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In the presence of ring exchange interactions, bosons in a ladder-like lattice may form the bosonic
analogon of a correlated metal, known as the d-wave Bose liquid (DBL). In this Letter, we show
that a chain of trapped ions with three internal levels can be used to mimic a ladder-like system
constrained to a maximum occupation of one boson per rung. The setup enables tunable ring
exchange interactions, giving rise to a transition between a polarized regime with all bosons confined
to one leg and the DBL regime. The latter state is characterized by a splitting of the peak in the
momentum distribution and an oscillating pair correlation function.

Introduction. Metallic behavior is common in elec-
tronic matter: Fermionic particles partially fill an en-
ergy band. However, if matter is bosonic instead of
fermionic, the particles are either expected to condense
into a state with superfluid properties or to form an in-
sulating phase [1]. The possibility of an intermediate
phase in which bosonic quasiparticles exhibit metal-like
behavior has long been a vivid research subject [2–4].
Bosonic lattice models that support metallic behavior
have been proposed in Refs. [5, 6], with ring exchange
interactions on a plaquette being the key ingredient. A
quasi-onedimensional variant of the model consists only
of two chains coupled via a ring exchange term, and po-
tentially interchain hopping [7], or extensions to multi-leg
ladders [8, 9]. As a striking consequence of the ring ex-
change term the occurrence of an unusual strong-coupling
phase of bosons has been reported, characterized by a
peak splitting in the momentum distribution and sign os-
cillations of pair correlations, hinting towards the d-wave
correlated nature of this phase which has been dubbed
d-wave Bose liquid (DBL).

Realizing prototypical models in controllable quantum
systems has become possible through the development
of various quantum simulation platforms. Cold atoms in
optical lattices have a long-standing history of being used
to study many-body phases of bosons [10], and also lad-
der geometries have been realized with cold atoms [11],
but the realization of models with ring exchange in-
teractions remains outstanding. Bosonic lattice models
have also been realized using excitons in artificial lat-
tices [12, 13], and the dipolar nature of excitons might
even provide weak ring exchange terms, but so far this
platform has mostly been used to study gapped phases.
Another quantum simulation platform that is very pow-
erful for the study of one-dimensional spin models is
trapped ions [14]. An XY chain of spin-1/2 degrees of
freedom, HXY =

∑
i,j Jijσ

+
i σ

−
j h.c., with σ±

i being rais-
ing/lowering operators of spin i, has been realized with
trapped ions in Ref. [15], and is equivalent to a model

of hard-core bosons with long-range hopping −Jij along
a chain. It has also been proposed to use the presence
of nearest- and next-nearest neighbor hopping to map
the chain onto a two-leg ladder [16]. Another interest-
ing aspect of ion chains is the possibility of going beyond
spin-1/2 physics by exploiting three or more internal lev-
els. This can give rise to SU(3) physics, as proposed in
Ref. [17], or spin-1 models as realized in Ref. [18], or qudit
quantum computers as realized in Ref. [19].
In the present Letter, we exploit the possibility of using

three-level trapped ion systems for simulating a bosonic
two-leg ladder constrained to a maximum occupation of
one particle per rung. Appropriately chosen Raman cou-
plings between the levels provide, within a second-order
Magnus expansion, the analogon of tunable intra-leg tun-
neling and ring exchange terms. We show that the tun-
able strength of the ring exchange term leads to a quan-
tum phase transition into the DBL phase and that mea-
suring pairwise correlations between the ions provides
clear signatures of this transition. For weak ring ex-
change terms, the long-range nature of the ion systems
becomes important, polarizing the system into one lad-
der. Our theoretical study employs the (quasi-)exact nu-
merical methods of diagonalization (ED) and density ma-
trix renormalization group (DMRG) through the ITensor
library [20]. The DMRG algorithm [21, 22] has been an
extremely reliable and effective tool for investigating dif-
ferent phases of matter in ladder-like systems [23–28].
Model. Let us start from the ring-exchange model on

a two-leg ladder studied in Ref. [7]. Denoting by a†iσ(aiσ)
the creation (annihilation) operators of hard-core bosons
on the sites of a ladder of length L, identified by a rung
index i ∈ [1, L] and a leg index σ ∈ {↓, ↑}, the model
reads

H =
∑
i>j,σ

(
−tσija

†
iσajσ +Kija

†
iσ̄a

†
jσajσ̄aiσ + h.c.

