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We determine the nucleon axial, scalar and tensor charges and the nucleon σ-terms using twisted
mass fermions. We employ three ensembles with approximately equal physical volume of about
5.5 fm, three values of the lattice spacing, approximately 0.06 fm, 0.07 fm and 0.08 fm, and with the
mass of the degenerate up and down, strange and charm quarks tuned to approximately their physical
values. We compute both isovector and isoscalar charges and σ-terms and their flavor decomposition
including the disconnected contributions. We use the Akaike Information Criterion to evaluate
systematic errors due to excited states and the continuum extrapolation. For the nucleon isovector
axial charge we find gu−d

A = 1.250(24), in agreement with the experimental value. Moreover, we
extract the nucleon σ-terms and find for the light quark content σπN = 41.9(8.1) MeV and for the
strange σs = 30(17) MeV.
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I. INTRODUCTION

The nucleon axial, tensor and scalar charges, along
with the σ-terms, are fundamental quantities within the
Standard Model and provide insights into nucleon struc-
ture. The axial charge, gu−d

A , determines the rate of neu-
tron beta decay, providing a direct probe of chiral sym-
metry breaking in hadron physics. It also enters analy-
ses of neutrinoless double-beta decay and plays a central
role in tests of the unitarity of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. Flavor-diagonal axial charges,

gfA, describe the intrinsic spin, 1
2∆Σq, carried by quarks

in the nucleon and are measured in deep inelastic scat-
tering (DIS) experiments at facilities such as Jefferson
Lab and CERN, with future plans at the Electron-Ion
Collider (EIC).

The isovector tensor and scalar charges, gu−d
T and

gu−d
S , are less well known but are crucial in constraining
beyond Standard Model (BSM) interactions [1]. These
charges provide essential theoretical input for interpret-
ing results from ongoing neutrino scattering experiments,
such as DUNE [2], COHERENT [3], and GEMMA [4],
as well as from direct dark matter detection searches [5–
7]. Providing an accurate determination of the tensor
charge is important for phenomenological analyses of the
transvesity parton distribution function [8]. The nu-
cleon σ-terms measure the contribution of quark masses
to the nucleon mass, and enter in the determination of
the elastic scattering cross section between dark matter
candidates, such as weakly interacting massive particles
(WIMPs).

In this work, we compute the nucleon charges and σ-
terms, using twisted mass fermion ensembles at three
different lattice spacings. These are simulated by the
Extended Twisted Mass Collaboration (ETMC) using a
mass degenerate up and down quark doublet, and the
strange and charm quarks (Nf = 2+1+1) with all masses
fixed to approximately their physical values, referred to

as physical point. This allows for a precise determination
of both isovector and flavor-diagonal charges, as well as
the nucleon σ-terms, avoiding chiral extrapolations. Our
results not only serve as a crucial benchmark for lat-
tice QCD computations but also provide essential input
for precision experiments aimed at probing BSM interac-
tions, CP-violation, and dark matter detection.

II. METHODOLOGY

The nucleon axial, tensor, and scalar charges for each

quark flavor f , denoted as gfA,T,S, are derived from the
nucleon matrix elements of the corresponding axial, ten-
sor and scalar operators at zero momentum transfer.
They are defined as

⟨N |ψ̄fΓA,S,Tψ
f |N⟩ = gfA,S,TūNΓA,S,TuN , (1)

where uN is the nucleon spinor and ΓA = γµγ5 for the
axial-vector, ΓS = 1 for the scalar and ΓT = σµν for the
tensor operators. The renormalization group invariant
σf -term is defined by mf ⟨N |ψ̄fψf |N⟩, with mf being
the quark mass.

A. Gauge ensembles and statistics

To evaluate the nucleon matrix elements, we ana-
lyze gauge ensembles generated with the twisted-mass
fermion discretization scheme, which inherently offers
O(a)-improvement [9, 10]. A clover term is included
in the action [11], reducing isospin-breaking effects that
arise from this fermion discretization.

The isosymmetric pion mass mπ =135 MeV [13, 14]
is reproduced through the tuning of the bare light quark
parameter µl. The parameters for the heavy quarks, µs

and µc, are tuned by utilizing the kaon mass along with
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Ensemble Abrv. V/a4 β a [fm] mπ [MeV]

cB211.072.64 B64 643 × 128 1.778 0.07957(13) 140.2(2)

cC211.060.80 C80 803 × 160 1.836 0.06821(13) 136.7(2)

cD211.054.96 D96 963 × 192 1.900 0.05692(12) 140.8(2)

TABLE I: Parameters of theNf = 2+1+1 ensembles analyzed
in this work. In the first column, we give the name of the
ensemble, in the second the abbreviated name, in the third
the lattice volume, in the fourth β = 6/g2 with g the bare
coupling constant, in the fifth the lattice spacing and in the
last the pion mass. Lattice spacings and pion masses are taken
from Ref. [12].

a properly defined ratio between the D-meson mass and
its decay constant, as well as a phenomenologically moti-
vated ratio between the strange and charm quark masses,
following the approach of Ref. [13, 14]. The parameters
of the ensembles used in this analysis are listed in Table
I. The lattice spacings and pion masses are adopted from
Ref. [12]. Lattice spacing values are determined in both
the meson and nucleon sectors, and we report the values
from the meson sector, which agree with those from the
nucleon mass as found in Ref. [15].

cB211.072.64
749 configurations

ts/a ts [fm] nsrc

8 0.64 1
10 0.80 2
12 0.96 5
14 1.12 10
16 1.28 32
18 1.44 112
20 1.60 128
Nucleon 2pt nsrc=477

cC211.060.80
400 configurations

ts/a ts [fm] nsrc

6 0.41 1
8 0.55 2
10 0.69 4
12 0.82 10
14 0.96 22
16 1.10 48
18 1.24 45
20 1.37 116
22 1.51 246
Nucleon 2pt nsrc=650

cD211.054.96
494 configurations

ts/a ts [fm] nsrc

8 0.46 1
10 0.57 2
12 0.68 4
14 0.80 8
16 0.91 16
18 1.03 32
20 1.14 64
22 1.25 16
24 1.37 32
26 1.48 64
Nucleon 2pt nsrc=480

cB211.072.64 cC211.060.80 cD211.054.96
749 configurations 400 configurations 494 configurations

Flavour Ndefl Nr NHad Nvect Ndefl Nr NHad Nvect Ndefl Nr NHad Nvect

Light 200 1 512 6144 450 1 512 6144 0 8 512 49152
Strange 0 2 512 12288 0 4 512 24576 0 4 512 24576
Charm 0 12 32 4608 0 1 512 6144 0 1 512 6144

TABLE II: Statistics used for the connected two- and three-point functions (top) and disconnected loops (bottom). Top: In
each table, we provide the sink-source time separations in lattice units (first column) and physical units (second column) and
the number of source positions per configuration (third column). For each ensemble, the bottom row indicates the number of
source positions used for the two-point functions. Bottom: For each ensemble, in the columns from left to right we give: i) the
number of deflated eigenvectors Ndefl, ii) the number of stochastic sources Nr, iii) the number of Hadamard vectors NHad, and
iv) the total number of computed vectors, Nvect, which after color and spin dilution are obtained via 12×Nr ×NHad.

