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Many motivated extensions of the standard model include new light bosons, such as axions and
dark photons, which can mix with the ordinary photon. This latter, when in a dilute plasma, can
be dressed by an effective plasma mass. If this is equal to the mass of the new degree of freedom,
then a resonance takes place and the probability of transition between states is enhanced. This
phenomenon of resonance conversion is at the very basis of multiple probes of dark matter, and
it is typically studied within the so-called Landau-Zener approximation for level crossings. This
latter is known to break down in a variety of scenarios, such as multiple level crossings or when
the de Broglie wave length of the new boson is comparable to the scale over which the background
plasma varies. We develop a flexible code adopting a 3+1 formalism in flat spacetime to perform
non-linear simulations of systems with photons and new ultralight bosons in the presence of plasma.
Our code currently allows to evolve one-dimensional systems, which are the ones of interest for this
first study, but can be easily extended to treat three-dimensional spaces, and can be adapted to
describe a plethora of realistic astrophysical and cosmological situations. Here we use it to study
the breakdown of the Landau-Zener approximation in the case of multiple level crossings and when
the slowly-varying plasma approximation ceases to be valid. In this first paper we detail our code
and use it to study non-turbulent plasma, where small scale fluctuations can be neglected; their
treatment will be considered in an upcoming publication.

I. INTRODUCTION

The phenomenon of energy levels crossing in two-level
systems has been studied extensively for decades. Al-
most 100 years ago, Landau and Zener (LZ) examined
the crossing of energy levels in the optical transitions of
molecules [1] and between polar and homopolar molecu-
lar states [2] under certain approximations. Thirty years
later, Parke applied this concept to the survival proba-
bility of electron neutrinos in a resonant oscillation re-
gion [3], coining the term “LZ transition probability”.

Today, the LZ approximation has been pivotal in de-
veloping many important probes of bosonic dark matter
candidates, such as dark photons and axions. Both dark
photons and axions can couple to the standard model
photon, allowing for oscillations between different states.
A propagating dark photon can oscillate into an ordi-
nary photon and vice versa [4–12], and the same can
happen for axions, albeit requiring an external magnetic
field [13–26]. Furthermore, in both cases the presence
of a dilute plasma can enhance the conversion probabil-
ity analogously to the neutrino case [3]. Indeed, if the
density of the plasma is such that the plasma frequency
– which acts as an effective mass for transverse electro-
magnetic excitations – matches the mass of the new bo-
son, then a resonant conversion takes place and the prob-
ability of oscillation from one state to another is greatly
boosted. Typically, this transition is treated within the
approximation of the LZ approach, however the latter
is known to break down in certain circumstances, such
as in the presence of multiple level crossings or when
plasma density variations occur on scales comparable
to the de Broglie wavelength of the new boson. Con-

sequently, most studies assume a slowly varying back-
ground and well-separated (or unique) level crossings.
These assumptions, however, are likely to fail in many
realistic astrophysical and cosmological contexts. Thus,
it is of paramount importance to develop a fully general
treatment of the resonant conversion phenomenon.

A significant advancement in this direction was re-
cently made with the introduction of a numerical scheme
to study axion-photon mixing in strongly magnetized
plasmas [19], wherein the axion-Maxwell system of equa-
tions were numerically solved in a discretized spatial do-
main with a varying background. The results are in
agreement with previous analytical derivations [24] and
were further validated in [27], demonstrating that the
probability can be accurately reconstructed using numer-
ical schemes.

In this work, we develop a flexible code adopting a 3+1
formalism in flat spacetime to perform real-time simula-
tions for a system with photons and new light bosons, in
the presence of an external plasma. As a first applica-
tion we focus on the case of dark photons, although our
code can be easily adapted to axion-photon oscillations
as well. We verify the accuracy of the LZ approximation
in scenarios with slowly varying plasmas and then quan-
tify its failure in describing the conversion probability
when multiple crossings are present or when the plasma
varies rapidly. Our approach presents a number of dif-
ferences with that of Ref. [19]. While the latter works
in the frequency domain, our approach provides a full
time-domain evolution of the systems, allowing to study
with ease also non-stationary systems. Moreover, while
in this work we focus on flat spacetime, this scheme al-
lows studying the systems in a generic spacetime. This
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could be relevant if one considers e.g. axion-photon mix-
ing around neutron stars or conversion in cosmological
scenarios.

Henceforth we use the metric signature {−,+,+,+},
and adopt rationalized Heaviside units with ℏ = c = 1.

II. SETUP

Our code can be applied to any new bosons which
mixes with ordinary photons in a plasma. For simplic-
ity, we focus here on the case of dark photons, but ev-
erything can be easily extended to the case of axions.
Therefore, the Lagrangian density we consider can be
expressed as [28, 29]

L = −1

4
FαβF

αβ − 1

4
F ′
αβF

′αβ − µ2

2
A′

αA
′α

+
sinχ0

2
F ′
αβF

αβ − JαAα, (1)

where Aα and A′
α are the photon and the dark photon,

respectively, while Fαβ and F ′
αβ their field strenghts; µ

is the mass of the dark photon, and Jα is the 4-current
associated with the plasma fluid; lastly, χ0 is the mixing
angle.

In order to make the equations more tractable, it is
convient to perform a field redefinition that removes the
mixing term present in (1). The redefinition of the visible
EM field Aα → Aα + sinχ0A

′
α +O

(
sin2 χ0

)
leads to the

Lagrangian in the so-called mass-basis [30]:

Lmass = −1

4
FαβF

αβ − 1

4
F ′
αβF

′αβ − µ2

2
A′

αA
′α

− Jα(Aα + sinχ0 A
′
α), (2)

where we neglected terms of order sin2 χ0. From the
Lagrangian density (2) we can derive the following field
equations for the photon and the dark photon:

∇αF
αβ = Jβ , (3)

∇αF
′αβ = sinχ0 Jβ + µ2A′β . (4)

For the plasma instead we will consider a cold electron
fluid, and therefore we will neglect the pressure term.
The force term will receive contributions from both the
ordinary photon and the dark photon, resulting in the
equations

uβ∇βu
α =

e

me

(
Fαβ + sinχ0 F

′αβ)uβ , (5)

∇α(neu
α) = 0, (6)

where uµ is the 4-velocity of the fluid, while me and e
are the mass and charge of the electron.

Another relevant basis can be obtained from the orig-
inal one by performing the transformation A′α → A′α +

sinχ0 A
α + O

(
sin2 χ0

)
, and it is called interaction ba-

sis. After performing the field redefinition in (1) the La-
grangian density reads [30]:

Linteraction = −1

4
FαβF

αβ − 1

4
F ′
αβF

′αβ − µ2

2
A′

αA
′α

− µ2 sinχ0 A
′
αA

α − JαAα (7)

In this basis, the hidden field is sterile, and does not inter-
act with charged particle. Thus, the plasma momentum
equation is the standard Lorentz force. The interaction
basis will be used when comparing our numerical results
with the analytical predictions, as it is the basis in which
the LZ formula is derived.

A. Analytical derivation of the conversion
probability

Before delving in our numerical framework, we briefly
elucidate the standard analytical procedure leading to
the LZ formula for resonant conversion, following closely
Refs. [6, 31, 32].

1. Framework

We study the propagation of plane waves in the inter-
action basis in the presence of an inhomogeneous plasma.
For this work, we limit ourselves to situations which can
be described by a 1+1 set-up; the field equations for the
transverse fields can thus be expressed in the following
form:[

− ∂2

∂2
t

+
∂2

∂2
z

−
(

ω2
p sinχ0 µ

2

sinχ0 µ
2 µ2

)](
AT

A′
T

)
= 0 , (8)

where ωp =
√
nee2/me is the plasma frequency. We

are interested in monochromatic waves, i.e., solutions

with fixed frequency ω. Defining kz =
√
ω2 − µ2,

we can search for solutions in the form AT (z, t) =

ÃT (z)e
i(ωt−kzz) with an analogous ansatz for the dark

photon field. Analytical solutions for this system can be
obtained by assuming that the plasma frequency varies
slowly with respect to k. This implies |∂zÃT (z)| ≪
kz|ÃT (z)| and same for Ã′

T . Under this assumption,
the equation of motion of the transverse components of
the fields can be recast into a Schrödinger-like equation
by adopting a WKB approximation. The latter reads
i∂zA = (H0 +H1)A, where A = (ÃT , Ã

′
T ) encapsulates

the fields amplitudes while the Hamiltonian was split in
a diagonal and off-diagonal part:

H0 =

(
∆−∆A′ 0

0 0

)
H1 = sinχ0

(
0 ∆A′

∆A′ 0

)
, (9)

where:

∆ = −ωp(z)
2/2kz and ∆A′ = −µ2/2kz . (10)
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We can solve this equation perturbatively since sinχ0 ≪
1, relying on standard methods of quantum mechanics
perturbation theory. We define the free-evolution opera-
tor,

