A Measurement of the
B%-B% Mixing Parameter
at LEP
Using a Neural Network

CERN LIBRARIES, GENEVA

IO

CM-P00068770

Martin Ernst Los

Thesis-1995-Los



A Measurement of the
BB Mixing Parameter
at LEP
Using a Neural Network

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR
AAN DE UNIVERSITEIT VAN AMSTERDAM,
OP GEZAG VAN DE RECTOR MAGNIFICUS
PROF. DR. P.W.M. DE MEIJER
TEN OVERSTAAN VAN EEN DOOR HET COLLEGE
VAN DEKANEN INGESTELDE COMMISSIE
IN HET OPENBAAR TE VERDEDIGEN
IN DE AULA DER UNIVERSITEIT
OP MAANDAG 27 NOVEMBER 1995 TE 12:00 UUR

door
Martin Ernst Los

geboren te Heemskerk

T oABIOF



Promotor: Prof. Dr. A.N. Diddens
Co-promotor:  Dr. J.J.M. Timmermans

Overige leden:  Prof. Dr. J.J. Engelen
Prof. Dr. Ir. F.C. Erné
Prof. Dr. K.J.F. Gaemers
Prof. Dr. Ir. F.C.A. Groen
Prof. Dr. R.H.P. Kleiss

x . . .
[:(jl Faculteit der Wiskunde, Informatica, Natuurkunde en Sterrenkunde

\

NlEF

The work described in this thesis is part of the research program of ‘het Nationaal Instituut voor
Kernfysica en Hoge-Energie Fysica (NIKHEF-H)’ in Amsterdam. The author was financially supported
by ‘de Stichting voor Fundamenteel Onderzoek der Materie (FOM)’.



Aan mijn ouders



Contents !
Contents

Introduction 1
1 Theory 3
L1 The Standard Model . . . ... ... ... . ... 3
1.2 Heavy Flavour Physics . . . . . .. .. ... ... ... .. ... 5
121 BOBOMIXIng . . . .. ... 6

2 Neural Networks 11
2.1 Neural Network Concepts . . . .. ................. .. ... ... .. 11
22 Learning . . . ... ... 13
2.2.1 Coincidence Learning . . . . . ... .. ... ... ... ... 13

2.2.2 Performance Learning . . . . . ... .. ... ... ... ... . ... ... . 15

2.2.3 Competitive Learning . . . . . ... ... ... ... ... ... 15

3 Back-propagation in Feed-forward Neural Networks 17
3.1 Architecture and Operation . . . ... ........... ... .. . ... .. . 17
3.2 Capabilities of a Feed-forward Network . . . . . .. ....... ... . . . .. . 20
3.3 Practical Issues using a Back-propagation Network . . . . ... ........ ... .. . 21
3.3.1  Network Architecture . . ... ... ... ... ... ... ... ... 21

3.3.2  Setting the Training Parameters . . . ... .... ... .. .. . .. . 22

3.3.3  Achieving Generalisation . .. ... ... ... .. . . . .. . . . . .. 23

3.4 High Energy Physics Applications . . ... ............ .. ... .. .. . 23
3.4.1 Quark-Gluon Separation . . . . .. ....... ... .. .. . . . . 23

3.4.2 Noise Suppression . . .. ......... . ... .. .. .. ... . 24

4 The DELPHI Detector 25
4.1 Tracking Detectors . . .. .......... ... ... ... .. .. ... .. 25
42 Galorimetry . ... ... 27
4.3 Particle Identification . . . ... ... 28
44 Other Sub-detectors . . . .......... ... ... .. .. . ... . .. 29
4.5 Data Taking and Data Handling . .. ... ... ... .. ... . . . . . 29