To obtain the nucleon charges we evaluate two- and three-
point nucleon correlation functions and carry out fits to
isolate the ground state matrix element of interest as
will be explained in detail in Sec. III A. In Table II, we
present the statistics used for the calculation of the cor-
relation functions, providing both the number of con-
figurations analyzed and the number of source positions
per configuration. The three-point functions are com-
puted via the so-called fixed sink method, where we carry
out a new inversion for each new sink-source separation.
The number of source positions per configuration listed
in Table II are increased with increasing separation so

that the three-point function statistical errors are main-
tained roughly constant. Table II also includes details for
the contributions from disconnected quark loops. These
are calculated for the light, strange, and charm quark
masses. To enhance the signal-to-noise ratio of these dis-
connected loops, several noise-reduction techniques are
applied. These include the one-end trick [16], exact de-
flation of low modes [17], and hierarchical probing [18],
as explained in Ref. [19] for the specific application to
twisted mass fermions. The one-end trick is applied to
all loops for all three ensembles. We also use hierarchi-
cal probing for the loops computed for all quark loops
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with a probing distance of 8 for the light and strange
quark loops and with 4 for the charm-quark loops. De-
flation of low modes is applied to the light quark loops
for the cB211.072.64 and cC211.060.80 ensembles. For
the cD211.054.96 ensemble a higher number of stochas-
tic sources are used since using deflation for this 963×192
lattice, which scales with the square of the volume, would
be prohibitively expensive.

B. Computation of correlators

Extracting the nucleon matrix elements involves the
computation of both three- and two-point Euclidean cor-
relation functions. The two-point function reads

C(Γ0, p⃗; ts) =
∑
x⃗s

e−i(x⃗s)·p⃗×

Tr
[
Γ0 ⟨JN (ts, x⃗s)J̄N (0, 0⃗)⟩

]
,

(2)

where we set the source at the origin, ts, xs are the sink
coordinates, Γ0 is the unpolarized, positive parity pro-
jector Γ0 = 1

2 (1 + γ0) and the interpolating field for the
nucleon

JN (t, x⃗) = ϵabcua(x)
(
uTb (x)Cγ5dc(x)

)
. (3)

In order to increase the overlap of the interpolating field
with the nucleon ground state and reduce contamination
from excited states, so that the ground state dominates
for as small time separations as possible, we apply Gaus-
sian smearing [20, 21] to the quark fields entering the
interpolating field

ψ̃(x⃗, t) =
∑
y⃗

[1 + aGH(x⃗, y⃗;U(t))]NGψ(y⃗, t) (4)

where ψ is either u or d of Eq. (3) and H is the hopping
matrix

H(x⃗, y⃗;U(t)) =

3∑
i=1

[
Ui(x)δx,y−î + U†

i (x− î)δx,y+î

]
.

(5)

The parameters αG and NG are adjusted [22, 23] to
achieve a nucleon smearing radius of approximately 0.5
fm. To suppress statistical noise arising from ultraviolet
fluctuations, APE smearing [24] is applied to the gauge
links used in the hopping matrix.

The three-point function for e.g. the axial-vector is
given by

Cµ(Γk, q⃗, p⃗′; ts, tins) =
∑

x⃗s,x⃗ins

eix⃗ins·q⃗e−ix⃗s·p⃗′×

Tr
[
Γk ⟨JN (ts, x⃗s)Oµ(tins, x⃗ins)J̄N (0, 0⃗)⟩

]
, (6)

where Γk = iΓ0γ5γk is the polarized projector, Oµ =

ψ̄γµγ5ψ is the axial operator insertion, p⃗′ is the sink mo-
mentum and q⃗ is the insertion momentum.

For the charges and σ-terms, we use q⃗ = 0 restricting
to the forward limit and to nucleons with no momentum
boost, i.e. p⃗′ = 0. Similar expressions hold for the scalar
and the tensor three-point functions, with operator inser-
tion O = ψ̄ψ and Oµν = ψ̄σµνψ, respectively. The scalar
matrix elements are extracted using the unpolarized pro-
jector Γ0, while the tensor requires the polarized, Γk. In
what follows we will use the notation for the axial-vector,
keeping in mind the straight forward generalization to the
scalar and tensor operator insertions.

III. ANALYSIS OF CORRELATORS

The spectral decomposition of the two- and three-point
functions are given respectively by

C(Γ0, p⃗; ts) =

∞∑
i

ci(p⃗)e
−Ei(p⃗)ts and (7)

Cµ(Γk, q⃗; ts, tins) =

∞∑
i,j

Ai,j
µ (Γk, q⃗)e

−Ei (⃗0)(ts−tins)−Ej(q⃗)tins .

(8)

The coefficients ci of the two-point function are overlap
terms given by

ci(p⃗) = Tr[Γ0 ⟨JN |Ni(p⃗)⟩ ⟨Ni(p⃗)|J̄N ⟩] (9)

and the coefficients Ai,j
µ (Γk, q⃗) in the three-point function

are given by

Ai,j
µ (Γk, q⃗) = Tr[Γk ⟨JN |Ni(⃗0)⟩ ⟨Ni(⃗0)|Oµ|Nj(q⃗)⟩

⟨Nj(q⃗)|J̄N ⟩], (10)

where ⟨Ni(⃗0)|Oµ|Nj (⃗0)⟩ is the matrix element of in-
terest for the axial case, and similarly the scalar and
tensor three-point functions give coefficients Ai,j(Γ0, q⃗)
and Ai,j

µν(Γk, q⃗), respectively. The overlaps between the
interpolating field and the nucleon state |N⟩, such as
⟨Ω|JN |N⟩ ≡ ⟨JN |N⟩, need to be canceled in order for
us to access the matrix element. In order to cancel these
unknown overlaps, we construct the ratio of the three- to
two-point function

Rµ
A(Γk; ts, tins) =

Cµ(Γk, 0⃗; ts, tins)

C(Γ0, 0⃗; ts)
, (11)

i.e. setting q⃗ = 0⃗ in the three-point and p⃗ = 0⃗ in the two-
point functions. In the limit of large time separations
∆E(ts − tins) ≫ 1 and ∆Etins ≫ 1, with ∆E being
the energy difference between the first excited state and
ground state, the ratio gives us the desired axial charge