U(z) = exp
[
− i

∫ z

zi

H0(z
′)dz′

]
, (11)

and switch to the interaction picture where we define
Aint = U†A and Hint = U†H1U , so that the Schrödinger
equation becomes i∂zAint = HintAint. Explicitly, Hint

can be expressed as

Hint = sinχ0 ∆A′

(
0 eiϕ(z)

e−iϕ(z) 0

)
, (12)

where we defined ϕ(z) =
∫ z

zi

(
∆(z′) −∆A′

)
dz′. We can

thus define the evolution of the state in the interaction

picture Aint(z) = exp
[
− i

∫ z

zi
Hint(z

′)dz′
]
Aint(zi) and

switch back to the Schrödinger picture using A = UAint.
To first order in sinχ0 this yields, up to an overall phase,

A(z) =

(
1 −ic+

−ieiϕc− eiϕ

)
A(zi) , (13)

where we defined c± = sinχ0 ∆A′
∫ z

zi
e±iϕ(z′)dz′

. The

conversion probability can now be simply computed as
the scalar product squared between the two states re-
spectively at z, zi. As such, it reads:

PA↔A′ =
∣∣∣ ∫ z

zi

dz′eiϕ(z
′) sinχ0 ∆A′

∣∣∣2 . (14)

2. Stationary phase approximation

In general, the integral in Eq. (14) oscillates rapidly,
yet it varies more slowly near stationary points with
ϕ′(z) = 0. One can therefore assume that far away from
stationary points oscillations interfere destructively and
average to zero, so that the main contribution to the in-
tegral is near resonant points zn, where ωp(zn) = µ so
that ϕ′(zn) = 0. We can therefore evaluate the inte-
gral analytically using the stationary phase approxima-
tion around resonances. Expanding the phase to second
order, we obtain:

PA↔A′ =
∑
zn

sinχ0
2∆2

A′
2π

|ϕ′′(zn)|
, (15)

where the sum is over all resonant points and we ignored
interference effects between different resonances. This is
the LZ formula for resonant conversion. Summing up,
the latter was obtained under two major assumptions:
i) an underlying assumption of the whole computation
was the WKB approximation, implying that the plasma
parameters vary slowly in space; and ii) the stationary
phase approximation requires that saddle points are not
degenerate. In the rest of this paper, we will supersede
both these assumptions.

3. The case of coalescing saddle points

The standard stationary phase approximation breaks
down whenever saddle points coalesce in the vicinity of
a local extremum of the plasma frequency [33]. This is
because around this critical point zc, we have ϕ′′(zc) ∝
ω′
p(zc) = 0, so that the leading contribution due to the

saddle points diverges. In this case, one can rely on the
cubic approximation. We can expand the phase around
the extremal point to third order, assuming two saddle
points are close to it. This yields

ϕ(z) ≈ ϕ(zc) + ϕ′(zc)(z − zc) +
ϕ′′′(zc)

3!
(z − zc)

3 , (16)

so that the integral (14) can be solved analytically. The
result reads

PA↔A′ = 4π2

∣∣∣∣( 2

ϕ′′′(zc)

) 1
3

sinχ0 ∆A′Ai(ζ)

∣∣∣∣2 (17)

where we defined ζ =
(
2/ϕ′′′(zc)

)1/3
ϕ′(zc) and intro-

duced the Airy function,

Ai(x) =
1

2π

∫
ei(xv+v3/3)dv. (18)

Alternatively, Ref. [33] also considered a so-called tran-
sitional Airy approximation. The latter is obtained by
evaluating the integral (14) using a uniform approxima-
tion and taking the coalescing limit. This approximation
gives a further correction with respect to a standard cu-
bic approximation (see [34–36]):

PA↔A′ =4π2
∣∣∣( 2

ϕ′′′(zc)

) 1
3

sinχ0 ∆A′

(
Ai(ζ) (19)

− i
( 2

ϕ′′′(zc)

) 1
3
( ϕ′′′′(zc)
6ϕ′′′(zc)

)
A′

i(ζ))

)∣∣∣2
In the following, we will scrutinize the validity of
these approximations by comparing them with our fully-
numerical results.

B. 3+1 decomposition of the field equations

Following Ref. [37], we will write the evolution equa-
tions performing a 3+1 decomposition. From the practi-
cal point of view, this consists in foliating the spacetime
using a set of spacelike hypersurfaces Σt, over which the
coordinate time assumes a constant value. Then the field
equations are projected onto the hypersurfaces and onto
the vector nµ orthogonal to them, and a set of evolu-
tion equations and constraints is obtained. In this con-
text, we will use Greek letters to refer to spacetime in-
dices, and Latin letters for the components of the ten-
sors on the 3-dimensional hypersurfaces. Furthermore,
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we will use the vector notation to identify 3-vectors:

V⃗ = (V 1, V 2, V 3). In our specific case, since we consider
a flat background, ds2 = ηαβdx

αdxβ , the normal vector

is given by nα = (1, 0, 0, 0) = (1, 0⃗); additionally, due to
our choice of the signature, the contravariant and covari-
ant components of a 3-vectors are the same, V i = Vi.
Let us start with some necessary definitions. Intro-

ducing the dual of the electromagnetic tensor F ∗αβ =
− 1

2ϵ
αβλσFλσ, we can define the electric and magnetic

field as [38]

Eα = −nβF
βα, Bα = −nβF

∗βα. (20)

Note that both Eα and Bα are on the 3-surface Σt, and

therefore we have Eα = (0, E⃗), B = (0, B⃗). With the
definitions (20), and introducing the Levi-Civita tensor
on the 3-surfaces (3)ϵαβσ = nλϵ

λαβσ, we can rewrite Fαβ

in terms of the electric and magnetic fields as

Fαβ = nαEβ − nβEα + (3)ϵαβσBσ. (21)

Then, we can decompose the 4-potential of the electro-
magnetic field as

Aα = φnα + aα, (22)

where φ = −nαA
α and aα = hα

βA
β are the scalar and

vector potentials, respectively, and hα
β is the operator

that performs the projection onto the spatial 3-surfaces.
An analogous decomposition can be obtained for the dark
electromagnetic field by performing the same steps.

To decompose the 4-velocity of the electrons in the
plasma, we introduce its projections Γ = −nαu

α, and
(3)uα = hα

βu
β . If we additionally define Uα in such a

way that (3)uα = ΓUα, we can arrive at

uα = Γ
(
nα + Uα

)
. (23)

Note that Uα = (0, U⃗) since it lies on the spatial 3-
surfaces.

Lastly, we need to define and decompose the electro-
magnetic 4-current. In general, it can be decomposed
as

Jα = −ρnα + (3)Jα, (24)

where ρ = nαJ
α is the charge density, and (3)Jα =

hα
βJ

β is the 3-current. In our specific case the current
is given by the plasma fluid, so that it receives contribu-
tions from electrons and ions, Jα = Jα

(ions) + Jα
(e). In this

work we will assume ions to be at rest, thanks to the fact
that their mass is considerably larger than the mass of
electrons. As a result, we can write Jα

(ions) = −ρ(ions)n
α,

where ρ(ions) is the charge density of ions. For electrons

instead we have Jα
(e) = −eneu

α = −eneΓ
(
nα + Uα

)
=

−enEL

(
nα + Uα

)
, where we defined nEL = neΓ. As a re-

sult we have that the charge density and current of the
plasma are respectively given by

ρ = ρ(ions) + enEL,
(3)Jα = −enELUα. (25)

With these definitions at hand we can write the system
of evolution equations and constraints. For simplicity, we
will perform this operation directly in the flat background
case, although the extension to a fixed curved spacetime
is straightforward.
To obtain the equations for the electromagnetic fields,

we follow the procedures described in Ref. [38]. By pro-
jecting Eq. (3) onto the normal vector nα, we obtain the
Gauss law,

∂iE
i = ρ, (26)

while projecting on the spatial 3-surface we obtain an

evolution equation for E⃗,

∂tE
i =

(
∂⃗ × B⃗

)i
+ (3)J i. (27)

The evolution equation for the 3-potential ai can be ob-
tained from the definition of the electric field in Eq. (20),
and it reads

∂tai = −Ei − ∂iφ, (28)

while the evolution equation for the scalar potential can
be derived from the gauge choice. Using the Lorenz gauge
we obtain

∂tφ = −∂ia
i. (29)

Finally, we should provide an explicit expression for the

magnetic field B⃗:

Bi =
(
∂⃗ × a⃗

)i
. (30)

Analogous operations can be performed starting from
Eq. (4), to obtain the evolution equations and constraints
for the dark photon field. From the practical point of
view it is sufficient to replace Jα → sinχ0 J

α + µ2A′α in
Eqs. (26)-(30) obtaining

∂iE
′i = sinχ0 ρ− µ2φ′, (31)

∂tE
′i =

(
∂⃗ × B⃗′)i + sinχ0

(3)J i + µ2a′i, (32)

∂ta
′
i = −E′

i − ∂iφ
′, (33)

∂tφ
′ = −∂ia

′i, (34)

B′i =
(
∂⃗ × a⃗′

)i
. (35)

However, unlike for the ordinary photon, here the Lorenz
condition ∇αA

′α is not a result of a gauge choice, but an
identity obtained by taking the 4-divergence of Eq. (4).
The procedures to obtain the evolution equations for

the plasma fluid are described in Appendix A of Ref. [37],
in which a similar model without the dark photon was
studied. However, given the structure of Eq. (5), we can
obtain the evolution equations from Ref. [37], simply per-
forming the substitutions

E⃗ → E⃗ + sinχ0 E⃗′, B⃗ → B⃗ + sinχ0 B⃗′. (36)
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The result is

∂tΓ = −U i∂iΓ +
e

me

(
Ei + sinχ0 E

′i)Ui, (37)

∂tU i = −U j∂jU i +
1

Γ

e

me

[
−U i

(
Ej + sinχ0 E

′j)Uj

+ Ei + sinχ0 E
′i +

(
U⃗ × B⃗

)i
+ sinχ0

(
U⃗ × B⃗′)i], (38)

∂tnEL = −U i∂inEL − nEL∂iU i. (39)

Finally, we have the constraint

Γ2(1− U iUi) = 1 , (40)

which comes from the normalization of the 4-velocity of
the fluid, uαu

α = −1.