5 The Inner Detector 31
5.1 TheJet Chamber . . . .. ... ... ... ... 31
5.2 The Trigger Layers . . . . ... ............... .. .. ... .. . .. 32
53 TheID-OD Trigger . . . . ... ................ ... . ... . ... 32
54 The Inner Detector Calibration Database . . .. ........ ... . ... . . 35
5.5 Z Measurement with the Trigger Layers . . . . ... .... ... .. .. .. . _ 36

5.5.1 Results



ii

Contents

6 Determination of the B°-B° Mixing Parameter
6.1 Muon Identification
6.2 Electron Identification
6.3 Event Selection and Lepton Identification
6.4 Single Lepton Composition
6.5 Dilepton Selection and Composition
6.6 The Neural Network Classifier
6.7 Extraction of x

6.7.1 Systematic Errors
6.8 Final Result, Comparisons and Conclusions

A The Back-propagation Algorithm

B The Neural Network Simulator NNC
B.1 Installation and Running
B.2 Data Files, extension .nnd
B.3 Parameter File, extension .par

B.3.1 Operation Type
B.3.2 Stop File, nn.stp
B.3.3 Structure File, extension .str
B.3.4 Saved Network File, extension .net
B.3.5 Response file, extension .ntp

C A Partially Connected Network
C.1 The Toy Problem
C.2 Learning and Performance
C.3 Computational Cost
C.4 Concluding Remarks

D DBPIT
D.1 Overview of Operation
D.2 Output of DBPIT

References

List of Figures
List of Tables
Index

Summary
Samenvatting
Acknowledgements

Curriculum Vitae

83

89

91

93

95

97

99

101



Introduction 1

Introduction

High energy physics studies subatomic particles and their interactions in an effort to understand the
basic laws of our universe. The basic forces in nature are classified into four types of increasing strength:
gravitational, weak, electromagnetic and strong interactions. Our present knowledge of the latter three
interactions is incorporated in a theory which is called the Standard Model.

Within the Standard Model there are three classes of fundamental particles: the leptons, the quarks
and the bosons. The leptons and quarks form the basic building blocks of all matter. Their interactions
are modelled by the exchange of bosons: the W#* and Z° bosons, the photon and the gluons. These
bosons are the mediators of the weak, electromagnetic and strong interactions, respectively.

Past experiments have revealed the structure of the atom with its nucleus and orbiting electrons.
Present-day research has progressed to even smaller scales with the aid of large particle accelerators.

In the Large Electron Positron accelerator (LEP) at CERN, electrons and positrons are collided at
a centre-of-mass energy around 91 GeV. At these energies there is an abundant resonant production
of the Z° boson. A substantial fraction (= 15%) of all Z° decay modes consists of decays into a beauty
quark pair, which makes LEP an ideal environment for heavy quark physics. This thesis uses data
recorded in 1991 and 1992 with the DELPHI detector, one of the four experiments at LEP.

The B° meson is a neutral short-lived particle that is a bound state between a beauty quark and
a lighter quark. This thesis presents a measurement of the B°-B0 mixing parameter, which is the
probability that the B® meson transforms into its anti-particle the B® before it decays. Within the
Standard Model the rate of mixing depends on the top quark mass and on the elements Via and Vi, of
the Cabibbo-Kobayashi-Maskawa matrix.

In the analysis, Z° decays are selected in which both beauty quarks decay directly into a lepton.
Pairs of leptons of the same charge signal the presence of BO- B0 mixing.

Problems encountered in the diverse field of high energy physics often benefit from techniques
from other disciplines. This thesis investigates the use of a neural network, an artificial intelligence
technique. In conventional analyses the transverse momentum of the lepton is used to separate direct
beauty quark decays from a background of other hadronic Z° decays. The neural network improves
the separation by using additional information.

This thesis is organised as follows. Chapter 1 outlines the physics relevant to the measurement
described in this thesis. After a brief introduction of the Standard Model and heavy flavour physics,
the B%-BY mixing formalism is presented in detail.

Chapter 2 is a general introduction to neural networks. It covers basic neural network terminology
and introduces the concept of learning.