Rk
A(Γk; ts, tins) → gA, (12)

and similarly RS and Rµν
T yield the scalar (gS) and tensor

(gT ) charge respectively. Thus we use the parameters c0
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and A0,0 extracted from our data and substitute Eqs. (7)
and (8) into Eq. (11) to obtain the charges via

gS = ZP
A0,0(Γ0, 0⃗)

c0(⃗0)
,

gA = ZA
A0,0

k (Γk, 0⃗)

c0(⃗0)
,

gT = ZT ϵ
ijk
A0,0

ij (Γk, 0⃗)

c0(⃗0)
, (13)

where ZP , ZA, and ZT , are renormalization constants
that will be discussed in Sec. IV. In practice, we need
to identify the smallest possible ts and tins for which ex-
cited state contributions are sufficiently suppressed. How
fast ground state dominance is achieved depends on the
smearing procedure applied on the interpolating fields
and the energy gap between the ground state and the ex-
cited states. Additionally, noise increases exponentially
with ts, so establishing convergence to the ground state
as early as possible is essential. We will employ a fit-
ting strategy of multi-state analysis of the contribution
of the first Nst − 1 excited states. This aims to reliably
determine the values of c0 and A0,0 and is described in
Sec. III A.

A. Fitting Strategy

To extract the ground state matrix elements, we per-
form simultaneous fits to the two-point functions with
the highest statistics and the ratio of Eq. (11). To con-
struct the ratio we divide the three-point function with
the two-point function having the same statistics to take
advantage of the correlations between them.

Since the optimal fit ranges in ts and tins may vary for
each case, we explore a wide parameter space in the fit-
ting ranges. In detail, we perform multiple fits by varying
the following parameters:

• Nst: We truncate the sums over the energy states
contributing to the two- (7) and three-point (8)
functions to a maximum of imax = Nst − 1 with
Nst = 2. We call these two-state fits. If there is
no detectable contamination due to excited states
in the ratio, we fit it to a constant, performing a
plateau (Nst = 1) fit.

• tlow2pt : We vary the lower time, tlow2pt , in the fitting of
the two-point functions, seeking for a region where
only two states dominate.

• tlows : Similarly, we vary the smallest value of the
sink time ts, we use for the fitting of the ratio and
fit to all ts ≥ tlows available.

• tins,0, tins,s: We vary the number of insertion
time slices from the source and the sink times
that we keep in the fits to the ratio. We use

tins ∈ [tins,0, ts − tins,s]. For the charges we have
q⃗ = 0 so we fix tins,0 = tins,s.

B. Model Average

From each combination of the varied parameters, we
obtain a different result. We average the results using the
Akaike Information Criterion (AIC) [25, 26]. In sum-
mary, for each fit i, we associate a weight wi, which we
define as

log(wi) = −χ
2
i

2
+Ndof,i, (14)

where Ndof = Ndata − Nparams is the number of degrees
of freedom for each fit. We then use the weights to define
the probability

pi =
wi

Z
with Z =

∑
i

wi. (15)

The Model Average (MA) value of an observable O is
given as

⟨O⟩MA =
∑
i

Ōipi with σ2
MA =

∑
i

(σ2
i + Ō2

i )pi − ⟨O⟩2MA

(16)

with Ōi and σi being the central value and error of the
observable resulting from the ith fit.

IV. RENORMALIZATION

Matrix elements computed in lattice QCD need to be
renormalized in order to relate to physical observables.
In the physical basis of the twisted-mass formulation, we
use the renormalization functions ZA for the renormaliza-
tion of the axial-vector current, ZP for the scalar and ZT

for the tensor. We compute both flavor singlet and nons-
inglet renormalization factors for isoscalar and isovector
combinations, respectively. We use gauge ensembles sim-
ulated specifically for the renormalization program with
four mass degenerate quarks (Nf = 4) at the same β val-
ues as the three physical point ensembles used in the anal-
ysis of the matrix elements. For each β, we employ four
ensembles of different sea quark masses to perform chiral
extrapolations. We list these ensembles in Table III.

The renormalization factors are calculated nonpertur-
batively by employing the RI′/MOM scheme [27] followed
by perturbative conversion to MS at the scale µ̄ = 2 GeV.
The RI′/MOM condition for the quark bilinear operators
is

(ZRI′

q )
−1
ZRI′

Γ

1

12
Tr[ΛΓ(p)(Λ

tree
Γ (p))−1]|p2=µ2

0
= 1, (17)

where ΛΓ(p) is the amputated vertex function of the bi-
linear operator with external quark fields, and Λtree

Γ is
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Ensemble β L3 × T aµsea κ cSW

cB4.060.24 1.778 243 × 48 0.0060 0.139305 1.6900

cB4.075.24 1.778 243 × 48 0.0075 0.139308 1.6900

cB4.088.24 1.778 243 × 48 0.0088 0.139310 1.6900

cB4.100.24 1.778 243 × 48 0.0100 0.139312 1.6900

cC4.050.32 1.836 323 × 64 0.0050 0.1386735 1.6452

cC4.065.32 1.836 323 × 64 0.0065 0.1386740 1.6452

cC4.080.32 1.836 323 × 64 0.0080 0.1386745 1.6452

cC4.095.32 1.836 323 × 64 0.0095 0.1386760 1.6452

cD4.040.48 1.900 483 × 96 0.0040 0.13793128 1.6112

cD4.050.48 1.900 483 × 96 0.0050 0.13793128 1.6112

cD4.065.48 1.900 483 × 96 0.0065 0.13793128 1.6112

cD4.080.48 1.900 483 × 96 0.0080 0.13793128 1.6112

TABLE III: Nf = 4 gauge ensembles used for the compu-
tation of the renormalization functions. In the first column
we give their name, in the second β = (2N/g2), in the third
the lattice volume (L3 × T ) in units of a, in the fourth the
twisted-mass parameter (aµ), in the fifth the hopping param-
eter κ and in the last the clover coefficient cSW.

the corresponding tree-level value. ZRI′

q is the renormal-
ization factor of the quark field calculated using the fol-
lowing condition

ZRI′

q =
1

12
Tr[S−1(p)Stree(p)] = 1, (18)

where S(p) (Stree(p)) is the lattice (tree-level) quark
propagator. The trace and the inverse in the above condi-
tion is taken over spin and color indices. The momentum
p of the vertex function and quark propagator is set to
the renormalization scale µ0 of the RI′/MOM scheme.