C. Numerical evolution

We evolve E⃗, a⃗, φ using Eqs. (27), (28), (29) for the

ordinary photon, and E⃗′, a⃗′, φ′ using Eqs. (32), (33), (34)
for the dark photon. For the plasma instead we evolve Γ,

U⃗ and nEL using Eqs. (37), (38), (39), respectively. The

fields B⃗ and B⃗′ appearing in the equations are computed
using Eqs. (30) and (35), while their first derivatives are
computed directly as second derivatives of the vector po-

tentials a⃗ and a⃗′.
The above evolution and constraint equations are gen-

eral. For simplicity, in this work we consider systems
that are homogeneous along the xy plane, so that all
the fields depend only on the z coordinate and on time.
Such assumption is consistent with the scenarios we are
interested in studying, and allows us to perform the in-
tegration on a one-dimensional domain, which has the
benefit of substantially reducing the computational cost
compared to the full 3+1 case.

The numerical evolution is performed using the
method of lines; spatial derivatives are computed with
finite differences operators that satisfy the summation-
by-parts [39] property. This allows us not to impose
boundary conditions, as summation-by-parts operators
already compute the derivatives at the boundaries using
only points in the interior of the numerical grid, with-
out requiring the introduction of ghost zones. As for the
accuracy, we use operators that guarantee fourth-order
accuracy in the interior of the grid and second-order ac-
curacy at the boundaries. The coefficients we used can
be found in Appendix C of Ref. [40]. For time integration
we use the sixth-order accurate Runge-Kutta method, as
we observed that the fourth-order accurate version intro-
duces energy losses that are not negligible compared to
the ones induced by the conversion of dark photons to
photons.

We evaluate the convergence of the code by checking
the scaling with the resolution of the violation of the
constraints in Eqs. (26), (31) and (40). The results of

ωp,bkg

µ

ωp,max

ω < ωp,max

z1 z2

z

ωp,bkg

µ

ωp,max

ω > ωp,max

FIG. 1. Schematic representation of the process we simulate.
The blue-shaded area represents the plasma barrier, and the
horizontal black dashed line is the dark photon mass. The
resonant point is located where µ = ωp, and is represented by
a red cross. The dark photon and the photon wave packets
are indicated with black and gold wavy arrows, respectively.
In this work we consider a wave packet of the dark photon
scattering off a plasma barrier. When it reaches the resonant
point it undergoes the conversion process; the residual dark
photon continues to propagate through the barrier, while the
produced photon can be either reflected or transmitted de-
pending on whether its frequency is lower of greater than the
plasma frequency at the top of the barrier. These two cases
are depicted in the upper and lower panel, respectively.

the tests we performed of our code are discussed in Ap-
pendix A.

D. Initialization Procedure

The physical configuration we simulate is described by
a wave packet of the dark photon scattering off a bar-
rier of plasma. A schematic representation of the pro-
cess is depicted in Fig. 1, in which the blue-shaded area
represents the plasma barrier, the red cross is the reso-
nant point, where the plasma frequency is equal to the
dark photon mass, while the gold and black wavy arrows
represent the photon and the dark photon, respectively.
When the dark photon reaches the resonant point it un-
dergoes conversion; the photon produced can either be
reflected by the plasma barrier if its frequency is smaller
than the plasma frequency at the top of the barrier (up-
per panel), or transmitted through it in the opposite case
(lower panel); the component of the dark photon that has
not undergone conversion continues to propagate through
the barrier.

Our initial setup is similar to the one we considered in
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Ref. [37]. In particular, we use the same profile for the
plasma density, which is

n0 = nEL(z, t = 0) = nbkg + (nmax − nbkg)

×
[
σ(z;W1, z1) + σ(z;−W2, z2)− 1

]
,

(41)

where nbkg and nmax are the values of the plasma density
on the background and on top of the barrier, respectively.
The shape of the boundaries of the barrier is delineated
by the sigmoid function σ(z;W, z0) = (1+e−W (z−z0))−1,
with z1,2 determining their position, andW1,2 their steep-
ness. Assuming the plasma to be initially neutral, we
can then set the (constant) charge density of ions as
ρ(ions) = −en0. As for the initial 4-velocity of the fluid,

we set Γ(z, t = 0) = 1 and U⃗(z, t = 0) = 0⃗. The
plasma profile we use schematically corresponds to the
one shown in Fig. 1, where we decided to directly repre-
sent the plasma frequency ωp.
The dark photon field is initialized as a wave packet

with profile

E⃗′ = AE

cos[kz(z − z0)]
sin[kz(z − z0)]

0

 e−
(z−z0)2

2σ2 , (42)

B⃗′ = AE
kz
ω

− sin[kz(z − z0)]
cos[kz(z − z0)]

0

 e−
(z−z0)2

2σ2 , (43)

where kz =
√
ω2 − µ2. The electromagnetic field is in-

stead initialized setting E⃗ = B⃗ = 0. It is worth underly-
ing here that the initialization is performed in the mass
basis, and the initial configuration actually contains a
component of the ordinary photon with amplitude of or-
der AE sinχ0 . On the other hand, the profiles in Eq. (43)

coincide with the E⃗′ and B⃗′ components of the dark pho-
ton field of the original model (1).

Once the profiles for E⃗, B⃗, E⃗′, B⃗′ have been set, we
compute the potentials. Thanks to our assumed homo-
geneity on the xy plane, we can obtain the profile of a⃗ by
integrating Eq. (30) along the z axis. This results into

ax(z, t = 0) = ax(z = z+∞, t = 0) +

∫ z

z+∞

dz̃ By(z̃, t = 0),

ay(z, t = 0) = ay(z = z+∞, t = 0)−
∫ z

z+∞

dz̃ Bx(z̃, t = 0),

az(z, t = 0) = ay(z = z+∞, t = 0), (44)

where, z+∞ is the value of the z-coordinate on the right
boundary of the numerical grid, and ai(z = z+∞, t =
0) are integration constants that we set to zero. For φ
instead we take advantage of the residual gauge freedom
to impose 0 = ∂taz(z, t = 0) = −Ez(z, t = 0)−∂zφ(z, t =
0), which can be inverted to give

φ(z, t = 0) = φ(z = z+∞, t = 0)−
∫ z

z+∞

dz̃ Ez(z̃, t = 0).

(45)

Also in this case we set the integration constant φ(z =
z+∞, t = 0) to zero. The same formulas are used to ob-
tain the scalar and vector potentials for the dark photon

from the fields E⃗′ and B⃗′.
We compute the integrals numerically with the Simp-

son’s rule, which guarantees fourth-order accuracy. Since
this procedure makes use of 3 grid points on each inte-
gration step, it is necessary to provide a way to initialize
the computation that preserves the accuracy to fourth or-
der. To circumvent this problem, we decided to perform
a complete integration step over each grid step, by insert-
ing fictitious grid points in the middle of the grid steps,
and evaluating the integrands on them with the analytic
expressions that the fields are initialized to. Further-
more, we perform the integration from the right bound-
ary z+∞ to the left boundary z−∞, in order to reduce
the numerical error in the proximity of the plasma bar-

rier. Indeed, the profiles of the potentials a⃗′ and φ′ are
solely determined by the wave packet of the dark photon.
As a result numerical error will accumulate in the region
where the wave packet is situated, and will be larger af-
ter it than before it in the direction where the integration
proceeds. Our strategy allows therefore placing the re-
gion where numerical errors are larger on the left of the
wave packet, rather than on the right, where the plasma
barrier is situated and where the conversion takes place.