)
−

t↑↓
∑
i

a†i↑ai↓ + h.c., (1)
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FIG. 1. (a) Mapping between the two-leg ladder and chain of three-level ions. (b,c) Implementation of intra-leg hopping and
ring exchange via Raman transitions following the level diagram of 171Yb+ shown in (b). As illustrated in (c), the pairs drawn
in red couple to the longitudinal phonon direction, and are equipped with two beat notes, tuned to the τ−0 transition and
the τ0+ transition, with different detunings δl,− and δl−,+ from the longitudinal center-of-mass mode at frequency ωcom,l, as
indicated in the box. The pairs drawn in red couple to transverse phonon modes, and are equipped with one beat-note tuned
to the τ−+ transition with a detuning δt from the transerved center-of-mass mode at frequency ωcom,t. Both couplings operate
on a single side-band.

where σ and σ̄ denote opposite legs. In this formulation,
we have accounted for a possible long-range character of
intra-leg hopping tσij in leg σ, and ring-exchange interac-
tions Kij . In the original model of Ref. [7], these terms
reduce to nearest neighbor (NN) terms, tσij = tδj,i±1 and
Kij = Kδj,i±1, and the hopping amplitudes are equal
in both legs. To map this Hamiltonian onto a chain of
three-level ions, we extend the hardcore constraint from
on-site to on-rung, that is, we allow for a maximum oc-
cupation of one boson per rung, a2iσ = aiσaiσ̄ = 0. With
this constraint, the local Hilbert space on each rung is
limited to three states, which we denote by |−⟩ for the
lower leg (σ =↓) being occupied, |+⟩ for the upper leg
(σ =↑) being occupied, and |0⟩ for an empty rung. As il-
lustrated in Fig. 1(a), the ladder can then be mapped
onto a chain of three-level ions. In this formulation,
intra-leg hopping and ring exchange can in principle be
expressed in terms of appropriate spin-1 operator prod-
ucts, or more conveniently, in terms of the eight gener-
ators of the SU(3) isospin algebra [29]. As an overcom-
plete basis of these generators, let us introduce the SU(3)
operators τ iαβ ≡ |i, α⟩⟨i, β|, with α, β ∈ {−, 0,+} denot-
ing the internal level of ion i ∈ [1, L]. A hopping pro-

cess in the lower leg, a†i+1↓ai↓, is re-written as τ i+1
−,0 τ

i
0,−,

and similarly, a†i+1↑ai↑ = τ i+1
+,0 τ

i
0,+ for hopping in the up-

per leg. The ring-exchange term takes an equally simple
quadratic form a†i↑a

†
i+1↓ai+1↑ai↓ = τ i+,−τ

i+1
−,+, and inter-

leg hopping takes the form of a magnetic field term,

a†i↑ai↓ = τ i+,−
Implementation. To implement this SU(3) model with

trapped ions, we start from a free ion Hamiltonian with
three levels, H0 = ℏω−|−⟩⟨−| + ℏω+|+⟩⟨+|, where the
|0⟩ level is chosen to be at zero energy, and ω−, ω+ > 0.
As illustrated in Fig. 1(b), and following the implementa-
tion of spin-1 physics in Ref. [18], these three levels could
be two Zeeman split levels of the F = 1 manifold, and
the F = 0 level of 2S1/2 in 171Yb+. In this case, the fre-
quency difference (ω+−ω−) is determined by the Zeeman
splitting, and (ω++ω−)/2 is the frequency difference be-
tween F = 0 and F = 1. The desired SU(3) Hamiltonian
is implemented via a Raman coupling which produces
transitions between internal states, cf. Fig. 1(b), together
with a phononic side-band transition, cf. Fig. 1(c), se-
lected by the wave vector difference ∆k and the beat-
note of the coupling. To treat the optical coupling, we
go into the rotating frame of H0 and apply a rotating
wave approximation. With this, and under the Lamb-
Dicke assumption, i.e. ei∆kx ≈ 1 + i∆kx, the coupling
between levels α, β ∈ {−, 0,+} can be expressed as