We employ the momentum source approach [28],
in which the vertex functions are calculated with a
momentum-dependent source. This method requires sep-
arate inversions for each value of the renormalization
scale, but has the advantage of high statistical accuracy
and the evaluation of the vertex for any operator at neg-
ligible computational cost. For the singlet operators, the
vertex functions have an additional disconnected contri-
bution, which is calculated using the same methods de-
scribed in Sec. IIA, i.e. the one-end trick [16] and hier-
archical probing [18].

The RI′ condition is defined for zero quark masses.
To eliminate the mass contributions in the vertex func-
tions, we perform chiral extrapolations using the set of
ensembles in Table III for each β value. For ZA and ZT ,
a linear fit with respect to the twisted-mass parameter
µsea is employed, given by

ZΓ(µ0, µsea) = c0(µ0) + c1(µ0) · (aµsea),

which is sufficient for removing the mild dependence on
the quark mass, as observed in similar investigations, e.g.,
in Ref. [29]. The pseudoscalar vertex function suffers

from a pion pole and a dedicated analysis is needed to
remove it reliably. We follow the procedure described in
Ref. [15], where a non-unitary prescription is employed,
in which the values of sea and valence quark masses are
not equal. The pseudoscalar vertex functions are calcu-
lated for multiple values of the valence quark mass for
each sea quark mass and a double chiral extrapolation is
performed (see Ref. [15] for more details).
To reduce systematic errors related to lattice artifacts

and rotational O(4) breaking effects, we employ spatially
isotropic momenta of the form

(ap) ≡ 2π[(nt+0.5)/(T/a), nx/(L/a), nx/(L/a), nx/(L/a)],

where ni ∈ Z, L (T ) is the spatial (temporal) extend of
the lattice, and we employ the momentum cuts given by∑

i p
4
i /(

∑
i p

2
i )

2 < 0.3. The momentum form respects the
periodic (antiperiodic) boundary conditions applied on
the quark fields at a spatial (temporal) direction. Also,
an important aspect of our renormalization program is
the improvement of the nonperturbative estimates by
subtracting one-loop discretization errors, calculated in
lattice perturbation theory. This procedure results in
a milder dependence of the renormalization factors on
(a2p2). Further details can be found in similar investiga-
tions of our group, see, e.g., Ref. [29].

After chiral extrapolation and subtraction of one-loop
artifacts, we evolve the resulting values of the RI′/MOM
renormalization factors at a large reference momentum
scale µref using continuum perturbation theory:1

ZRI′

Γ (µ2
ref , µ

2
0) = ZRI′

Γ (µ2
0)
RRI′

Γ (as(µ
2
ref))

RRI′
Γ (as(µ2

0))
, (19)

RX
Γ (x) = exp

{∫ x

dx′
γXΓ (x′)

βX(x′)

}
(20)

where γXΓ (as) is the anomalous dimension of the operator
being considered and βX(as) the β function, within the
scheme X. Note that the evolution of the scale is not
applied in the nonsinglet axial-vector operator because
it has zero anomalous dimension. In contrast, the singlet
axial current has a nonzero anomalous dimension due to
the axial anomaly [34]. Then, we apply a linear fit in µ2

0

to eliminate residual dependence on the initial scale µ2
0,

of the form

ZΓ(µ
2
ref , µ

2
0) = c0(µ

2
ref) + c1(µ

2
ref) · µ2

0.

In Fig. 1, we provide the momentum fits for both sin-

glet and nonsinglet renormalization factors Z
s(ns)
P , Z

s(ns)
A

and Z
s(ns)
T , for the three lattice spacings, using a refer-

ence scale of µ2
ref = 21GeV2. The fit range is set to

1 The anomalous dimensions of the operators in RI′/MOM is
known to 4 loops for nonsinglet operators [30–32] and to 2 loops
for singlet operators [33].
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FIG. 1: Renormalization functions in RI′/MOM scheme at 21 GeV2

12 GeV2 - 50 GeV2 for Z
s(ns)
P and Zns

A , and 18 GeV2 -

50 GeV2 for Zs
A and Z

s(ns)
T . In these ranges, the linear fit

can sufficiently describe the residual momentum depen-
dence. Lower momenta are excluded from the fits, where
large nonperturbative effects (e.g., hadronic contamina-
tions) are present and in which perturbative conversion
does not work properly.

The extrapolated values of the renormalization factors
at µ2

0 = 0 are converted to the MS scheme at the reference
scale of 2 GeV, using an intermediate Renormalization

Group Invariant (RGI) scheme given by

ZMS
Γ (4GeV2) = CMS,RI′

Γ (4GeV2, 21GeV2)·ZRI′

Γ (21GeV2),
(21)

where CMS,RI′

Γ is calculated up to four loops (two loops)
in perturbation theory for the nonsinglet (singlet) opera-
tors [30–33]. The final values for the renormalization fac-
tors of the quark bilinears under study in the MS scheme
and at 2 GeV are given in Table IV. The error quoted
in the parenthesis is the total error by adding in quadra-
ture the statistical and systematic errors. The system-
atic error is estimated by varying the fit intervals in the
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momentum fits, as well as, by varying the highest pertur-
bative order that we include in the analytical expression
of evolution and conversion functions.

B64 C80 D96

Zns
A 0.7598(8) 0.7724(4) 0.7849(2)

Zs
A 0.7740(120) 0.7921(84) 0.8030(91)

Zns
P 0.4695(45) 0.4771(55) 0.4841(32)

Zs
P 0.4638(61) 0.4767(61) 0.4845(39)

Zns
T 0.8314(9) 0.8516(33) 0.8756(12)

Zs
T 0.8293(27) 0.8493(41) 0.8763(29)

TABLE IV: Renormalization factors for the singlet (s) and
nonsinglet (ns) operators in the MS scheme at 2 GeV.

V. RESULTS

A. Nucleon charges

The analysis carried out for the extraction of the nu-
cleon ground state matrix element for the axial charges
is shown in Figs. 2, 3 and 4 for the three ensembles an-
alyzed here. As mentioned previously, we obtain the de-
sired charge from the matrix element of the appropri-
ate current at zero momentum transfer. For example,
the isovector axial charge is obtained by computing the
three-point function of the axial-vector operator given by

Ou−d
A ≡ Aµ = ūγµγ5u− d̄γµγ5d, (22)

where u and d are the up and down quark fields respec-
tively.