E. Choice of the grid parameters

Let us now briefly discuss the choice of the grid pa-
rameters. Given the different length scales that appear
in our setup, this choice is particularly delicate. Indeed,
the spatial grid step ∆z has to be small enough to re-
solve the smallest length scales over which the variation
of the fields occurs. In our setup, given that we perform
simulations in a regime in which the plasma is essentially
stationary, in order to set ∆z we only have to evaluate
the wave lengths of the photon and the dark photon.
We start our simulations with a wave packet of the

dark photon with given frequency ω. Its wavelength is

therefore given by λDP = 2π/kz = 2π/
√
ω2 − µ2. After

the conversion the outgoing photon will have frequency

ω, and wave length λP = 2π/
√

ω2 − ω2
p, where ωp is

the plasma frequency in the region where the photon is
situated. This means that the wave length of the photon
assumes its minimum value outside the barrier, where
ωp = ωp,bkg =

√
nbkge2/m, and λmin

P ≈ 2π/ω, as we
always set ω ≫ ωp,bkg. Furthermore, since we take µ >
ωp,bkg, we have λDP > λmin

P . As a result λmin
P is the

smallest physical length scale in the system. Given these
considerations, we typically set a grid step of the order
∆z ≲ λmin

P /40, in order to be sure to correctly resolve
the photon produced in the process we simulate.
As for the time step, we set ∆t = CFL × ∆z

vp
, where

CFL is the Courant–Friedrichs–Lewy factor, and vp =
ω/kz is the phase velocity of the dark photon. The value
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of the CFL factor that we use is 0.2, as from tests we
performed on our setups we observed that it does not
lead to numerical instabilities, while producing an energy
loss small enough for our purposes.

III. RESULTS

Before presenting our numerical results, it is worth
noting that we will report distances and times in inter-
national units for the sake of convenience, although the
numerical simulations are performed using natural units.
Given that the equations are already derived in Heavi-
side units with c = 1, this is simply achieved by setting
e =

√
4π/137, and me = 511 keV. In all simulations we

set the mixing angle to χ0 = 10−4 however, by perform-
ing a dedicated set of runs we have been able to check
that the probability correctly satisfies the scaling with
sin2 χ0, for sinχ0 ≪ 1.

A. Testing the LZ formula in its regime of validity

We start our analysis by performing a set of simula-
tions in which the wave packet of the dark photon un-
dergoes a single resonant conversion in the rising edge
of the plasma barrier. For this purpose, we set the
location of the left boundary of the plasma profile at
z1 = 0 km, while the right boundary was placed at
z2 = 105 km, far outside the numerical grid. The pa-
rameters W1,2 that appear in Eq. (41) were set to W1 =

W2 = 0.01 km−1, while the density parameters were set
to nbkg = 10−6 cm−3 and nmax = 250 cm−3, correspond-
ing to plasma frequencies ωp,bkg = 3.70 × 10−14 eV and
ωp,max = 5.86×10−10 eV. In order to have a reference for
a realistic physical environment, we have set the values
of the spatial grid and electron densities to be close to
their values within the ionosphere, as recently studied in
Ref. [11]. However, one can easily change these param-
eters to study different environments, such as the solar
corona [32] or neutron star magnetospheres [19].

The mass of the dark photon was set to µ = 10−10 eV,
and we varied the frequency of the initial wave packet
across the set, in order to consider different values for
the group velocity. In particular, ω ranges from 1.005×
10−10 eV to 3.2× 10−10 eV, resulting in group velocities
that range approximately from 0.1 to 0.95. Note that
we have ω < ωp,max across the whole set, so that the
photon produced after the conversion process can never
penetrate the plasma barrier. The values of the parame-
ter σ appearing in Eq.(43) ensure a good localization of
the wave packet in terms of the wave number. In other
words, we have 0.01 ≲ σk/kz ≲ 0.1, where σk = σ−1 is
the width in terms of kz. The initial localization of the
packet, z0, was chosen in such a way that its distance
from the base of the plasma barrier was larger than 5σ,
with a minimum of 500 km. The only exception is the
case with vg = 0.1, for which we set z0 to ensure a dis-

tance 4σ from the base of the barrier, in order to re-
duce the computational cost. The amplitude was set to
AE = meω/(1000e) to ensure the linear regime of inter-
action with plasma, i.e. the regime in which the nonlin-
ear terms in Eq. (38) are small, and the backreaction of
the electromagnetic field on plasma is negligible. Indeed,
nonlinear effects start becoming relevant when the am-
plitude of the electric field is Ecrit ≳ meω/e [41, 42]. In
our setup we set only the amplitude of the dark photon
wave packet, and the amplitude of the electric field pro-
duced after the conversion is related to it by the mixing
parameter sinχ0 ≈ 10−4. To be conservative and make
sure that the system is always sufficiently far from the
nonlinear regime, we decided to set AE to the critical
threshold for the electric field, divided by a factor 1000.

As for the numerical grid, the positions of the bound-
aries varied across the set, with larger numerical grids
used for the simulations with smaller group velocity of
the dark photon, due to the larger wave length and larger
width of the wave packet. In general, we placed the
boundaries in such a way that the conversion is completed
before eventual signals reflected from the boundaries
reach the resonant point. This results in having the left
boundary of the grid at −48000 km ≤ z−∞ ≤ −7450 km,
and the right boundary at 7150 km ≤ z+∞ ≤ 13000 km.
The grid step and time step have been chosen using the
criteria described in Sec. II E, while the total integra-
tion time was set in such a way that at the end of the
simulation the wave packet of the dark photon was ap-
proximately at z = −z0, i.e. at the same distance from
the barrier as in the initial configuration, but inside it.

Unfortunately, we experienced a crash of the simula-
tion with vg = 0.1 due to instability appearing at the
boundaries. By placing the z−∞ = −48000 km we have
been able to postpone the appearance of the instability
(and the crash of the simulation) after the conversion
process has completed. It is worth mentioning, how-
ever, that this simulation is the most demanding one
from the computational point of view. Indeed, a small
group velocity translates in a large wave length, which
requires a large width of the wave packet and the use
of a large numerical grid as a result. Additionally, since
vp = ω/kDP = 1/vg = 10, the time step ∆t has to be
small compared to the case of larger vg, in order to main-
tain the CFL factor to 0.2. Lastly, the final time of the
simulation has to be large, since the wave packet takes
longer to propagate. All these factors simultaneously
contribute in increasing the computational cost conspic-
uously.

Some snapshots of a typical simulation are shown in
Fig. 2a and Fig. 2b, in which we expressed the fields in
the mass and interaction basis, respectively. The former
is the eigenbasis in which the numerical integration is per-
formed, while the latter has been obtain by performing
the transformation according to the rule

Aα
(int) = Aα

(mass) + sinχ0 A
′
α
(mass)

+O
(
sin2 χ0

)
,
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A′
α
(int)

= A′
α
(mass) − sinχ0 Aα

(mass) +O
(
sin2 χ0

)
.

(46)

In both plots of Fig. 2, solid lines denote the profile of
Ex in the upper panel, and E′x in the lower panel. The
dotted line denotes the profile of the plasma density, and
the horizontal black dashed line indicates the value of
the dark photon mass. We can clearly see the conversion
happening at the resonant point, which is where the dot-
ted line intersects the horizontal dashed line. After the
conversion the dark photon continues to propagate in-
side the plasma, while the photon cannot penetrate the
barrier, having ω < ωp,max, hence it is reflected and prop-
agates toward the left. Interestingly in Fig. 2a, a small
wave packet of the photon appears to propagate inside
the barrier. This is due to the fact that in the mass eigen-
basis the electromagnetic field does not coincide with the
standard model photon, and contains a component of the
dark photon. The absence of photons after the resonant
point is instead visible in the interaction basis (Fig. 2b).
It is also worth noting that since in our initialization pro-
cedure, performed in the mass basis, we set a vanishing
profile of the electromagnetic field, our simulations actu-
ally start with a small but nonvanishing contribution of
the standard model photon, as it is visible from Fig. 2b.

To estimate the conversion probability we used the de-
crease in the energy of the dark photon across the reso-
nance. In particular, if we call Ei and Ef the energy of the
dark photon before and after the conversion, respectively,
the following relation holds:

Ef = (1− P)Ei, (47)

where P is the conversion probability. As a result we can
obtain P from our simulations as

P = −∆E
Ei

=
Ei − Ef

Ei
. (48)

In our 1+1 setup, we did not directly compute E , but
rather the energy per unit surface which, apart from mul-
tiplicative factors, can be written as

E =

∫ z+∞

z0

dz
(
|E⃗′|2 + |B⃗′|2

)
. (49)

Then, the conversion probability can be computed using
E in place of E , as both the surface term and the multi-
plicative factors that we dropped cancel out. The integral
was performed numerically with the Simpson’s rule, with
z0 and z+∞ being the initial position of the wave packet
and the right boundary of the numerical domain of in-
tegration, respectively. This choice is motivated by the
fact that the initial profile for the dark photon, Eq. (43)
is not a fully consistent wave packet solution propagat-
ing towards the right. As a result a tiny component of
the dark photon field propagates toward the left, and
does not undergo the conversion process. Using z0 as
left boundary of the domain of integration allows us to

exclude such component when evaluating the conversion
probability P.

