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When a quantum phase transition is crossed within a finite time, critical slowing down disrupts
adiabatic dynamics, resulting in the formation of topological defects. The average density of these
defects scales with the quench rate, adhering to a universal power law as predicted by the Kibble-
Zurek mechanism (KZM). In this study, we aim to investigate the counting statistics of kink density
in the 1D transverse-field quantum Ising model. We demonstrate on a 20-qubit quantum processing
unit, that higher-order cumulants follow a universal power law scaling as a function of the quench
time. We also show the breakdown of the KZM mechanism for short quenches for finite-size systems.
Tensor network simulations corroborate our quantum simulation results for bigger systems not in
the asymptotic limit.

Introduction.- The Kibble-Zurek mechanism (KZM)
is a fundamental theory in nonequilibrium statistical
physics, widely used to describe the dynamics of systems
undergoing continuous phase transitions. Initially mo-
tivated by cosmological considerations regarding struc-
ture formation in the early Universe [1], Kibble’s pio-
neering work laid the groundwork for Zurek to extend
these ideas to superfluid helium [2], paving the way to
cosmological experiments via simulation in acoustic ana-
logues. According to the KZM, when a system is driven
across a phase transition, by varying a (or a set of) time-
dependent control parameter h(t) which crosses its crit-
ical value hc within a finite quench time τQ, it cannot
remain in equilibrium due to the critical slowing down
phenomenon [3, 4].

At the critical point hc, systems showing a second-
order phase transition exhibit a null mass gap or a diver-
gent correlation length, therefore their ground state does
not evolve any longer adiabatically [3, 5]. As the sys-
tem approaches the critical point, the equilibrium relax-
ation time diverges, preventing the system from adapting
quickly enough to remain in equilibrium. This results
in non-adiabatic dynamics, leading to the formation of
excitations such as topological defects. These defects,
which form at the boundaries between independently de-
veloped domains—each selecting different broken sym-
metries—are robust remnants of the original symmetries.

The KZM predicts a universal scaling law for the mean
value of the density of defects, n, as a function of the
quench time, namely n ∝ τ−α

Q . The exponent α is deter-
mined by the system’s geometry and by the two critical
exponents z and ν, the dynamical and correlation length
ones respectively, such that the logarithm of the mass
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gap scales as the product of the two. This scaling be-
havior has been confirmed in both classical and quantum
systems, making the KZM a robust tool for analyzing
nonequilibrium dynamics [6, 7].
In the quantum realm, the KZM has been validated

in systems undergoing quantum phase transitions, such
as the transverse field quantum Ising model in one di-
mension (TFQIM), for which the exact dynamics of a
quantum phase transition was analytically derived and
explained in terms of a series of Landau-Zener transitions
[8]. The peculiarities of such systems are that in con-
trast to the original cosmological derivation and its su-
perfluid analog, here the underlying symmetry is discrete
(Z2), and a unitary dissipation-free evolution leads to a
non-equilibrium configuration where all cumulants—not
just the first one (the mean)—of the probability distri-
bution of the topological defects exhibit a KZM-like scal-
ing. Del Campo and collaborators have shown that in
the thermodynamical limit the full counting statistics
of kinks in TFQIM reveal universal behavior for slow
enough quenches [9] and a breakdown of the KZM-scaling
with a kink formation dynamics independent on τQ, i.e.,
a constant defect density, for fast quench [10]. In addi-
tion, they measured and determined the biases caused
by symmetry breaking [11] and the deviations that oc-
cur around equilibrium [12]. Although the previous work
was conducted analytically on systems with one dimen-
sion, Schmitt et al. [13] investigated the KZM in two-
dimensional systems using numerical techniques.
Experiments probing the KZM have been conducted

across a variety of platforms, including ultracold gases
[14], Rydberg atoms [6], trapped ions [7] and both analog
[15] and digital [16] quantum devices based on supercon-
ducting qubits. These experiments often involve measur-
ing the statistical properties of topological defects formed
during the phase transition, providing empirical support
for the KZM and its broader implications in statistical
physics. Ultimately, the KZM remains a cornerstone the-
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ory, offering a quantitative framework for understanding
the formation of topological defects and the dynamics of
symmetry breaking in a wide range of physical systems.