As can be seen in Figs. 2, 3, and 4, the ratios of the
connected contributions, from which the isovector and
isoscalar combinations are determined, exhibit a consid-
erable dependence on tins which indicates sizeable ex-
cited state contributions. For these cases we therefore
perform 2-state fits, following the fitting approach of
Sec. III A, with Nst = 2. Furthermore, for the isovector
case, we include in the fit the temporal component of the
three-point function with one unit of momentum trans-

fer, C0(Γk,
2π
L k̂; ts, tins), where L is the spatial length of

the lattice and k̂ a unit vector in the k spatial direction,
and correspondingly the two-point function with one unit
of momentum. This analysis is motivated by chiral per-
turbation theory [35, 36] which foresees an amplification
of the axial matrix element between a nucleon and pion-
nucleon state, i.e. the A0,1

µ and A1,0
µ coefficients. The

temporal component of the axial operator is obtained at
no additional computational cost in our setup and since
it exhibits strong dependence on the excited state can be
used for a more precise identification of the πN energy
and thus a better estimation of the ground-state matrix
element of interest.

8 10 12 14 16 18 20

FIG. 2: Extraction of the isovector (first row), isoscalar
connected (second row), isoscalar disconnected (third row),
strange (fourth row), and charm (fifth row) contributions to
the axial charge, for the B64 ensemble. In the first column,
we show the ratios versus tins−ts/2 with the symbol notation
for each value of ts given in the legend. The horizontal bands
that span all columns are the model averaged results. In the
middle column, we show the ratio versus ts for tins = ts/2
when 2-state fits are performed (i.e. for the connected contri-
butions) or the result of a constant fit on each ts separately
when plateau fits are performed (i.e. for the disconnected
contributions). When 2-state fits are performed, we also plot
a gray band that shows the resulting ratio dependence on ts
for tins = ts/2 as predicted by the fit. In the last column, we
show the value of the fit with the largest weight for a fixed
tlows , as explained in the text. The open symbol shows the tlows

with the largest weight. We note that for the disconnected
data, odd source-sink separations are also used in the analy-
sis, that are not plotted here for better visibility.

For the disconnected contributions shown in Figs. 2, 3,
and 4, namely the isoscalar gu+d

A and the single-flavor gsA
and gcA, we observe no detectable excited state contam-
ination within the accuracy of our results and we thus
use plateau fits for these quantities. We note that for
the disconnected contributions, obtained by combining
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6 8 10 12 14 16 18 20 22

FIG. 3: Extraction of the axial charges for the C80 ensemble.
The notation is the same as in Fig. 2.

the fermion loop with the two-point function, and thus
in principle have all values of ts available, we choose to
plot even values of ts for clarity and to match those of the
connected contributions (see Table II), where the values
of ts need to be chosen beforehand within the fixed sink
approach employed here.

The maximum value of tlows is taken to be approxi-
mately the same in physical units (fm) for the three en-
sembles considered. This corresponds to tlows /a = 12, 14
and 16 or tlows = 0.96, 0.96 and 0.91 fm for the B64, C80
and D96 ensembles, respectively. For all three ensem-
bles, we observe a very mild dependence on tlows . The
results in the right columns of Figs. 2, 3 and 4, corre-
spond to the highest probability model for each value
of tlows , when varying tins,0 and tlow2pt . Namely, depending
on the ensemble and quantity analyzed, for the connected
contributions where we perform 2-state fits, tins,0 varies
from ∼0.06 fm to ∼0.16 fm and tlow2pt varies from ∼0.34 fm
to ∼0.72 fm, while for the disconnected, where we fit to
a constant, tins,0 varies from ∼0.17 fm to ∼0.40 fm.

We take the continuum limit, a→ 0, using the results

from the three available ensembles with different lattice
spacings. We carry out three types of extrapolation and
evaluate a combined systematic and statistical error via
a model average over the three fits. Namely, we use a
linear fit in a2 and a constant fit either using all three
ensembles or when omitting the coarser ensemble, B64.
A strong dependence on the lattice spacing will result in
a model average favoring the linear fit, while a mild a2

dependence will lead to a model average favoring the two
constant fits.

The continuum limit extrapolations for the isovector,
isoscalar, the strange and charm axial charges are shown
in Fig. 5. The isoscalar combination includes the discon-
nected contributions. In Table V, we give our results for
each gauge ensemble as well as our final continuum limit
extrapolated results.

8 10 12 14 16 18 20 22 24 26

FIG. 4: Extraction of the axial charges for the D96 ensemble.
The notation is the same as in Fig. 2.

We perform the same analysis for the scalar charges as
we did for the axial. In absence of any insight similar to
the axial case for the dependence on excited states, we
restrict to using ratios and two-point functions at zero
momentum. The ratios and extracted values are shown in
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FIG. 5: Continuum limit of the nucleon axial charges (open
symbols and band) extrapolated from three values of a (filled
symbols). The extrapolation is the result of a model average
which combines linear and constant fits as explained in the
text. For the isovector gu−d

A , the dashed line represents the
experimental value [37].

gA u− d u+ d u+ d− 2s u+ d+ s− 3c u+ d+ s+ c

B64 1.275(23) 0.454(31) 0.511(22) 0.432(20) 0.433(30)

C80 1.247(16) 0.410(36) 0.489(28) 0.418(23) 0.368(65)

D96 1.258(14) 0.432(19) 0.4952(95) 0.371(21) 0.401(49)

a = 0 1.250(24) 0.423(33) 0.490(20) 0.343(55) 0.382(70)

gA u d s c

B64 0.867(18) -0.408(14) -0.0262(86) 0.0003(45)

C80 0.832(22) -0.415(21) -0.036(17) -0.012(12)

D96 0.843(16) -0.415(15) -0.034(13) 0.0076(94)

a = 0 0.832(28) -0.417(22) -0.037(18) 0.003(13)

TABLE V: Values for the axial 2-, 3-, and 4-flavor isovector
and isoscalar combinations (top) and the extracted single fla-
vor charges (bottom) for each ensemble and in the continuum
limit, using the model average strategy described in the text.

Figs. 6, 7 and 8 for the three ensembles. Here we observe
excited state contamination and thus employ 2-state fits
in all contributions apart from the disconnected ratios
yielding gcS . We also observe a larger relative uncertainty
for these quantities. The continuum limit is taken in the

same way as for the axial charges and our final results
are presented in Fig. 9 and in Table VI.