A typical behavior of the energy of the dark photon
is shown in the top panel of Fig. 3, in which we con-
sidered a simulation with vg = 0.3. The computation is
performed both in the mass (blue curve) and interaction
(orange curve) bases and, in order to better visualize the
discrepancy, we plot the relative difference in the lower
panel. We can clearly see the decrease in energy happen-
ing when the wave packet of the dark photon crosses the
resonant point, undergoing the conversion process. In the
early stages of the simulation the energy increases due to
the fact that the dark photon wave packet is entering
in the interval over which the energy is computed. Fur-
thermore, well after the conversion process, the energy
displays a second small decrease in a step-like behavior
(inset of Fig. 3), which comes from the fact that a small
component of the dark photon is reflected by the plasma
barrier and eventually passes the position z0, exiting the
integration domain.

We produced similar plots for each simulation in the
set, and from them we extracted the energy of the dark
photon before and after the conversion process. We then
computed the probability P using Eq. (48) and we com-
pared the result against Eq. (15). We performed these
operations only in the interaction basis, as it is the one
in which the Landau-Zener formula holds. The results
are shown in Fig. 4, where we can clearly see an excellent
agreement of our numerical results with the estimates
from Eq. (15).

B. Breakdown of the LZ formula with multiple
level crossings

In the second set of simulations we studied the case in
which the resonance occurs in the vicinity of a local max-
imum of the plasma frequency, with the aim of checking,
with a time-domain analysis, the results recently found
in Ref. [33] using frequency-domain computations. To
reproduce a plasma profile with a local maximum, in-
stead of a plateau, we chose values of z1 and z2 close to
each other, and we decreased W1,2 to make the peak less
sharp. However, with small values of W1,2 the distance
between the position of the peak and the region where
the plasma density reaches its background value is con-
siderably large. Since we wish to place the initial wave
packet of the dark photon in this latter region, then the
dark photon would take a long time to reach the reso-
nant points, resulting in large computational costs. We
decided therefore to modify the plasma profile (41) by
shortening its tails outside the resonant points, in order
to be able to initialize the simulation with the dark pho-
ton located closer to the center of the barrier. The corre-
sponding plasma frequency profile is presented in Fig. 5
(gray dotted line in both panels). We achieved this by
multiplying the original barrier of height nmax − nbkg by
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(a) Mass basis
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(b) Interaction basis

FIG. 2. Snapshots of the evolution for the simulation of the single conversion from dark photon to photon, in the regime of
validity of the LZ formula, using both the mass basis (left) and the interaction basis (right). Here we show the case in which
vg = 0.7. In each of the two plots, solid lines denote the profile of Ex and E′x in the upper and lower panel, respectively, while
the dotted line indicates the profile of the plasma density. The horizontal black dashed line indicates the value of the dark
photon mass, µ = 10−10 eV, and the resonant point is located in its intersection with the dotted line. We can clearly observe
the conversion taking place at the resonance, with the outgoing dark photon propagating inside plasma, and the produced
photon being reflected towards the left, having a frequency smaller than ωp,max. We highlight that the reduction of the wave-
packet amplitude before the resonant point is due to the natural dispersion that any finite-width wave-packet undergoes as it
propagates.

an analogous barrier of height 1, resulting in:

n0 = nbkg + (nmax − nbkg)

×
[
σ(z;W1, z1) + σ(z;−W2, z2)− 1

]
×
[
σ(z;Ws, zc −∆zs) + σ(z;−Ws, zc +∆zs)− 1

]
,

(50)

where zc = (z1+z2)/2 is the center of both barriers, ∆zs
is the distance between the boundaries of the new barrier
and zc, and Ws controls their slope. In this way, if ∆zs
and Ws are sufficiently large, the new term will dampen
the original barrier profile for z ≲ zc −∆zs and z ≳ zc +
∆zs, while preserving its shape in the central region. As
for the numeric values of the parameters that we used, we
set nbkg = 10−6 cm−3 and nmax = 250 cm−3, resulting
in plasma frequencies ωp,bkg = 3.7045 × 10−14 eV and
ωp,max = 4.6681× 10−10 eV for the background and the
top of the barrier, respectively; we placed the boundaries
at z1 = 0 km and z2 = 300 km, so that zc = 150 km, and
we set their steepness parameters to W1,2 = 0.01 km−1;

lastly, we set ∆zs = 300 km, and Wa = 0.2 km−1.
In this set of simulations we varied the dark photon

mass µ in the range 0.76ωp,max ≤ µ ≤ 0.9999ωp,max,
affecting the position of the resonant points and pushing
them considerably close to the peak of the barrier. The
frequency ω appearing in Eq. (43) was set to ω = 1.5 ×

10−9 eV, that results in a group velocity vg = 0.95÷0.97,
depending on the value of µ. The width of the wave
packet was set to σ = 1 km, its initial position to z0 =
−300 km, and its amplitude to AE = meω/(1000e).

Lastly, our numerical grid extends in −1000 km ≤ z ≤
1100 km, and the grid step is ∆z = 108 eV−1 = 19.7 m,
consistently with the criterion indicated in Sec. II E.

In Fig. 5 we show some snapshots of the evolution in
the case µ = 0.85ωp,max, using the same conventions as
in Fig. 2 and expressing the fields in the mass eingenba-
sis. In the first stages of the simulations the wave packet
of the dark photon field travels towards the plasma bar-
rier, undergoing a dispersion process. When it crosses
the first resonant point, a photon is produced which, un-
like the case discussed in Sec. III A, is able to propagate
through the barrier. In this stage the photon has an ef-
fective mass ωp ≈ ωp,max, and undergoes a dispersion
phenomenon. When the dark photon crosses the second
resonance, another photon is produced in front of the first
one, due to the fact that ωp,max > µ, and inside the bar-
rier the group velocity of the dark photon is larger than
the group velocity of the ordinary photon. Finally, the
two photons propagate undergoing a negligible dispersion
since their effective mass is ωp,bkg.

As a first step towards the computation of the conver-
sion probability, we computed the energy per unit sur-
face of the dark photon in the interaction basis using
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FIG. 3. Upper panel: behavior of the energy per unit sur-
face of the dark photon for the simulations with vg = 0.3.
We rescaled E by subtracting its value after the conversion.
At early times the wave packet gradually enters in the inte-
gration domain, causing an increase in energy. At the time of
the conversion E decreases in a clear step-like behavior, and it
finally undergoes a small additional decrease due to fact that
the component of the dark photon that is reflected by the
barrier leaves the domain over which the energy is computed.
This latter stage is shown in more detail in the inset. Lower
panel: relative discrepancy between the energy per unit sur-
face computed in the mass basis and the interaction basis.
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FIG. 5. Snapshots of a typical simulation in the set for testing
the breakdown of LZ in the presence of multiple level cross-
ings. Specifically, this figure shows the case µ = 0.85ωp,max

using the same conventions as in Fig. 2. The fields are rep-
resented in the mass eingenbasis, which is the one used in
the numerical integration. As we can see two wavepackets of
ordinary electromagnetic fields are produced when the dark
photon crosses the resonant points. Here, since the frequency
of the photon is larger than ωp,max, the photon is able to prop-
agate through plasma, but undergoing dispersion and travel-
ling at a smaller group velocity than the dark photon. This
results in the second photon being produced in front of the
first one, and being more localized in space compared to the
first one.

Eq. (49). Interestingly, when µ is sufficiently small the
resonant points are distant enough that it is possible to
identify the two transitions separately. On the contrary,
when the resonant points are close, only a single energy
loss step appears. This is visible in Fig. 6, where we show
the behavior of the energy per unit surface, E , in the two
cases discussed.
As in the previous set of simulations, the conversion

probability can be extracted from the value of E before
and after the interaction with the plasma barrier. How-
ever, since here there are two resonant points, we must
generalize Eq. (47), which only accounts for a single con-
version. In this case the expression of Ef takes contribu-
tions from two different processes. In the first the compo-
nent of the dark photon emerging from the first resonant
point undergoes a further energy loss due to the second
conversion, yielding

E(1)
f = (1− P1)(1− P2)Ei = Ei − (P1 + P2)Ei +O

(
P2
)
,

(51)
where P1,2 are the transition probabilities at the two res-
onant points. In the second process, instead, the ordinary
photon produced from the first resonant point, converts
part of its energy to the dark photon field when crossing
the second resonant point, and contributes with a term
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the set of simulations aimed at testing the violation of the
LZ law in presence of multiple level crossings. The upper
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can clearly recognize both the conversions, while in the latter
case they visually appear as a single-step loss in energy.

E(2)
f = O

(
P2
)
. Neglecting terms of order P2 we can then

write

Ptot = P1 + P2 =
Ei − Ef

Ei
. (52)

In Fig. 7 we compare the conversion probabilities ob-
tained from our simulations (in red) with the predictions
obtained using the LZ formula (green), the cubic ap-
proximation (blue) and the transitional approximation
(orange). We can immediately see that when µ is close
to ωp,max, and the two resonant points are close to each
other, the LZ formula tends to overestimate the conver-
sion probability by more than a order of magnitude. Our
result show instead a remarkable agreement with analy-
sis performed in [33]. The cubic and transitional approx-
imations, which should not break down near coalescing
saddle points, are in excellent agreement with the re-
sults of our simulations, and correctly estimate the prob-
ability in the coalescing limit. As δm increases, phase
effects between the two resonant points cause oscilla-
tions to appear. This behavior is captured by our sim-
ulations, and when the separation between the resonant
points becomes large enough, the conversion probability
approaches the estimate obtained with the LZ formula.
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FIG. 7. Conversion probability for the set of simulations in
which the dark photon crosses two resonant points. Green,
blue and orange lines denote the conversion probability esti-
mated with the LZ formula (15), cubic approximation (17),
and transitional Airy approximation (19), respectively. Red
points instead denote the probabilities extracted from our
simulations. As we can see our results are in excellent agree-
ment with those obtained in Ref. [33], and in the case in which
the dark photon mass is close to the plasma density at the
peak, the conversion probability is more than an order of mag-
nitude smaller than the prediction by the LZ formula. On the
contrary, for large values of δm the probability approaches the
LZ estimate.