Digital quantum computing is rapidly becoming a
promising approach for many-body quantum simulations,
offering the ability to efficiently perform highly pre-
cise computations on large systems. Although asymp-
totically optimal methods, based on quantum signal
processing [17], hold significant potential, they require
substantial advancements in quantum error correction
[18, 19] and quantum hardware capabilities. Nonethe-
less, recent experiments, have successfully demonstrated
the practical utility of digital quantum computing [20–
24], using instead quantum error mitigation [25] strate-
gies. These experiments bridge the gap towards a fault-
tolerant paradigm, by pushing the capabilities of current
quantum devices.

Here we report an experimental confirmation of the
KZM for the cumulants of the kink density distribution
via simulation on the 20-qubit digital quantum process-
ing unit based on superconducting transmon qubits IQM
Garnet [26].

The Model.- The one-dimensional transverse-field
quantum Ising model is a paradigmatic system in the
study of quantum phase transitions and critical phenom-
ena. It consists of a linear chain of spins, each governed
by two competing interactions: a transverse field and
nearest-neighbor coupling. We consider the TFQIM of
the form

H(t) = −J(t)

N−1∑
i=1

XiXi+1 − h(t)

N∑
i=1

Zi (1)

with J(t) = J0t/τQ and h(t) = (1 − t/τQ)h0. The
competition between these interactions drives a quantum
phase transition at a critical field strength hc/Jc = 1,
where the system undergoes a transition from a ferro-
magnetic phase, characterized by ordered spin alignment,
to a paramagnetic phase, where the spins are aligned
with the transverse field. The model is exactly solvable,
making it a cornerstone for understanding quantum crit-
icality and non-equilibrium dynamics in low-dimensional
systems. We fix h0 = J0 = 1 such that the quantum
phase transition is crossed at the middle of the quench,
i.e. at t = τQ/2. The initial state is chosen as the ground
state at t = 0, and takes the form of the all spin up state
|0⟩⊗N ≡ |0̄⟩. To measure the number of topological de-
fects we consider the kink operator

n̂ =
1

2N

N−1∑
i=1

(1 −XiXi+1) . (2)

The cumulants are the coefficients of the series expan-
sion of the moment-generating function of the kink dis-
tributions, in the quantum simulation we focus on the

first three, namely:

κ1 = ⟨n̂⟩, κ2 = ⟨(n̂− ⟨n̂⟩)2⟩ = ⟨n̂2⟩ − κ2
1 (3)

κ3 = ⟨(n̂− ⟨n̂⟩)3⟩ = ⟨n̂3⟩ − 3κ1κ2 − κ3
1 (4)

This operator can be estimated up to error ϵ by mea-
suring the wavefunction in the Hadamard basis at least
Var[n̂k]/ϵ2 ≤ 1/ϵ2 times. All the correlators can be mea-
sured in this basis and can therefore be estimated si-
multaneously. The main challenge arises for long quench
times, since the expectation values are expected to be
small, and thus require a higher number of measurements
to be detected from statistical noise. However, there is no
fundamental problem in estimating expectation values in
this way.
Time-dependent Hamiltonian simulation.- The quench

is performed by evolving the initial state under a time-
dependent Hamiltonian H(t). The time evolution is ob-
tained via the time-ordered unitary evolution stemming
from the Hamiltonian as

U(tf , t0) = T exp

(
−i

∫ tf

t0

H(t)dt

)
, (5)

where T is the time ordering operator to account for
the non-commutativity at different time [H(t), H(t′)] ̸=
0. There exist different ways of implementing U(tf , t0)
on digital quantum computers, the most straightforward
being the quasistatic approximation [27]. In this frame-
work, the simulation time is sliced into r Trotter steps
of size ∆t = (tf − t0)/r, in which H(t) ≈ H(k′∆t), for
k′ = k+1/2 and t ∈ [k∆t, (k+1)∆t]. The time-evolution
operator can thus be approximated by

U(tf , t0) =
r∏

k=1

exp [−i∆tH(t0 + k′∆t)] . (6)

