Non-linear anomaly conditions

	Classifying Z models with electroweak neutrality
	Valence quarks are charged
	At least two leptons are charged
	Classifying solutions with one neutral lepton
	Including right-handed neutrinos
	Compatibility with semi-simple UV completions
	Comments regarding quark and lepton flavour structures

	Phenomenology off the Z pole
	Benchmark Models
	4: e+e- 
	2q2: pp 
	4q: ppjj
	Comment on low-energy probes of LFUV
	Comparison of benchmark models

	Conclusion