C. Estimate of the conversion probability beyond
the WKB approximation

Finally, we performed a set of simulations in which we
varied the slope of the plasma frequency at the resonant
point, with the aim to test the validity of the LZ for-
mula as the slowly-varying background plasma approx-
imation ceases to be valid. We considered the plasma
profile as in the set discussed in Sec. III A, with the
difference that here we varied the parameter W in the
range 0.01 km−1 ≤ W ≤ 3 km−1. We considered a
dark photon with mass µ = 10−10 eV, and we set the
parameter ω in Eq. (43) to ω = 1.4 × 10−10 eV, so
that the group velocity is vg = 0.7. We set the width
of the wave packet to σ = 30 km, and its position to
z0 = −3500 km. The numerical grid extended from
z−∞ = −10000 km to z+∞ = 4000 km, with a grid step
∆z = 1.12 × 109 eV−1 ≈ 221 m. While this is in agree-
ment with the criterion introduced in Sec. II E, for the
two simulations in which the plasma barrier is steeper,
i.e. the ones with W = 2.3 km−1 and W = 3 km−1, we
halved the spatial step in order to resolve properly the
boundary of the barrier. Given the similarity of the setup
with the one described in Sec. III A, we did not repeat the
simulation withW = 0.01 km but we used the simulation
with vg = 0.7 we performed as part of that set.
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FIG. 8. Conversion probability for the setup described in
Sec. III C, as a function of the ratio between the dark pho-
ton wavelength, λDP, and the scale over which the plasma
frequency varies, 1/W . The red curve represents the predic-
tion by the LZ formula (15), and the blue points represent
the probability extracted from the numerical simulations. As
we can see, when the steepness of the barrier increases, the
LZ formula starts overestimating the conversion probability,
due to the fact that the approximation of a slowly-varying
plasma gradually loses validity. The reduction we find here
seems in agreement with Ref. [11], where the authors studied
in the frequency domain the resonant conversion process in
the Earth ionosphere, where the plasma is not slowly-varying
and LZ was shown to fail.

Since here the dark photon undergoes a single con-
version process, we extracted the probability P using
Eq. (48). The results are shown in Fig. 8, together with
the estimate obtained from the LZ formula. As we can see
when W assumes large values, and the length scale over
which the plasma density varies becomes comparable to
the dark photon wavelength, the LZ prediction tends to
overestimate the conversion probability. This seems to
confirm the recent results presented in Ref. [11], where
the authors studied (in the frequency domain) the reso-
nant conversion process in the Earth ionosphere, a pro-
totypical case where the slowly-varying plasma density
approximation is not a good one, and LZ fails.

IV. CONCLUSION AND OUTLOOK

In this work, we developed a versatile 1+1 code, de-
signed to perform non-linear simulations of systems in-
volving photons coupled to ultralight bosons in the pres-
ence of plasma. This framework provides a powerful
tool for exploring resonance conversions, particularly in
cases where the LZ approximation is known to break
down, such as in scenarios with multiple level crossings
or where the de Broglie wavelength of the new boson

is comparable to the spatial variations in the plasma.
As a first application of this code, we have studied the
resonance conversion in non-turbulent plasma in 1+1 di-
mensions, providing a crucial step forward in simulating
these processes in realistic astrophysical and cosmologi-
cal contexts. Our simulations highlight the limitations of
the original LZ approximation while showing a remark-
able agreement with the extensions recently computed
in Ref. [33] in the frequency domain. Furthermore, our
results do not rely on the WKB approximation, so are
valid for any frequency and any plasma profile.
This initial study lays the groundwork for more com-

plex investigations into resonance conversion phenomena
in a wide range of environments. Future work will extend
the code’s applicability to 3+1 scenarios, possibly involv-
ing both turbulent and anisotropic plasmas. In the for-
mer case, small-scale fluctuations play a significant role
and can further impact the conversion processes, while
in the latter photons and light bosons move along differ-
ent worldlines, rendering standard analytical approaches
challenging [21, 24]. Our framework can thus be adapted
to explore a variety of astrophysical and cosmological
scenarios, where light bosons interact with photons in
plasma-rich environments. Although we have focused on
dark photons in this study, the extension to axions is
straightforward. In this context, future directions include
exploring dark photon and axion dark matter conversion
in the Earth’s ionosphere [11], the solar corona [8, 32],
and neutron star magnetospheres [19].
The flexible nature of our code also allows for applica-

tions in completely different setups where real-time com-
putations are crucial, such as in direct detection exper-
iments for light bosons. In such cases, particular atten-
tion must be paid to boundary conditions and symme-
tries [43].
Our ultimate goal is to make the code public and user-

friendly after completing additional studies to validate
its broader applicability.
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Appendix A: Convergence of the code

To monitor the convergence of our code we studied the
scaling with resolution of the violation of Eqs. (26), (31),
and (40), which read

CVphoton = ∂iE
i − enEL − ρ(ions), (A1)

CVdark photon = ∂iE
′i − sinχ0 (enEL + ρ(ions)) + µ2φ′,

(A2)

CVplasma =
√
Γ2(1− UiU i)− 1. (A3)

We ran a first convergence test on the simulation with
initial group velocity of the dark photon wave packet
vg = 0.7, from the set discussed in Sec. IIIA. In par-
ticular we repeated such simulation halving the grid step
∆z, together with the time step ∆t in order to keep the
CFL factor constant. We show in Fig. 9 the constraint
violations at time t = 35.6 ms, close to the end of the
simulation. As we can see the constraint violation is ex-
tremely small, but it does not scale with resolution.

To better investigate the motivations behind this be-
havior, let us consider the violation of the Gauss law for
the photon, Eq. (A1), which is composed by two terms
that are subtracted: ∂zE

z and ρ = enEL + ρ(ions) =
e(nEL − n0). As we can see from Fig. 10, in which we
plotted them separately, the charge density is non-zero
only in delimited regions, outside which nEL still assume
its initial value, nEL = n0, and has likely not evolved.

In our integration algorithm time evolution is per-
formed with the Runge-Kutta method. At each integra-
tion step the profile of nEL is updated by adding a term
which, for our purposes here, we can roughly estimate as
RHS∆t, where ∆t is the time step, and RHS is the right
hand side of Eq. (39), i.e.

RHS = −U i∂inEL − nEL∂iU i. (A4)

In Fig. 11 we show the profile of the relative increment
of nEL at t = 26.8 ms, earlier than the time at which the
profiles in Fig. 9 are extracted. The horizontal dashed
line marks the order of magnitude of machine precision,
which is smaller than RHS∆t / nEL only in intervals that
roughly corresponds to two where ρ ̸= 0 at t = 35.6 ms.
By performing a similar plot at t = 15.7 ms we obtained
RHS∆t / nEL > 10−16 for −370 km ≲ z ≲ −290 km.
This scenario seems to suggest that the evolution of nEL

FIG. 9. Constraint violations for the simulation with initial
group velocity of the wave packet of the dark photon vg = 0.7,
at time t = 35.6 ms using two different resolutions. As we
can see in this regime the constraint violations do not satisfy
the scaling behavior expected from the characteristics of the
evolution code.

mostly falls below machine precision, and cannot be re-
solved by the code, leading to the scaling behavior ob-
served in the top panel of Fig. 9.

To assess the reliability of our code we therefore de-
cided to simulate a scenario in which the backreaction ef-
fects on plasma are larger. We considered the same setup,
but starting with a wave packet of the ordinary photon,
for which the mass appearing in Eq. (43) is given by the
plasma frequency of the background. We set the initial
amplitude to AE = meω/(10e), so that we are closer to
the nonlinear regime of interaction between the electro-
magnetic field and plasma. These simulations crashed at
t ≈ 26 ms with the plasma density being subject to high
frequency noise at the base of the barrier. Since here we
are only interested in evaluating the convergence of our
integration algorithm, and the nonlinear regime of inter-
action is outside the scope of this paper, presenting its
own difficulties in the application of the fluid approxima-
tion (cf. Ref. [37]), we did not investigate this problem
further.