Chapter 3 is dedicated to feed-forward neural networks, the type of neural network used in the
analysis of this thesis. This chapter focusses on the capabilities and the practical issues operating a
back-propagation neural network.

Chapter 4 introduces the DELPHI detector. It contains a short functional description of all its
components and their performances. The remainder of the chapter describes the data taking and data
handling in DELPHI.

Chapter 5 is devoted to the Inner Detector, the inner wire chamber of DELPHI. This chapter
presents work performed by the author as a member of the Inner Detector group. The Inner Detector
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calibration database is described and the internal z resolution of the detector is discussed.
In chapter 6 the measurement of the B°-B% mixing parameter is presented. A comparison is made

between a conventional p; analysis and the neural network analysis. The results and their prospects
are discussed.

Appendix A presents the derivation of the back-propagation algorithm introduced in chapter 3.
Appendix B is a manual for the neural network simulator developed by the author and applied in this
thesis. Appendix C investigates some properties of a partially connected back-propagation network.

Appendix D describes DBPIT, the monitoring program for the off-line calibration database of the
Inner Detector.



Chapter 1

Theory

This chapter outlines the physics relevant to the measurement described in this thesis.

First, the Standard Model is briefly described. It combines the Glashow-Weinberg-Salam modell!]
of electroweak interactions and quantum chromodynamics(®, the theory of strong interactions.

The following section discusses heavy flavour physics. Heavy quarks are abundantly produced at
LEP. An overview is given of the current precision measurements in the heavy quark sector.

The last section of this chapter introduces BO-B0 mixing. Its mathematical formalism within the
framework of the Standard Model is presented. The theory is linked to the measurement of the B°- B0
mixing parameter x using dileptons.

1.1 The Standard Model

The Standard Model describes the interactions between fundamental particles and is based on the
gauge group SUc(3)®SUL(2)@Uy (1).

SUc¢(3) corresponds to the strong interaction of coloured quarks and gluons and is called quantum
chromodynamics (QCD). The weak interactions, mediated by the vector bosons, are described in the
SUL(2) part of the Standard Model. Uy (1) represents the quantum electrodynamics (QED) part, the
interaction of the photon with the other fundamental particles.

In its present form, the Standard Model describes a world consisting of spin % fermions that inter-
act through exchange of bosons of integer spin. The following paragraphs summarise the fundamental
particles and their properties.

Quarks and Leptons: the spin i fermions

Il | Quarks I Leptons ||
Generation 1 u d Ve e
Generation 2 c s vy w
Generation 3 t b vy T
Charge Q; 2/3 -1/31 0 -1
Weak Isospin 1] [1/2 —1/2 [ 1/2 —1/2

Table 1.1: The fundamental lefl handed spin % fermions.



4 Chapter 1. Theory

Table 1.1 shows that the fermions logically group together in ‘generations’ (or ‘families’), consisting of
two quark flavours and two leptons. Members of a higher generation have the same quantum numbers!
as the corresponding member of the first generation, only their mass is higher.

The leptons and quarks are assigned to doublet (left handed) and singlet (right handed) represen-
tations of SUL(2). Table 1.1 only displays the left handed fermions. The right handed fermions, which
are not sensitive to charged current weak interactions, have I=0. Right handed neutrino’s do not
exist in the Standard Model. Leptons don’t take part in the strong interaction, because they don’t
carry a colour charge.

Force carriers: bosons with integral spin

[ Coupling | Boson(s) | Spin |
Strong 8 massless gluons ¢1,...,9s 1
Weak 3 massive vector bosons Z°, W~ W+ 1
Electromagnetic 1 massless photon v 1
Higgs 1 massive Higgs H 0

Table 1.2: The fundamental couplings.

Table 1.2 summarises the situation for the bosons. SUc(3) has 8 generators (8 gluons), SUL(2) has
3 weak isospin generators (Z°, W+, W~) and Uy(1) has the hyper-charge generator Y (the photon).
The hyper-charge is for all particles assigned such that Q; = Ig +Y/2.