hαβ(t) =
iΩαβ

2

∑
i,m

ηm,ie
i(µαβ−ωm)tb†mτ

i
αβ + h.c., (2)

with Ωαβ being the Rabi frequency, ηm,i the Lamb-Dicke
parameter for mode m at ion i, and b†m(bm) the cre-
ation (annihilation) operator of this mode. Each cou-
pling has an individual beat-note µαβ = ωcom,αβ + δαβ ,
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detuned by δαβ from the center-of-mass (com) mode of
the selected phonon branch, with frequency ωcom,αβ . In
total, we require three such coupling terms, H(t) =
h0−(t) + h0+(t) + h−+(t), where h−0 and h0+ imple-
ment the hopping (red couplings in Fig. 1(b), and h−+

produces the ring-exchange (blue coupling). Using the
Raman laser arrangement as shown in Fig. 1(c), the
coupling for the ring exchange uses transverse phonons,
whereas the couplings for the hopping terms use longi-
tudinal phonons. This choice ensures the proper signs of
the effective isospin interactions, arising in second-order
perturbation (see below). Specifically, coupling to trans-
verse phonons allows for implementing antiferromagnetic
interactions (hence K > 0), whereas coupling to lon-
gitudinal phonons allows for ferromagnetic interactions
(hence −t < 0), both in regimes where the coupling pa-
rameters exhibit a power-law decay behavior [30, 31].

The effective Hamiltonian arises from a non-oscillatory
term, e−iHeff t/ℏ, in the second-order Magnus ex-
pansion of the time-evolution operator, U(t, 0) ≈
T exp{− i

ℏ
∫ t

0
dτ1

∫ τ1
0

dτ2[H(τ1), H(τ2)]/ℏ}. Through the
choice δ−0 ̸= δ0+, it is avoided that the |−⟩⟨0| transi-
tion interferes with the |0⟩⟨+| transition, despite both
transitions using the same phonon branch. The effective
Hamiltonian takes a form that is similar to an XY model:

Heff =
∑
i ̸=j

∑
α̸=β

J ij
αβτ

i
αβτ

j
αβ +

∑
i,α

Vατ
i
αα. (3)

In the ladder picture, the second term can be interpreted
as a chemical potential on the two legs. We note that
Vα does not only depend on the involved coupling pa-
rameters (Rabi frequencies, detunings) but also on the
phonon occupation numbers. Therefore, it might be hard
to tune this term. However, we will concentrate on the
case without inter-leg tunneling (t↑↓ = 0). Then, the
population in each leg is conserved, and the chemical po-
tential term becomes irrelevant. With this, we can focus
on the first term in Eq. (3). This term produces the
desired intra-leg hoppings as well as the ring exchange
terms. The corresponding amplitudes are defined by the
coupling parameters:

J ij
αβ =

∑
m

ηm,iηm,j

ℏΩ2
αβ

µαβ − ωm
. (4)

Despite different detunings δ−0 and δ0+, the hopping am-
plitudes in both legs tσij = −J ij

σ0 can be made approxi-
mately equal via an appropriate choice of Rabi frequen-
cies. The ring-exchange amplitude Kij = J ij

−+ can be
tuned independently. By choosing a detuning sufficiently
far away from the phonon spectrum, all parameters may
decay according to a |i−j|−3 power law, although a slower
decay is experimentally more feasible. In the following,
we only assume that the decay strongly suppresses long-
range terms, such that we can limit ourselves to the dom-
inant NN terms, and sub-leading next-nearest neighbor

FIG. 2. Eigen-energies, computed using ED (for L = 16), are
shown as a function of K. (a) depicts the lowest energies for
various polarization sectors. (b) shows the energy difference
between different lowest-lying energies in P=0.