8 10 12 14 16 18 20

FIG. 6: The ratio and fit results for the B64 ensemble for
scalar charges. The notation is the same as in Fig. 2, with
2-state fits being used for all cases except for gcS , where we
use constant fits.

gS u− d u+ d u+ d− 2s u+ d+ s− 3c u+ d+ s+ c

B64 1.47(23) 13.4(1.9) 11.8(1.8) 12.6(1.9) 13.9(1.9)

C80 1.35(21) 12.3(1.3) 11.9(1.4) 12.2(1.3) 12.4(1.2)

D96 1.18(13) 11.9(1.2) 11.2(1.4) 11.5(1.2) 12.7(1.4)

a = 0 1.08(31) 11.5(2.2) 11.2(2.1) 11.4(2.1) 12.2(2.2)

gS u d s c

B64 7.23(97) 5.76(85) 0.58(18) 0.32(21)

C80 6.78(68) 5.43(59) 0.17(18) 0.05(11)

D96 6.59(67) 5.41(62) 0.42(28) 0.29(21)

a = 0 6.4(1.1) 5.30(98) 0.16(37) 0.09(26)

TABLE VI: Values for the scalar 2-, 3-, and 4-flavor isovector
and isoscalar combinations (top) and the extracted single fla-
vor charges (bottom) for each ensemble and in the continuum
limit.
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6 8 10 12 14 16 18 20 22

FIG. 7: The ratio and fit results for the C80 ensemble for
scalar charges. The notation is the same as in Fig. 2 and the
fits used for each charge are the same as in Fig. 6

The same analysis is carried out for the tensor charges,
shown in Figs. 10, 11 and 12, where, similarly to the axial
case, we observe excited state for the connected contri-
butions but not for the disconnected. We thus perform
2-state fits for the connected and plateau fits for the dis-
connected. The continuum extrapolation in Fig. 13 fol-
lows the same procedure as for the axial and scalar cases
presented so far. The values of the tensor charges are
presented in Table VII.

B. Nucleon σ-terms

The nucleon σ-terms are defined as

σf = mf ⟨N |ψ̄fψf |N⟩ , σu+d = mud ⟨N |ūu+ d̄d|N⟩ ,
(23)

for a given quark ψf of flavor f , where mf is the quark
mass, or for the isoscalar combination with mud the av-
erage light quark mass and |N⟩ the nucleon state. The

8 10 12 14 16 18 20 22 24 26

FIG. 8: The ratio and fit results for the D96 ensemble for
scalar charges. The notation is the same as in Fig. 2 and the
fits used for each charge are the same as in Fig. 6

gT u− d u+ d u+ d− 2s u+ d+ s− 3c u+ d+ s+ c

B64 0.947(30) 0.531(21) 0.537(21) 0.533(21) 0.528(21)

C80 0.938(18) 0.545(14) 0.544(13) 0.547(14) 0.541(13)

D96 0.955(15) 0.557(19) 0.560(19) 0.563(20) 0.553(20)

a = 0 0.955(29) 0.561(34) 0.561(33) 0.569(37) 0.557(34)

gT u d s c

B64 0.739(23) -0.207(11) -0.00259(64) -0.0012(17)

C80 0.741(14) -0.1976(73) -0.0004(12) -0.0014(21)

D96 0.756(16) -0.1989(72) -0.00149(62) -0.0027(16)

a = 0 0.756(29) -0.196(12) -0.0009(11) -0.0028(26)

TABLE VII: Values for the tensor 2-, 3-, and 4-flavor isovec-
tor and isoscalar combinations (top) and the extracted single
flavor charges (bottom) for each ensemble and in the contin-
uum limit.

value of σu+d or σπN is also known from phenomenolog-
ical analyses using input from experiment. These quan-
tities are fundamental in QCD as they give the quark
content of the nucleon and their values are a measure of
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FIG. 9: Continuum limit of the nucleon scalar charges fol-
lowing the notation and procedure described in Fig. 5 for the
axial case.

chiral symmetry breaking.

We extract the nucleon σ-terms, using the matrix el-
ements of the scalar operator directly, including the dis-
connected quark loops. In the twisted mass formulation
the renormalization is simpler compared to standard Wil-
son, since there is no additive mass renormalization for
the quark masses and the multiplicative renormalization
of the scalar current and of the quark mass cancel. Our
results for σπN , σs and σc are given in Table VIII.

σπN σs σc

B64 50.1(7.2) 56(12) 126(43)

C80 47.4(4.8) 45.4(7.6) 43(41)

D96 43.7(3.6) 37.5(6.0) 80(110)

a = 0 41.9(8.1) 30(17) 82(29)

TABLE VIII: Results for the nucleon σ-terms for each ensem-
ble and in the continuum. For σπN and for σs we follow the
same extrapolation procedure as described in Fig. 5, while for
σc we use a single constant extrapolation.

8 10 12 14 16 18 20

FIG. 10: The ratio and fit results for the B64 ensemble for
tensor charges. The notation is the same as in Fig. 2.

C. Comparison with other results

In this section we compare our results with recent re-
sults from other lattice QCD studies as well as from phe-
nomenology. We first comment on previous analyses of
these quantities by ETMC:

• In Ref. [38], a comprehensive study of the nucleon
isovector axial and pseudoscalar form factors is per-
formed using the same three ensemble analyzed
here, including a systematic error analysis. The fi-
nal result for the isovector axial charge is obtained
using only a single linear extrapolation compared
to the model average strategy used in this work.
We denote this result by ETM23 in Fig. 14.

• In Ref. [39], the isovector tensor charge was ex-
tracted using the same three ensembles analyzed
here. In this work, we increase statistics for the
B64 ensemble and for the two-point functions for
the D96 ensemble. We also implement the AIC for
extracting our final result. We denote this result
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6 8 10 12 14 16 18 20 22

FIG. 11: The ratio and fit results for the C80 ensemble for
tensor charges. The notation is the same as in Fig. 2.

by ETM22 in Fig. 14.

• In Ref. [40], an analysis of the same quantities pre-
sented here was carried out for the B64 ensemble,
the only ensemble of the three available at the time.
Thus, those results were obtained without a contin-
uum limit extrapolation and in addition no model
averaging was performed. We denote these results
by ETM19 in Figs. 14-17.

Comparing among ETMC results, we observe that for
the isovector axial charge gu−d

A shown in Fig. 14, ETMC
values are consistent and the errors are approximately the
same after taking the continuum limit. For the isovector
scalar charge gu−d

S , we observe an increase in the error
due to the continuum extrapolation. For the isovector
tensor charge gu−d

T , there is only a slight increase in the
error compared to the one obtained using only the B64
gauge ensemble. However, the current improved anal-
ysis yields a smaller error as compared to our previous
analysis using the same three ensembles and taking the
continuum limit.

8 10 12 14 16 18 20 22 24 26

FIG. 12: The the ratio and fit results for the D96 ensemble
for tensor charges. The notation is the same as in Fig. 2.

We also compare our results with those from other col-
laborations, noting that the results presented here are the
only ones obtained with the continuum limit taken using
ensembles simulated directly at the physical pion mass.
In contrast, all collaborations to which we compare to
here rely either exclusively on ensembles simulated with
heavier-than-physical pion masses or combining one or
two physical point ensembles with heavier-than-physical
ensembles. Since results at the physical point carry larger
statistical uncertainties in general, their extrapolations
may be weighted more heavily by data from the heavier-
than-physical ensembles rather than from their physical
point simulations. Given that chiral extrapolations for
nucleon quantities are less reliable compared to the me-
son sector [59], this approach may introduce unaccounted
systematic errors, which our work avoids by not requiring
such extrapolations.