The matrix exponential exp(−i∆tH) is not directly im-
plementable on a digital quantum processor. Therefore,
we decompose it into fundamental quantum gates [28],
e.g., using the Trotter-Suzuki product-formula (PF) [29],
whose error scales polynomial in time, and pre-factor de-
pending on the commutators [30]. For simplicity, let
us assume that the Hamiltonian breaks down into two
groups of pairwise commutating term,

H(t) = f(t)A+ g(t)B, (7)

such that exp(iA) and exp(iB) are exactly imple-
mentable. We use a second-order product formula, which
is given in the static case by

exp(−iHt) ≈ exp(−iAt/2) exp(−iBt) exp(−iAt/2). (8)

Merging both approximations (6) and (8), we obtain

U(t) ≡ U(tf = t, t0 = 0)

=

r∏
k=1

exp[−if(k′∆t)A∆t/2]

· exp[−ig(k′∆t)B∆t] exp[−if(k′∆)tA∆t/2].

(9)
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Figure 1: Quantum simulation on IQM Garnet
(N = 19). The two first cumulants of the kink den-
sity are shown as a function of the quench time, as well
as the number of Trotter steps. The blue squares denote
noise free simulation, the orange points the raw data and
the red the results obtained after the full pipeline of error
mitigation. The complexity of the circuits is increased as
one additional Trotter steps per data point. The black
continuous line shows the exact evolution, while the de-
cay rate appears as a dotted-line. The inset shows the
renormalization factor (purple) as a function of the cir-
cuit’s depth.

Straightforward extensions of the quasistatic PF
method include adaptive step sizing [31], random com-
pilation techniques like QDrift [32, 33] with one-norm
scaling [34], and leveraging the interaction picture [35].
While asymptotically superior methods exist—such as
those based on the Dyson series [36], Magnus expansions

[37, 38], discrete clocks [39], or flow equations [40]—the
PF method is notably effective in practice, especially for
systems with a high degree of locality [41].
Quantum simulation.- In this section, we report nu-

merical experiments, both with quantum hardware and
tensor networks, of the correlation’s decay across the
quantum phase transition.
We begin by performing the quench on the IQM Gar-

net superconducting quantum computer [26], which con-
sists of twenty transmon qubits and achieves a two-qubit
gate fidelity of 99.5% [42]. Due to the chip’s connectiv-
ity, we work with a system of N = 19 spins. We im-
plement the second-order PF method, varying the num-
ber of Trotter steps r up to 20 across different quench
times τQ ∈ [0.1, 20]. The first two cumulants are pre-
sented in Fig. 1, with noise-free simulations shown as blue
squares, raw data as purple dots, and error-mitigated re-
sults as red dots. The continuous line represents a near-
exact evolution, approximated using 2000 Trotter steps.
Higher-order moments are not displayed, as they are sev-
eral orders of magnitude smaller and would require signif-
icantly more measurements to be accurately estimated.
Error mitigation is applied using noise renormalization

techniques [22, 24, 43–45], along with 50 instances each
of Pauli [46] and readout [47] twirling, and matrix-free
measurement mitigation [48]. We normalize each expec-
tation value by taking advantage of the identity

⟨+̄|U†(t)n̂U(t)|+̄⟩ = 1, (10)

where we use the mitigating scheduling function h(t) =
π/∆t for the field, such that the corresponding evolution
becomes a symmetry of the Hamiltonian. We observe
that the renormalization factor decays exponentially fast
with the depth, as shown in the inset of the lower plot
of Fig. 1. Therefore, this process can not be applied
for arbitrary depth circuit, but in this case it enables us
to extend it by a factor four. Each circuits is run 2000
times and the error bars correspond to a 99% confidence
interval computed via Bayesian data augmentation. The
accuracy limit resulting from finite statistics is 10−5/2,
is depicted on the corresponding axis. For completeness,
all of these methods are described in the appendices A
and B.
To support our findings on finite-size systems, we con-

duct numerical experiments using matrix-product states
(MPS) [49] with larger spin systems to approximate re-
sults obtained in the thermodynamic limit [9].
We begin by calculating the decay rate α as a function

of system size by fitting the data to a model of the form
∝ τ−α

Q , in line with the decay predicted by the KZM. For
this analysis, we perform MPS simulations with a fixed
error tolerance of 10−10, based on which the smallest co-
efficients (from the singular value decomposition) with a
lower sum of their squares than this are discarded, and
300 Trotter steps, extracting the decay rate using 105