In Fig. 12 we show the scaling behavior of the con-
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FIG. 11. Relative increment of nEL for the simulation with
vg = 0.7, at t = 26.8 ms. The horizontal dashed line marks
the value 10−16, which is the order of magnitude of machine
precision error. This plot shows that the evolution of nEL

mostly falls below machine precision, and can be resolved by
our code only in limited intervals.

straint violations at t = 15.5 ms, sufficiently earlier than
the crash. In blue and green we denote the constraint
violations for the simulation with higher and lower res-
olution, respectively, whereas in red we show the con-
straint violations in the simulation with higher resolution

rescaled by a factor
(
∆zcoarse/∆zfine

)4
, corresponding to

a convergence of order 4. This is the scaling behavior
that we expected, since in our numerical setup we com-

FIG. 12. Scaling of the constraint violations in a simulation
of the scattering of a wave packet of the photon on a barrier
of plasma, in a regime where nonlinearities are relevant. The
constraint violations for the simulations with higher and lower
resolution are shown in blue and green, respectively, while the
red dots represent the constraint violations for the simulation
with higher resolution rescaled by a factor corresponding to
fourth-order convergence. The data are extracted at time
t = 15.5 ms. The constraint violations possess two peaks
where the expected scaling behavior is found, while in the rest
of the domain convergence is lost, and in some regions it is
dominated by noise. However, in such regions the constraint
violations is smaller than on the peaks by 1 ÷ 4 orders of
magnitude.

pute spatial derivatives at fourth order of accuracy and
we perform time integration with a sixth order accurate
algorithm. As we can see all the constraint violations
have two peaks where they satisfy the expected scaling
behavior considerably well. Outside these two peaks the
convergence is lost, and in some regions it is dominated
by noise, but it generally assumes values that are 1 ÷ 4
orders of magnitude smaller than on the peaks.

To study the global convergence we computed the
volume-averaged L2 norm of the constraints as

∥CV∆z∥2 =

√
1

z+∞ − z−∞

∫ z+∞

z−∞

dz CV 2
∆z, (A5)
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where CV∆z denotes a constraint violation among one of
Eqs. (A1)-(A3), extracted from a simulation with grid
step ∆z. By computing this norm on both the simula-
tions we could then obtain the convergence order N as

N = log(∆zcoarse/∆zfine)

∥CV∆zcoarse∥2
∥CV∆zfine

∥2
(A6)

We evaluated this quantity on each of the constraints,
estimating the integral in Eq. (A5) with the trapezoidal
rule, and we plotted the results in the upper panel of
Fig. 13. At t = 0 ms all the constraint violations are iden-
tically zero, and in the initial stages they start to grow.
While CVPlasma immediately shows convergence, the
other two constraints are initially dominated by round-off
errors and numerical noise, and reach N = 4 more slowly.
Approximately when the wave packet reaches the plasma
barrier, the convergence order computed from CVphoton

and CVdark photon drops, but then reaches the expected
value again. After that it decreases mildly, and in the
final stages before the simulation crashes convergence is

lost again. By checking the behavior of the constraint
violations at t ∼ 1 ms and t ∼ 10 ms we observed that
there are regions in which CVphoton and CVdark photon

are more affected by numerical noise in the simulation
with higher resolution than in the lower resolution one.
We therefore decided to perform an additional simula-
tion with even lower resolution, ∆z = 0.44128 km, and
we recomputed the convergence order N. The results are
displayed in the lower panel of Fig. 13. Here we can see
that in the early stages the convergence order is consider-
ably closer to the expected value, while in the last stages
the decrease in N is more pronounced.
In conclusion, the test simulations in which there is

a sufficient backreaction on plasma show that the im-
plementation of the numerical evolution is correct, dis-
playing good convergence properties. In the regime of
interaction considered in this paper the expected scaling
of the constraint violations with resolution is not satis-
fied. This is due to fact that the plasma density evolves
on scales that mostly fall below machine precision and
cannot be resolved by our code.

[1] L. D. Landau, A theory of energy transfer. 2., Phys. Z.
Sowjetunion 2 (1932) .

[2] C. Zener, Nonadiabatic crossing of energy levels, Proc.
Roy. Soc. Lond. A 137 (1932) 696.

[3] S. J. Parke, Nonadiabatic Level Crossing in Resonant
Neutrino Oscillations, Phys. Rev. Lett. 57 (1986) 1275
[2212.06978].

[4] A. Caputo, H. Liu, S. Mishra-Sharma and J. T.
Ruderman, Dark Photon Oscillations in Our
Inhomogeneous Universe, Phys. Rev. Lett. 125 (2020)
221303 [2002.05165].

[5] A. Caputo, H. Liu, S. Mishra-Sharma and J. T.
Ruderman, Modeling Dark Photon Oscillations in Our
Inhomogeneous Universe, Phys. Rev. D 102 (2020)
103533 [2004.06733].

[6] H. An, F. P. Huang, J. Liu and W. Xue,
Radio-frequency Dark Photon Dark Matter across the
Sun, Phys. Rev. Lett. 126 (2021) 181102 [2010.15836].

[7] H. An, S. Ge, W.-Q. Guo, X. Huang, J. Liu and Z. Lu,
Direct detection of dark photon dark matter using radio
telescopes, 2207.05767.

[8] H. An, X. Chen, S. Ge, J. Liu and Y. Luo, Searching for
Ultralight Dark Matter Conversion in Solar Corona
using LOFAR Data, 2301.03622.

[9] S. D. McDermott and S. J. Witte, Cosmological
evolution of light dark photon dark matter, Phys. Rev. D
101 (2020) 063030 [1911.05086].

[10] A. Mirizzi, J. Redondo and G. Sigl, Microwave
Background Constraints on Mixing of Photons with
Hidden Photons, JCAP 03 (2009) 026 [0901.0014].

[11] C. Beadle, A. Caputo and S. A. R. Ellis, Resonant
Conversion of Wave Dark Matter in the Ionosphere,
2405.13882.

[12] J. S. Bolton, A. Caputo, H. Liu and M. Viel,
Comparison of Low-Redshift Lyman-α Forest
Observations to Hydrodynamical Simulations with Dark
Photon Dark Matter, Phys. Rev. Lett. 129 (2022)

211102 [2206.13520].
[13] M. S. Pshirkov and S. B. Popov, Conversion of Dark

matter axions to photons in magnetospheres of neutron
stars, J. Exp. Theor. Phys. 108 (2009) 384 [0711.1264].

[14] R. A. Battye, B. Garbrecht, J. I. McDonald, F. Pace
and S. Srinivasan, Dark matter axion detection in the
radio/mm-waveband, Phys. Rev. D 102 (2020) 023504
[1910.11907].

[15] R. A. Battye, J. Darling, J. McDonald and
S. Srinivasan, Towards robust constraints on axion dark
matter using psr j1745-2900, 2021.

[16] A. J. Millar, S. Baum, M. Lawson and M. C. D. Marsh,
Axion-photon conversion in strongly magnetised
plasmas, JCAP 2021 (2021) 013 [2107.07399].

[17] A. Hook, Y. Kahn, B. R. Safdi and Z. Sun, Radio
Signals from Axion Dark Matter Conversion in Neutron
Star Magnetospheres, Phys. Rev. Lett. 121 (2018)
241102 [1804.03145].

[18] J. W. Foster et al., Green Bank and Effelsberg Radio
Telescope Searches for Axion Dark Matter Conversion
in Neutron Star Magnetospheres, Phys. Rev. Lett. 125
(2020) 171301 [2004.00011].

[19] E. U. Ginés, D. Noordhuis, C. Weniger and S. J. Witte,
Numerical Analysis of Resonant Axion-Photon Mixing:
Part I, 2405.08865.

[20] J. Tjemsland, J. McDonald and S. J. Witte, Adiabatic
axion-photon mixing near neutron stars, Phys. Rev. D
109 (2024) 023015 [2310.18403].

[21] S. J. Witte, D. Noordhuis, T. D. P. Edwards and
C. Weniger, Axion-photon conversion in neutron star
magnetospheres: The role of the plasma in the
Goldreich-Julian model, Phys. Rev. D 104 (2021)
103030 [2104.07670].

[22] J. I. McDonald and S. J. Witte, Generalized ray tracing
for axions in astrophysical plasmas, Phys. Rev. D 108
(2023) 103021 [2309.08655].

