
A
TL

-S
O

FT
-P

R
O

C
-2

02
4-

01
1

09
D

ec
em

be
r

20
24

Flexibility extension of the Event Picking Service for the

ATLAS experiment

E. Alexandrova,b,1, I. Alexandrova,b,2, D. Barberisc,3,
A.Yakovleva,4

a Joint Institute for Nuclear Research, Joliot-Curie 6, RU-141980 Dubna, Russia

b State University ”Dubna”, Universitetskaya 19, Dubna, Moscow region, Russia

c Università di Genova and INFN, Via Dodecaneso 33, I-16146 Genova, Italy

The ATLAS EventIndex is a catalog of all recorded and simulated ATLAS
events, one of four main experiments at the LHC accelerator at CERN. The Event
Picking Service is one of the components of the ATLAS Event Index. It is used
when a user wants to collect interesting events from a huge amount of ATLAS data
and reprocess them. The process of retrieving an event can be split into separate
tasks. The set of tasks may differ for different event types. Some tasks use external
services, which can take a long time to receive results. An error may occur as a
result of completing the task. Some of these errors can be corrected automatically
by the service, but some require administrator intervention. Failed tasks must be
restarted from the specified step after the problem is manually corrected by the
administrator. This is critical if the error occurs after a long-running task has
been completed. All of the above leads to the fact that the Event Picking Service
must be flexible and be able to be customized for a specific situation. This paper
is dedicated to describing how elasticity is achieved in the Event Picking Service
and how it improves during operation.

PACS: 07.05.Hd; 07.05.Kf

Introduction

The ATLAS experiment is one of four experiments at the LHC accelerator
at CERN [1]. The ATLAS EventIndex [2], a catalog of all recorded and
simulated ATLAS events, has been running since 2015 and stores data on
billions of events. The main goal of the ATLAS EventIndex is to find an event
by selected criteria for its further detailed analysis and/or visualization.

One of the components of the ATLAS EventIndex is the Event Picking
Service. This is an automated system for extracting the requested events and
delivering them to requesters. The importance of this service is especially
evident when there is a need to extract many events in bulk for processing
them using advanced algorithms. One example of such a need is the γγ →
WW in proton-proton interactions. The first analysis round required 50k
events [3].

The main requirement for the ATLAS Event Picking, which we leave out
of further descriptions, is the unconditional fulfillment of the tasks that the

1E-mail: aleksand@jinr.ru
2E-mail: alexand@jinr.ru
3E-mail: Dario.Barberis@cern.ch
4E-mail: yakovleva@jinr.ru



2

service faces, i.e. the implementation of search, delivery and collection of the
required physical events in one file. Since this service must be able to work
for many months, it must be robust. At the same time, in the event of a
failure, the service must be able to restore its work. This task in one form or
another is also for other high-energy physics experiments. It is necessary to
take into account that even within the framework of the ATLAS experiment,
the process of event extraction for different formats differs significantly. For
other experiments, the implementation of the steps themselves required for
the event extraction process will be completely different. Therefore, the ser-
vice must be flexible, allowing its functionality to be dynamically configured
depending on the required steps.

To use the service, the user will only need to provide this service with
all the information necessary to find the requested events, such as a file
containing the run and event numbers, the format of the requested data,
and additional parameters, if any. For the ATLAS project, the additional
parameters are the project name, AMI (ATLAS Metadata Interface) [4] tag,
and trigger stream name.

Workflow

The Event Picking Service is not designed for one specific event extraction
process, but to collect events in general. In this case, the steps required
for different requests may be different. As practice shows, even during the
execution of one request, there is a need to make changes to the workflow.
As a result, it is important that the service be modular, and the workflow
can be dynamically changed during the operation of the service.

After analyzing typical requests, two types of tasks were identified. The
first type are tasks that use the full input data. Tasks of this type must be
executed sequentially. The second type are those that use only part of the
input. These tasks can be executed in parallel. Typically, entire chains of
sequential tasks are parallel, rather than individual tasks. In this chain, a
task uses all the data from the previous task, but the first task in this chain
uses only part of the data from the parent task. The format of all data is
JSON, which allows to dynamically change the set of input data used in the
next step. In the Event Picking Service, the first type of task is called a job.
Lists of sequential tasks that can be executed in parallel are called chains.