In Figs. 14, 15 and 16 we compare our results for the
nucleon charges with previous ETMC results and values
from other collaborations and in Fig. 17 we provide a
similar comparison for the πN , strange and charm σ-
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FIG. 13: Continuum limit of the nucleon tensor charges fol-
lowing the notation and procedure described in Fig. 5 for the
axial case.

terms. Below we give some details on recent studies by
other lattice QCD collaborations on the nucleon charges
and σ-terms.

• The PNDME collaboration analyzed thirteen Nf =
2 + 1 + 1 ensembles of the MILC collaboration,
simulated using highly improved staggered quarks
(HISQ) in the sea, and using a mixed action ap-
proach whereby they use clover-improved valence
quarks to compute the nucleon correlation func-
tions. The gauge ensembles are at four lattice spac-
ings, 0.06 fm, 0.09 fm, 0.12 fm and 0.15 fm, three
pion masses (135 MeV, 220 MeV and 310 MeV),
and volumes with 3.7 ≤ mπL ≤ 5.5. Two of these
ensembles are at the physical pion mass. A com-
bined continuum limit and chiral extrapolation was
performed to extract the isovector nucleon charges.
Their results are denoted as PNDME23 [42] in
Fig. 14.

The PNDME collaboration also extracted the up,
down and strange axial and tensor charges [49] us-
ing the same setup as for the isovector charges and
nine Nf = 2+1+1 ensembles with lattice spacings
from 0.06 fm to 0.15 fm, pion masses from 136
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ETM23

This work

QCDSF/UKQCD/
CSSM 23

gu−dA
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QCDSF/UKQCD/
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FIG. 14: Comparison of the results of this work with other
lattice QCD results, for the isovector axial (top), scalar (cen-
ter), and tensor (bottom) charges. Our results are shown
with the red square and red error band. The blue tri-
angles show previous ETMC results [38–40]. Open sym-
bols represent results without a continuum limit extrapola-
tion. The magenta triangles show recent results from the
Mainz group [41], the green triangles from PNDME [42], the
cyan triangles from RQCD [43], the black diamonds from
the QCDSF/UKQCD/CSSM collaboration [44], the orange
crosses from NME [45], the pink cross from CalLat [46] and
the yellow hexagons from χQCD [47, 48]. For gu−d

A , the
dashed line represents the experimental value [37].
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FIG. 15: Comparison of our results for the up- (left), down-
(center), and strange-quark (right) contributions to the axial
charge with other lattice QCD studies. Our results are shown
with the red square and red error band. The blue triangles
show previous ETMC results [40]. The green triangles show
results from PNDME [49], the magenta triangles from the
Mainz group [50] and the yellow hexagons from χQCD [47].
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FIG. 16: Comparison of our results for the up- (left), down-
(center), and strange-quark (right) contributions to the ten-
sor charges with other lattice QCD analyses. Our results are
shown with the red square and red error band. The blue tri-
angles show previous ETMC results [40]. The green triangles
show results from PNDME [49] and the magenta triangles
from the Mainz group [50].

MeV to 320 MeV and volumes with 3.7 ≤ mπL ≤
4.79. These results are denoted as PNDME20 in
Figs. 15 and 16.

Furthermore, an evaluation of the σπN was carried
by PNDME [52] using six Nf = 2+1+1 ensembles
at three lattice spacings, 0.12, 0.09, and 0.06 fm,
three pion mass values, with one ensemble at 138
MeV and the remaining at 230 MeV and 315 MeV,
and volumes with 3.90 ≤ mπL ≤ 4.79. Their
quoted result, denoted by PNDME21 in Fig. 17,
is obtained by explicitly treating Nπ and Nππ ex-
cited states. This is motivated by chiral pertur-
bation theory and brings their result in agreement
with phenomenology.

• The RQCD collaboration performed an extensive
study of nucleon charges and σ-terms [43] using
forty-seven Nf = 2+1 clover-improved fermion en-
sembles mostly produced within the Coordinated
Lattice Simulations (CLS) effort. These ensembles
are simulated using pion masses spanning from 130
Mev to 430 MeV, with six lattice spacings between
a ≈ 0.039fm and a ≈ 0.098fm and volumes with
3.0 ≤ mπL ≤ 6.5 with two of them having pion
mass close to the physical value. They obtained
their final values, denoted by RQCD23 in Figs. 14
and 17, after a simultaneous continuum and chiral
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FIG. 17: Comparison of our results for the nucleon sigma
terms with other lattice works and with results from phe-
nomenology for σπN . Our results are shown with the red
square and red error band. The blue triangles show previous
ETMC results [40]. The magenta triangles show results from
the Mainz group [51], the cyan triangles from RQCD [43],
the green triangles from PNDME [52], the brown diamonds
from BMW [53] and the yellow hexagons from χQCD [54, 55].
Open symbols represent results without a continuum limit ex-
trapolation. Results from phenomenology as shown in grey
crosses [56–58].

extrapolation.

• The Mainz collaboration for their isovector charges
results in Ref. [41] used fifteen Nf = 2+1 CLS en-
sembles with pion masses in the range of 130 MeV
≤ mπ ≤ 360 MeV, four lattice spacings and vol-
umes with 3.05 ≤ mπL ≤ 5.89. They performed
continuum and chiral extrapolations, with one en-
semble having a pion mass close to its physical value
and one about 30 MeV above. Their results on
the isovector charges are denoted by Mainz24 in
Fig. 14. In addition, they computed the up, down
and strange axial and tensor charges [50], using
eight CLS Nf = 2 + 1 gauge ensembles, with four
lattice spacings ranging from 0.050 fm to 0.086 fm
and volumes with 3.78 ≤ mπL ≤ 5.29. In this
analysis they have no physical point ensembles, us-
ing pion masses in the range 200 MeV-360 Mev.
They carry out a combined fit to extrapolate to the
continuum limit and to the physical pion mass ob-
taining the results denoted by Mainz19 in Figs. 15
and 16.

To extract the σπN and σs, sixteen CLS ensem-
bles were analyzed with pion masses in the range
174 MeV ≤ mπ ≤ 352 MeV, lattice spacings rang-
ing from 0.050 fm to 0.086 fm and volumes with
3.00 ≤ mπL ≤ 5.83 [51]. Continuum and chiral
extrapolations are performed. The results are de-
noted by Mainz23 in Fig. 17.