shots per run. As previously mentioned, expectation val-
ues tend to be small for higher-order cumulants. There-
fore, our focus lies on the first three cumulants. We show
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Figure 2: Decay rate scaling. The decay rate α of
the three first cumulants (red, orange and blue respec-
tively) extracted by least-square regression is shown as
a function of the system size. The simulations are per-
formed using MPS at fixed error threshold of 10−10. The
error bars correspond to one standard deviation due to
the finite statistics. We observe that all decay rates ap-
proaches 1/2 (continuous black line), as predicted by the
theory in the thermodynamic limit.

Figure 3: Distribution of the kink density. The
probability distribution function P (⟨n̂⟩) of the kink den-
sity is shown as a function of different quench time (col-
ors). The simulation is performed using MPS onN = 150
spins.

in Fig. 2 that the decay rate for the first three cumulants
approaches 1/2. The uncertainty on higher cumulants
increases, due to statistical noise.

Finally, we reconstruct the kink probability distribu-
tion P (⟨n̂⟩) from the first three moments at fixed sys-
tem size N = 150 for different quench times by using
the maximum entropy method [50], which is shown in
Fig. 3. We observe that the probability distributions be-
come narrower, and the expectation value of the kink
density decreases with longer quench times, consistent

with the decay rate of 1/2 observed across all cumulants,
which is consistent with the analytical predictions of del
Campo [9].

Discussions.- Simulations of the critical dynamical be-
havior till a few years ago were only able in suitably de-
signed laboratories. Anyway, the advent of on-demand
quantum digital processing units made testing the uni-
versality of scaling laws (and their deviations) in com-
plex systems possible for a much broader number of re-
searchers. We perform a quantum simulation of the dy-
namics of a quantum phase transition using a digital su-
perconducting quantum computer, with a circuit’s depth
of up to one hundred sequential CNOT gates, employing
a variety of error mitigation techniques. Using error mit-
igation, we increase the number of reliable Trotter steps
by a factor of four, at least for the first cumulant. Com-
puting higher cumulants requires more statistics, as they
are typically order of magnitude lower. Although the
cost of error mitigation generally increases exponentially
with the level of noise [51–53], making it unsustainable
in the long term, we argue that it remains a vital tool for
utilizing quantum computers before achieving full fault-
tolerance. Specifically, we contend that error mitigation
bridges the gap towards the era of early fault-tolerance
[54] and facilitates the implementation of typical algo-
rithms [55–57] of this era.

We have empirically demonstrated in a finite-size
TFQIM the deviations from the KZM during rapid
quenches across a continuous phase transition. These de-
viations lead to a breakdown in the predicted power-law
scaling of defect density with τQ, resulting in a plateau
preceding the τ−α

Q typical scaling. Additionally, we have
shown how the distribution of the density of topologi-
cal defects follows a binomial distribution, nearly Gaus-
sian when the central limit theorem requirements are met
[12]. This model predicts that higher-order cumulants
of the defect distribution scale with the quench time in
a universal manner. These findings follow the pioneer
line suggested by Del Campo [10, 58] to test the count-
ing statistics of topological defects and the correspond-
ing breakdown in experimental systems. We investigated
finite-size effects using MPS by analyzing the decay rate
as a function of system size, as well as recovering the full
probability distribution. We observed that the decay rate
converges to 1/2 for the first three cumulants, approach-
ing the value predicted in the thermodynamic limit and
in pure coherent dynamics.

Our work goes in the direction of testing the scaling
laws in quantum critical phenomena and has broad rel-
evance in nonequilibrium statistical mechanics, numeri-
cally proving KZM, and the breakdown of adiabatic dy-
namics, for the statistics of the kink-density in a TFQIM.
We surmise our findings are of interest to better under-
stand the validity of quantum simulation and quantum
annealing [16], and the study of critical and thermaliza-
tion phenomena in non-dissipative systems [5, 15].
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error correction. In this work, we synergistically use dif-
ferent error suppression and mitigation techniques, which
we describe below.