The basic idea behind each workflow is that it has an input state, an
output state, and the name of the method that will perform the task. The
service looks for a workflow using the input state for the selected task. Using
the workflow, it dynamically runs the required code, and when completed,
changes the status to the workflow’s output state.

Figure 1 presents the current workflow of the Event Picking Service for
the ATLAS experiment. The goal of first job is to prepare the data. In
case the input data is common (a file containing the run and event numbers,
the format of the requested data, and additional parameters) it only splits



3

Fig. 1. ATLAS workflow of the Event Picking Service

the data into chains that will work in parallel mode. If the request uses
additional workflows with alternative input data, it prepares the data using
the specified method in the selected workflow. The second job involves the
main work of finding and extracting events. It is usually the same for a single
experiment, but for some workflows a few steps may be skipped.

In the ATLAS experiment, the following tasks are required to complete
the job:

• Get GUIDs. The ATLAS experiment uses the Rucio [5] system to
store data. The EventIndex service provides the GUID of the Rucio
file for each selected run and event number.

• Get the dataset template. PanDA [6] uses the dataset name to start
a new task, but Rucio has some rules to create new dataset names.
Rucio can get the dataset name for the selected GUID. This dataset
name can be used as template to start a new PanDA task.

• Extract the events. Extracting events from data files is a long process
in common cases. The service uses the PanDA system for these long
operations.

• Check the output files. PanDA copies the data, but the result of
copying should be checked because some events may not be in the
original data.



4

• Push the metadata to the Rucio system. PanDA do not set
metadata of Rucio (number of events as example). This metadata
should be added using the Rucio API.

During operation, some errors were detected. Some required corrections
within the service itself, while others necessitated expert intervention in ex-
ternal systems such as EventIndex, Rucio, or PanDA. For instance, events
were not indexed in the EventIndex, which meant that a reindexing process
had to be initiated before tasks could be restarted within the automatic event
service. Using the fact that all intermediate data is stored in the database
and the ability to dynamically change data, new workflows for the ability to
restart runs that ended with an error were added.

Currently the Event Picking Service has the following workflows:

• Main. It is main workflow to get selected events.

• Full restart. Restart a request using the same parameters as the
previous execution.

• Restart job on errors and warnings. It identifies all chains that
finished with an error or warning status and restarts them.

• Restart check task. The PanDA task requires special attention, as
it can take up to two weeks to complete and usually generates a large
output file. This workflow identifies all chains that concluded with an
error in the check step (the step following PanDA) and restarts the job
from that specific step.

• Finalize request. This is a specialized system workflow that is not
visible to standard users. It is used in the event of a critical error in a
request and sets an error status for all unfinished jobs.

Database

General architecture

As illustrated in Figure 2, the object model of the Event Picking Service
contains four main elements: ”request”, ”job”, ”chain” and ”task”. The
structure can be represented as a tree, with ”request” as the root and ”task”
as the last leaf node. Each element, except for the final one, has at least
one child. The ”task” object provides a description of an actual task. These
elements feature three primary fields: ”input”, ”output” and ”status”. The
”input” and ”output” fields are used to define the input and output data
for each element. The real data is stored in the ”storage” table, while the
main elements only contain references (links) to this data. The input data
for the parent and its first child is identical. Similarly, the output data for



5

Fig. 2. The database structure of the Event Picking Service

the parent and its last child is also the same. The ”status” field stores the
result status and is inherited in the same manner as the output data.

The Event Picking Service comprises two types of workflows: the job
workflow and the chain workflow. These workflows are stored in separate
tables within the database, but the fundamental concept of constructing se-
quences for these workflows is consistent and is based on the input and output
states. The differences that necessitate storing them in separate tables are
based on additional required parameters. For example, a job creates threads
and requires the specification of the maximum number of simultaneously run-
ning threads. In contrast, a chain operates within an already created thread
but requires the definition of the actual executable code, such as the name
of the method to be called.