[23] A. Mirizzi, J. Redondo and G. Sigl, Constraining

https://doi.org/10.1016/B978-0-08-010586-4.50014-6
https://doi.org/10.1016/B978-0-08-010586-4.50014-6
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1103/PhysRevLett.57.1275
https://arxiv.org/abs/2212.06978
https://doi.org/10.1103/PhysRevLett.125.221303
https://doi.org/10.1103/PhysRevLett.125.221303
https://arxiv.org/abs/2002.05165
https://doi.org/10.1103/PhysRevD.102.103533
https://doi.org/10.1103/PhysRevD.102.103533
https://arxiv.org/abs/2004.06733
https://doi.org/10.1103/PhysRevLett.126.181102
https://arxiv.org/abs/2010.15836
https://arxiv.org/abs/2207.05767
https://arxiv.org/abs/2301.03622
https://doi.org/10.1103/PhysRevD.101.063030
https://doi.org/10.1103/PhysRevD.101.063030
https://arxiv.org/abs/1911.05086
https://doi.org/10.1088/1475-7516/2009/03/026
https://arxiv.org/abs/0901.0014
https://arxiv.org/abs/2405.13882
https://doi.org/10.1103/PhysRevLett.129.211102
https://doi.org/10.1103/PhysRevLett.129.211102
https://arxiv.org/abs/2206.13520
https://doi.org/10.1134/S1063776109030030
https://arxiv.org/abs/0711.1264
https://doi.org/10.1103/PhysRevD.102.023504
https://arxiv.org/abs/1910.11907
https://doi.org/10.1088/1475-7516/2021/11/013
https://arxiv.org/abs/2107.07399
https://doi.org/10.1103/PhysRevLett.121.241102
https://doi.org/10.1103/PhysRevLett.121.241102
https://arxiv.org/abs/1804.03145
https://doi.org/10.1103/PhysRevLett.125.171301
https://doi.org/10.1103/PhysRevLett.125.171301
https://arxiv.org/abs/2004.00011
https://arxiv.org/abs/2405.08865
https://doi.org/10.1103/PhysRevD.109.023015
https://doi.org/10.1103/PhysRevD.109.023015
https://arxiv.org/abs/2310.18403
https://doi.org/10.1103/PhysRevD.104.103030
https://doi.org/10.1103/PhysRevD.104.103030
https://arxiv.org/abs/2104.07670
https://doi.org/10.1103/PhysRevD.108.103021
https://doi.org/10.1103/PhysRevD.108.103021
https://arxiv.org/abs/2309.08655


16

t [ms]

0

1

2

3

4

N
CVphoton CVdark photon CVplasma

0 5 10 15 20 25

t [ms]

3.4

3.6

3.8

4.0

N

∆zcoarse =0.22064 km ∆zfine =0.11032 km

∆zcoarse =0.44128 km ∆zfine =0.22064 km

FIG. 13. Convergence order for the simulations of the inter-
action of a wave packet of the electromagnetic field with a
plasma barrier, in the regime where nonlinear effects appear.
The computation is repeated for each constraint, and the re-
sults are shown with different colors. The upper and lower
panels show the behavior of N extracted from two pairs of
simulations with higher and lower resolution, respectively. At
t ∼ 1 ms and t ∼ 10 ms there are regions in which CVphoton

and CVdark photon are more affected by numerical noise in the
simulation with ∆z = 0.11032 km than in the other cases,
and N is closer to 4 when computed from the simulations
with lower resolution. For t ≳ 10 ms N decreases slowly at
first, and then convergence is completely lost before the crash
of the simulations.

resonant photon-axion conversions in the Early
Universe, JCAP 08 (2009) 001 [0905.4865].

[24] J. I. McDonald, B. Garbrecht and P. Millington,
Axion-photon conversion in 3D media and astrophysical
plasmas, JCAP 12 (2023) 031 [2307.11812].

[25] R. A. Battye, M. J. Keith, J. I. McDonald,
S. Srinivasan, B. W. Stappers and P. Weltevrede,
Searching for time-dependent axion dark matter signals
in pulsars, Phys. Rev. D 108 (2023) 063001
[2303.11792].

[26] R. A. Battye, B. Garbrecht, J. I. McDonald and
S. Srinivasan, Radio line properties of axion dark matter
conversion in neutron stars, JHEP 09 (2021) 105
[2104.08290].

[27] J. I. McDonald and P. Millington, Axion-photon mixing
in 3D: classical equations and geometric optics, JCAP

09 (2024) 072 [2407.11192].
[28] B. Holdom, Two U(1)’s and Epsilon Charge Shifts,

Phys. Lett. B 166 (1986) 196.
[29] P. Fayet, Extra U(1)’s and New Forces, Nucl. Phys. B

347 (1990) 743.
[30] M. A. Fedderke, P. W. Graham, D. F. J. Kimball and

S. Kalia, Earth as a transducer for dark-photon
dark-matter detection, Phys. Rev. D 104 (2021) 075023
[2106.00022].

[31] G. Raffelt and L. Stodolsky, Mixing of the photon with
low-mass particles, Phys. Rev. D 37 (1988) 1237.

[32] H. An, S. Ge and J. Liu, Solar Radio Emissions and
Ultralight Dark Matter, Universe 9 (2023) 142
[2304.01056].

[33] N. Brahma, A. Berlin and K. Schutz, Photon-dark
photon conversion with multiple level crossings, Phys.
Rev. D 108 (2023) 095045 [2308.08586].

[34] J. Connor and R.A.Marcus, Theory of semiclassical
transition probabilities for inelastic and reactive
collisions. ii asymptotic evaluation of the s matrix, The
Journal of Chemical Physics 55 (1971) .

[35] R. Beuc, M. Movre and B. Horvatic, On the
approximate evaluation of some oscillatory integrals,
Atoms 7 (2019) 47.

[36] R. Beuc, B. Horvatic and M. Movre, Semiclassical
description of collisionally induced rainbow satellites: A
model study, Journal of Physics B Atomic Molecular
and Optical Physics 43 (2010) .

[37] E. Cannizzaro, F. Corelli and P. Pani, Nonlinear
photon-plasma interaction and the black hole
superradiant instability, Phys. Rev. D 109 (2024)
023007 [2306.12490].

[38] M. Alcubierre, J. C. Degollado and M. Salgado, The
Einstein-Maxwell system in 3+1 form and initial data
for multiple charged black holes, Phys. Rev. D 80 (2009)
104022 [0907.1151].

[39] D. C. Del Rey Fernández, J. E. Hicken and D. W.
Zingg, Review of summation-by-parts operators with
simultaneous approximation terms for the numerical
solution of partial differential equations, Computers &
Fluids 95 (2014) 171.

[40] K. Mattsson and J. Nordström, Summation by parts
operators for finite difference approximations of second
derivatives, Journal of Computational Physics 199
(2004) 503.

[41] P. Kaw and J. Dawson, Relativistic Nonlinear
Propagation of Laser Beams in Cold Overdense
Plasmas, Physics of Fluids 13 (1970) 472.

[42] P. Sprangle, E. Esarey and A. Ting, Nonlinear theory of
intense laser-plasma interactions, Phys. Rev. Lett. 64
(1990) 2011.

[43] J. Jeong, Y. Kim, S. Bae and S. Youn, Simulation of
classical axion electrodynamics using COMSOL
multiphysics, J. Korean Phys. Soc. 83 (2023) 161
[2303.09748].

https://doi.org/10.1088/1475-7516/2009/08/001
https://arxiv.org/abs/0905.4865
https://doi.org/10.1088/1475-7516/2023/12/031
https://arxiv.org/abs/2307.11812
https://doi.org/10.1103/PhysRevD.108.063001
https://arxiv.org/abs/2303.11792
https://doi.org/10.1007/JHEP09(2021)105
https://arxiv.org/abs/2104.08290
https://doi.org/10.1088/1475-7516/2024/09/072
https://doi.org/10.1088/1475-7516/2024/09/072
https://arxiv.org/abs/2407.11192
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1016/0550-3213(90)90381-M
https://doi.org/10.1016/0550-3213(90)90381-M
https://doi.org/10.1103/PhysRevD.104.075023
https://arxiv.org/abs/2106.00022
https://doi.org/10.1103/PhysRevD.37.1237
https://doi.org/10.3390/universe9030142
https://arxiv.org/abs/2304.01056
https://doi.org/10.1103/PhysRevD.108.095045
https://doi.org/10.1103/PhysRevD.108.095045
https://arxiv.org/abs/2308.08586
https://doi.org/10.3390/atoms7020047
https://doi.org/10.1088/0953-4075/43/21/215210
https://doi.org/10.1088/0953-4075/43/21/215210
https://doi.org/10.1103/PhysRevD.109.023007
https://doi.org/10.1103/PhysRevD.109.023007
https://arxiv.org/abs/2306.12490
https://doi.org/10.1103/PhysRevD.80.104022
https://doi.org/10.1103/PhysRevD.80.104022
https://arxiv.org/abs/0907.1151
https://doi.org/https://doi.org/10.1016/j.compfluid.2014.02.016
https://doi.org/https://doi.org/10.1016/j.compfluid.2014.02.016
https://doi.org/10.1016/j.jcp.2004.03.001
https://doi.org/10.1016/j.jcp.2004.03.001
https://doi.org/10.1063/1.1692942
https://doi.org/10.1103/PhysRevLett.64.2011
https://doi.org/10.1103/PhysRevLett.64.2011
https://doi.org/10.1007/s40042-023-00808-8
https://arxiv.org/abs/2303.09748

	Beyond The Standard Model electrodynamics in the time domain
	Abstract
	Introduction
	Setup
	Analytical derivation of the conversion probability
	Framework
	Stationary phase approximation
	The case of coalescing saddle points

	3+1 decomposition of the field equations
	Numerical evolution
	Initialization Procedure
	Choice of the grid parameters

	Results
	Testing the LZ formula in its regime of validity
	Breakdown of the LZ formula with multiple level crossings
	Estimate of the conversion probability beyond the WKB approximation

	Conclusion and outlook
	Acknowledgments
	Convergence of the code
	References