1. Noise renormalization

The workhorse of our error mitigation protocol is based
on a noise renormalization technique, successfully used
in [22, 24, 43–45]. The idea is to assume a noise model,
estimate the corresponding parameters on the quantum
device and reverse its effect in the post-processing stage.
In the following, we shall assume a depolarising noise
model Np[·] with parameter p, which maps the expecta-
tion value of a Pauli observable σ under a quantum state
ρ to

Tr{σNp[ρ]} = (1− p) Tr{σρ}. (A1)

If the parameter p is known, the results can be corrected
by dividing the noisy results by (1 − p). The main idea
is then to estimate (1 − p) by running a circuit with
known expectation value. This becomes particularly sim-
ple when h = 0 or th = π. Hence in the first case the
evolution of the field is the identity and in the second
a uniform bit flip. In both cases, this action commutes
with the interaction part, and we have

⟨+̄|U†(t)n̂U(t)|+̄⟩ = 1, (A2)

where |+̄⟩ is the uniform superposition state obtained by
applying a layer of Hadamard gates to |0⟩⊗N . Since we
require that the circuit is as close as the original one as
possible, we choose the field at time t such as h = π/t.
Even if the expectation values takes a simple form, the
full circuit is still executed, enabling us to effectively esti-
mate (1−p) by evaluating Eq. A2. We note that, in prac-
tice, each component of n̂ are individually re-normalized.

2. Randomized compiling

The main assumption of the noise renormalization pro-
tocol is that the noise is depolarising. However, this is
not the case on real quantum devices. To alleviate this ef-
fect, the circuits are randomly compiled [59]. In practice,
each two-qubit gate is twirled using single-qubit Pauli ro-
tation, chosen in such a way that the transformed and
original circuits are equivalent. This process is know as
Pauli twirling [46] and effectively turns the noise channel
into a Pauli channel. Moreover, under twirling, the noise
accumulates as in an random walk [60], which is quadrat-
ically slower than it would add coherently. Since the data
obtained in this process are merged together before com-
puting expectation values, we can simply distribute the
shot budget over all the twirls, thus avoiding an increase
in the number of samples.

Twirling can also be used to mitigate measurement
errors [47] in the computation of expectation values. This
process is performed by randomly flipping the state of

the qubit before measurement, and reverse the value of
the measured bit, if applicable. effectively, measurement
twirling diagonalise the readout transfer-matrix, making
it easier to invert using techniques describe below.

3. Readout error mitigation

We mitigate readout errors by calibrating the device.
Since a full calibration is exponentially expensive, we
adopt a sparse strategy [48, 61] by only measuring the
N -qubit state |0⟩⊗N and |1⟩⊗N , and build the confusion
matrices

Pk =

(
P

(k)
0,0 P

(k)
0,1

P
(k)
1,0 P

(k)
1,1

)
, (A3)

where, P
(k)
i,j is the probability of the k-th qubit to be in |j⟩

while measured in |i⟩, for i, j ∈ {0, 1}. The measurements

M⃗k of the qubit k is later corrected as

M⃗k
corrected = (Pk)

−1M⃗k. (A4)

As stated above, measurement twirling is performed to
diagonalize the transfer-matrix, thus making it easier to
invert.

Appendix B: Propagation of statistical uncertainties

Pb(m; p) =

(
M

m

)
pm(1− p)(M−m). (B1)

The probability p of obtaining |1⟩ is then inferred with
Bayes theorem

P (p|mi) =
P (mi|p)P (p)∫
dqP (mi|q)P (q)

, (B2)

which is given in closed form by the beta prior

Pβ(p;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
p(α−1)(1− p)(β−1). (B3)

Here, α, β > 0 parameterize the beta distribution and
represent the number of times the basis vector i is mea-
sured. Note that we only sample from binary string ap-
pearing at least once in the data, to avoid sampling from
exponentially many terms. After this inference phase,
the following procedure can be used to determine the ex-
pected values: (i) sample a value p′k from the posterior
P (p′k|mi). (ii) sample L new measurements from the like-
lihood Pb(m

′
k; p

′
k). (iii) Compute expectations values by

averaging over the generate measurements. To general-
ized to multiple qubits, we can use the Dirichlet distri-
bution, which is a closed-form prior for a multinominal
distribution.
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