A typical service architecture could include a traditional client-server
model with the storage and use of necessary data in a database associated
with the server. However, this system has a distinct feature. On one hand,
it must be publicly accessible to users who submit their requests in the client
part. On the other hand, executing these requests is associated with exter-
nal systems, access to which requires a higher level of protection or may be
requested by users with high privileges. Additionally, external requests often
take a long time to process, sometimes reaching several days. Therefore, a
logical proposal is to add another component to the architecture that handles
the part of request processing associated with the execution of these requests
through commands from other systems. Let’s call this component a daemon,
as it must operate constantly. Thus, the system should consist of three main
components: a web server, a database, and a daemon.



6

Fig. 3. The general architecture of the Event Picking Service

The general architecture of the ATLAS Event Picking Service is presented
in Figure 3. The client generates a request to the server by completing a form
embedded in the HTML page. Upon submission, the client receives a unique
identifier for the request, which can be used to retrieve information about its
status. The web server then forwards this request to the database. A daemon
continuously monitors the database for new requests. When a new request
is detected, the daemon initiates the execution of tasks associated with that
request, following the specified workflow retrieved from the database. As
these tasks are executed, input and output data, logs, and the statuses of
all tasks, chains, jobs and requests are recorded in the database. This in-
formation is accessible to users and administrators through the web server.
Once all tasks in the workflow are completed, or if critical errors arise during
execution, the daemon updates the final status of the request. Finally, the
web server generates a message relaying the results of the request to the user
or administrator.

The monitoring of the Event Picking Service follows the same principles
as the monitoring of other EventIndex components [7]. Both main elements
of the Event Picking Service (the web server and the daemon) send monitor-
ing data to the database every five minutes. To facilitate this, the scheduler
employs a cron utility to run jobs (specifically, a Python script) at regu-
lar intervals. This Python script retrieves data from the database, verifies
the timestamps of the data, and subsequently inserts it into the monitoring
InfluxDB database. The viewer section utilizes Grafana’s features for data
visualization.

The web server is implemented on Apache Tomcat and is based on the
Web Application Lego Toolkit [8]. More details can be found in [9].



7

Conclusions

The Event Index is one of the services of the ATLAS experiment the Large
Hadron Collider (LHC). This service includes the Event Picking Service that
currently operational on a production server. The exploitation of the Event
Picking Service has led to enhanced error handling and the development of
new workflows. Additionally, the Event Picking Service is flexible and can
be adapted for use in other experiments once the necessary workflows are
established.

REFERENCES

1. Aad G. et al. [ATLAS Collaboration] The ATLAS Experiment at the
CERN Large Hadron Collider // Journal of Instrumentation. –– 2008. –– V.
3 S08003.

2. Barberis D., others. The ATLAS EventIndex: A BigData Catalogue for
All ATLAS Experiment Events // Comput.Softw.Big Sci. –– 2023. –– V. 7.

3. Aad G. et al. [ATLAS Collaboration] Observation of photon-induced
W+W− production in pp collisions at

√
s = 13 TeV using the ATLAS

detector // Physics Letters B. –– 2021. –– V. 816, no. 136190.

4. Odier J., Lambert F., Fulachier J. The ATLAS Metadata Interface (AMI)
2.0 metadata ecosystem: new design principles and features // EPJ Web

of Conferences. –– 2018. –– V. 214 05046.

5. Barisits M., others. Rucio: Scientific Data Management // Com-

put.Softw.Big Sci. –– 2019. –– V. 3.

6. Megino F.B., others. PanDA for ATLAS distributed computing in the
next decade // J. Phys.: Conf. Ser. –– 2017. –– V. 898.

7. Alexandrov E., Kazymov A., Prokoshin F. BigData tools for the mon-
itoring of the ATLAS EventIndex // CEUR Workshop Proceedings. ––
2018. –– V. 2267.

8. Korenkov V., Kuniaev S., Semashko S., Sokolov I. WALT PLATFORM
FOR WEB APPLICATION DEVELOPMENT // CEUR Workshop Pro-
ceedings. –– 2021. –– V. 3041.

9. Alexandrov E., Alexandrov I., Barberis D., Prokoshin F., Yakovlev A.
Development of the ATLAS Event Picking Server // CEUR Workshop
Proceedings. –– 2021. –– V. 3041. –– P. 91–94.