(NNN) terms. In terms of the original model Eq. (1), this
means that from now on the only non-zero terms will be
NN and NNN hopping tσi,i+1 ≡ t and ti,i+2 = t2, as well
as non-zero NN and NNN ring exchange Ki,i+1 ≡ K and
Ki,i+2 = K2. For concreteness, we concentrate on the
choice t2/t = K2/K = 0.2 and set t = 1.
Results. To study the model numerically via ED and

DMRG1, we fix the filling nf = (N+ + N−)/(2L) =∑
i⟨(Si

z)
2⟩/(2L) to 1/4, as well as the polarization P =

N+ − N− =
∑

i⟨Si
z⟩. In these definitions, N± refers to

the number of particles in the |±⟩ legs, mapped onto
the internal state of the ions via the spin-1 notation,
Si
z = τ i++ − τ i−−. The lowest energy in each polar-

ization sector is plotted in Fig. (2)(a) as a function of K.
For K < Kc ≈ 0.44, the true ground state is fully polar-
ized (|P| = 2Lnf ). In this configuration, one leg remains
empty, and hence, no ring exchange can occur, and the
energy does not depend on K. Interestingly, the low-
est energy states in the other polarization sectors are all
(at least approximately) degenerate. The nature of these
states can be understood from Fig. 3, where we comple-

1 The DMRG sweeps are performed with the maximum allowed
bond dimension varying between 1000-5000, depending upon the
requirement, and truncation error is kept at 10−10.
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FIG. 3. (a) The correlation Czz(1, L) is plotted as a function
of K using ED (L = 16) at P = 0. The system passes from
an ordered phase to a phase without long-range order. This
transition persists with varying L, as observed from DMRG
(in the insets). (b) The correlator Czz(1, j) behaves differently
in these two phases (i.e. K < Kc and K > Kc).

ment the results from ED with that of DMRG, showing
the correlation function Czz(i, j) = ⟨Si

zS
j
z⟩ of the lowest

energy state in the fully unpolarized sector P=0. Here,
we concentrate on this sector, as the true ground state
resides in P=0 for K > Kc, as discussed later. The solid
line in Fig. 3(b) shows that there is a domain wall, with
the left half of the system being polarized in one leg, and
the right half being polarized in the other leg. We asso-
ciate the energy gap to the fully polarized with the energy
cost of such a domain wall. The domain-wall picture also
provides an intuitive explanation for the double degener-
acy of this state, seen in Fig. (2)(b). We note that the
domain-wall picture does not apply for very small values
of K, as seen in Fig. 3(a). In this regime, the quasi-
degeneracy of many states leads to different behavior,
but data in the inset suggest that the critical K of this
regime tends to zero when the system size is increased.

The lowest-energy state becomes the unique true
ground state for K > Kc. The level crossing between
lowest-energy states in different polarization sectors co-

FIG. 4. n(q) is plotted for K = 0.6, using DMRG for L = 60.
The absence of zero momenta peak and the presence of peaks
at ks = πnf are also consistent with the known features of
such a phase. We see that changing nf from 1/4 to 1/3 shifts
the peaks.

incides with an avoided level crossing within the polarized
sector, see Fig. (2)(b). Therefore, even if the polarization
is fixed to P=0, as done in Fig. (3), an abrupt change of
correlations can be observed at K > Kc phase. Specifi-
cally, we note that the long-range order present at small
K is lost, as indicated by Czz(1, j) → 0 for large j.
Importantly, the ground state for K > Kc carries

clear signatures of a d-wave Bose liquid (DBL). Two
quantities of utmost interest in defining the DBL phase
are: (i) the momentum distribution function n(q) =∑

j1,j2

∑
σ=↑,↓ exp(−iq(j1 − j2))⟨a†j1,σaj2,σ⟩/L, and (ii)

the pair correlation between diagonal sites of the two-
leg ladder, given by P2(∆x) = ⟨a†1,↑a

†
2,↓a∆x+γ,↑a∆x+η,↓⟩.

The choice (γ = 1, η = 2 ) denotes correlation between
two parallel diagonals and (γ = 2, η = 1 ) implies cor-
relation between two perpendicular diagonals. The con-
vention is schematically described in the appendix.