• The QCDSF/UKQCD/CSSM collaboration [44]
used twenty-oneNf = 2+1 gauge ensembles, a tree-
level Symanzik improved gluon action and nonper-
turbatively O(a) clover-improved Wilson fermions.
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Their pion masses are in the range 220 MeV ≤
mπ ≤ 468 MeV, with five lattice spacings and
three lattice volumes. They performed continuum
and chiral extrapolations to extract the isovector
charges shown in Fig. 14.

• The NME collaboration, for their calculation of the
isovector charges [45], used seven Nf = 2+1 clover-
improved Wilson fermion ensembles. Their pion
masses are in the range 166 MeV ≤ mπ ≤ 285
MeV, with lattice spacings ranging from 0.071 fm
to 0.127 fm and volumes with 3.75 ≤ mπL ≤ 6.15.
Results are obtained after chiral and continuum
limit extrapolations. These results are denoted as
NME21 in Fig. 14.

• The CalLat collaboration computed gu−d
A using an

approach inspired by the Feynman-Hellmann The-
orem [46, 60]. They use a hybrid setup of Nf =
2 + 1 + 1 HISQ staggered fermion in the sea gen-
erated by the MILC collaboration and domain-wall
fermions as valence quarks. Sixteen gauge ensem-
bles were analyzed, spanning three lattice spacings
(a ≈ 0.15, 0.12, 0.09 fm) and pion mass values in
the range 130-400 MeV. The final value, denoted
as CalLat19 in Fig. 14, is obtained after a simulta-
neous chiral and continuum extrapolation.

• The χQCD collaboration computed the isovector
and the up, down and strange axial charges [47]
using a hybrid setup of domain wall fermion sea
and overlap valence quarks. They analyzed three
RBC/UKQCD Nf = 2 + 1 gauge ensembles with
three lattice spacings, a = 0.08 fm, a = 0.11 fm and
a = 0.14 fm, two volumes and three pion masses
171 MeV, 302 MeV and 337 MeV. They performed
continuum and chiral extrapolations and the results
are denoted by χQCD18 in Figs. 14 and 15.

The χQCD collaboration also computed gu−d
S , de-

noted as χQCD21 in Fig. 14. They analyzed five
RBC/UKQCD Nf = 2+1 domain-wall ensembles,
with four lattice spacings, a = 0.06, 0.08, 0.11, 0.14
fm [48], one ensemble with physical pion mass and
the rest with pion masses in the range 171 MeV to
371 MeV at three different volumes.

For the calculation of the pion-nucleon and strange
σ-terms [54], three RBC/UKQCD Nf = 2 + 1
domain-wall ensembles were used with lattice spac-
ings, a = 0.08 fm and a = 0.11 fm, three pion
masses, 139 MeV, 300 MeV and 330 Mev, and three
different volumes. Their results on σπN and σs are
obtained after chiral and continuum extrapolations
and are denoted by χQCD16 in Fig. 17. χQCD is
the only collaboration, besides ETMC, that com-
puted the charm σ-term by directly evaluating the
charm quark loop. The calculation of σc [55] was
done using only one ensemble with pion mass 331
MeV, volume 243×64 and a = 0.11fm. For all other
quantities we only compare to other collaborations

when the results are at the physical mass point and
in the continuum limit. However, since this is the
only other lattice QCD result on σc we include it
in Fig. 17 denoted as χQCD13.

• The BMW collaboration used the Feynman-
Hellmann relation based on the derivative of the
nucleon mass with respect to the corresponding
quark mass to determine σπN , σs and σc [53]. For
that purpose, they used 33 Nf = 1 + 1 + 1 + 1
3HEX-smeared, clover-improved Wilson ensembles
with pion masses in the range of 195 MeV to 420
MeV, the strange and charm quark masses span-
ning their physical values, four lattice spacings
in the range 0.06 − 0.10 fm and spatial volumes
3.7 ≤ mπL ≤ 12.2. Their values for σπN and σs,
denoted as BMW20, are shown in Fig. 17. Their
error on σc is very large and thus not included in
the comparison.

In Fig. 14, where we show results for the isovector
charges, we observe very good agreement among lattice
QCD results by different collaborations for all isovec-
tor charges. Moreover, our value for the isovector axial
charge gu−d

A , is compatible with experimental measure-
ments [37]. As can be seen in Fig. 15 and 16, there is
a good agreement among lattice QCD results for the up,
down, strange and charm axial and tensor charges.

In Fig. 17, where we collected results for the πN ,
strange and charm σ-terms we observe that for the isovec-
tor scalar charge, there is a significant error increase when
taking the continuum limit as compared to our previous
results using only the B64 gauge ensemble [40]. While
there is an overall good agreement among lattice results,
a tension of about two standard deviations is observed
with the latest value from the PNDME collaboration [52],
where the pion-nucleon contribution was explicitly in-
cluded using chiral perturbation theory, yielding a value
that is closer to phenomenological results. The BMW
collaboration used a different method to extract the σ-
terms computing the dependence of the nucleon mass on
the quark masses. Their values agree with the ones ex-
tracted from the the computation of the nucleon three-
point function where excited states may contribute dif-
ferently, giving confidence on the proper extraction of
the nucleon matrix element. Furthermore, in our recent
study [61, 62], where we included the pion-nucleon inter-
polating fields in a generalized eigenvalue problem analy-
sis, we found no detectable improvement. This indicates
that the tension of lattice QCD results on σNπ with phe-
nomenology has a different origin.

VI. CONCLUSIONS

We present results on the nucleon axial, scalar and ten-
sor charges, as well as the nucleon σ-terms, using three
Nf = 2 + 1 + 1 ensembles with twisted mass clover-
improved fermions, with quark masses tuned to repro-
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duce their physical values. This enables us, for the first
time, to determine these charges and σ-terms at the con-
tinuum limit using only physical point ensembles, avoid-
ing any chiral extrapolations.

We find for the isovector charges:

gu−d
A = 1.250(24), gu−d

S = 1.08(31), gu−d
T = 0.955(29),

that are in agreement with results by other collabora-
tions. The value we get for the isovector axial charge also
agrees with the experimental value. The scalar and ten-
sor isovector charges determined here can provide input
for experimental efforts on scalar and tensor interactions
for BSM physics searches.

We also use the scalar matrix element to extract the
values of the σ-terms, that are of significant impor-
tance in the direct detection of dark matter. Our value
σπN = 41.9(8.1), is in agreement with most lattice re-
sults, but within approximately one standard deviation
with phenomenological results that tend to give larger
values.

The observed trend of increasing errors in several quan-
tities, when taking the continuum limit, emphasizes the
significance of utilizing more physical point ensembles
preferably with smaller lattice spacings in taking the con-
tinuum limit. Our goal in the future is the inclusion of
such an additional ensemble with a∼ 0.05 for taking the
continuum limit, increasing the accuracy in the final val-
ues.
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