In Fig. (4), the momentum distribution n(q) is plot-
ted for a relatively large system at K = 0.6 > Kc.
We note the absence of a zero momentum peak, which
indicates a lack of long-range order. The P2(∆x) are
shown in the appendix. We note that the oscillation in
P2(∆x) and the position of the n(q) peaks, both are con-
nected to the filling of the ladder, as has already been
worked out in Ref. [7]. As another indicator of the liquid-
like behavior of the system for K > Kc, we have also
studied the z-component of spin structure factor defined
as, Sz(q) =

∑
j1,j2

exp(−iq(j1 − j2))⟨Sj1
z Sj2

z ⟩/L, which
has sharp peaks for K < Kc, but gets smoothened for
K > Kc. Corresponding data is shown in the appendix.

Discussion and Outlook. In this Letter, we have pro-
posed to use a chain of three-level ions to implement a
model of bosons on a two-leg ladder with hard-core con-
ditions on each rung. The setup allows us to explore the
effect of tunable ring exchange interactions K, and we
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have shown that they produce a transition from a polar-
izing regime at small K to a regime with features of a
d-wave Bose liquid at larger K.

The recent advancements in trapped ion experiments
[32] present themselves as an ideal platform for realiz-
ing the physics under study. However, we note that
trapped ion systems feature all-to-all couplings, whereas
our study has focused on a model with only nearest- and
next-to-nearest neighbor couplings, to facilitate DMRG
calculations. Using ED, we have explicitly checked that
the reported behavior qualitatively persists also in the
presence of all-to-all interactions, as long as they decay
with a power-law exponent of two or larger. Such a decay
can easily be achieved when the coupling is transmitted
by transverse phonons, as used here to implement the
ring exchange term, however, it might be hard to achieve
with longitudinal phonons, due to a larger bandwidth of
the spectrum [31]. Since we rely on longitudinal phonons
in order to implement the hopping terms through anti-
ferromagnetic couplings, additional tuning might be nec-
essary to achieve sufficiently fast decay. One possibility
here is Floquet engineering techniques, see for instance
Ref. [33, 34]. A flexible alternative to the analog imple-
mentation of the model is the simulation using a digital
qutrit quantum computer [19].

Finally, let us also comment on the possibility of imple-
menting the hopping term via ferromagnetic interactions
transmitted through transverse phonons. The negative
sign of the hopping amplitude amounts to a π-flux which,
quite interestingly, is found to stabilize the DBL regime
even in the absence of ring exchange. Although such a
setup is experimentally less demanding, in this paper we
have focused on the implementation with t > 0 which
features a DBL transition induced via ring exchange in-
teractions.
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END MATTERS

Modulation in P2

We study the pair correlation at different filling fac-
tors. The D-wave nature of the DBL is captured by this
correlation. The results are shown below:

FIG. 5. The P2(∆x) for parallel diagonals: Dia−Para (γ =
1, η = 2 ) and perpendicular diagonals: Dia − Perp (γ =
2, η = 1 ) are opposite in sign and oscillate with a period
1/nf . In (a) we show the convention used for calculating
the pair correlation and in (b) results for different fillings are
depicted. We observe changing nf changes the modulation in
P2 which is consistent with the shifting of peaks in FIG. (4).

Structure factor

We see from FIG. (3), that for K < Kc the cor-
relation Czz(1, j) changes sign at L/2, signifying the
existence of two regions with different polarizations.
The length of such domains is L/2, which is consistent
with the appearance of sharp peaks in Sz at wave vector
q = 2π/(L/2), as shown in FIG. (6). In the inset of the



6

same figure, one can find out how no such peak exists in
K > Kc.

FIG. 6. Sz(q) computed using DMRG. At K = 0.3, a com-
parison between L = 16, 48 shows the persistence of sharp
peaks with ∆qL wave vector. In the inset, we see data for
L = 48 at K = 0.6. The smoothness of Sz suggests an ab-
sence of any true long-range order. This is a characteristic of
the DBL phase.
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