The neutral spin-0 Higgs boson!®), which has not been found yet, plays a special role. One speaks
of spontaneous symmetry breaking when the fundamental equations of a system possess a symmetry
that is not displayed by the ground state.

The introduction of additional scalar fields, called Higgs fields, offer a way to generate masses for
the W* and Z bosons through spontaneous symmetry breaking. After that, the W* and the Z°

acquire mass and SU¢(3)@Uy (1) is left as an exact gauge symmetry with the gluons and the photon
massless.

Both the electromagnetic neutral current and the weak neutral current couple to the fermions. There-
fore, the electroweak mizing angle Ow was introduced for SUL(2)®Uy (1). This angle 8w is defined by

the following relation between the W mass and the Z mass:

M2
(1.1) sinfyw =1 - %
M

The couplings of the fundamental fermions to the W’s, the Z% and the photon v can be written in
terms of the fermion charge @y, fw and the weak isospin 1§ as follows:

e W= ff-coupling: iey,(1l — 75)m~
e Z°f f-coupling: ieyu(vs — asvs)
e vff-coupling: —ieQ; vy,

The v,(p = 0,1,2,3) are the Dirac gamma—matrlces and 75 = i70717273- The parameters ay and vy
are called the amal and vector couplings, they are given by:

(1.2) af = Isf' vy = ——————I?{ —2Q; sin” B

2sin Oy cos Ow 2sin By cos fw

! Qj in units of the electron charge magnitude e = 1. 60217733(49) x 1071° C and Ig in units of the reduced Planck
constant fi = h/27 = 1.05457266(63) x 10—34 Js, values taken from[?]
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Originally, the weak interaction as it was first observed in the B-decay n — pe~ v, was thought to be?
point-like. All quarks and leptons have the same overall weak coupling strength given by the Fermi
constant Gr. In the SU¢(3)®Uy (1) of the the Standard Model, GF relates to My and sin’ 0y as:

h2e?

1.3 Gp =
(13) F 460\/§Mvzyczsin2t9w

were c is the speed of light in vacuum and ¢ the permittivity of free space?.

The weak interactions, contrary to the strong and electromagnetic interactions, violate flavour
conservation in the quark sector. One has to assume that the weak interaction quark eigenstates are
mixtures of the actual flavour (mass) eigenstates. By definition the up-type quarks (u,c,t) are chosen
to be unmixed and the mixing in the others is described by the Cabibbo- Kobayashi-Maskawa (CKMP))
matrix V operating on the mass eigenstates of the down-type quarks (d,s,b):

dl d Vud Vus Vub d
(1.4) s |=V]s )= ViV, Vs 5
b’ b Via Vis Vip b

The elements of this 3x3 unitary matrix define the strengths of the couplings between up-type and
down-type quarks for flavour changing charged currents. Flavour changing neutral currents are not
present and in the lepton sector flavour mixing would only occur if the neutrino’s are not massless.

In order to account for all observed types of interactions, one also needs a massless spin-2 graviton,
the mediator of gravity. Up till now, gravity has not been incorporated successfully in the Standard
Model and has to be treated as a separate case using Einstein’s theory of general relativity.

Other aspects of the standard model are also unsatisfactory. Many parameters are undefined
without any explanation about their values: the quark and lepton masses, sin® 6y, the CKM matrix
elements, the Higgs mass and the strengths of the gauge couplings themselves.

1.2 Heavy Flavour Physics

Heavy flavour physics!6:7] comprises all studies of properties of the c(harm) and the b(eauty) quarks.
LEP is well suited for these studies because both ¢z and bb are abundantly produced around the Z° peak
(Tez/Thadrons =~ 18% and T45/Thadrons = 22%). Various analyses are in progress that determine one

or more of the free parameters in the Standard Model more and more precisely. The most important
are:

e Cross section determinations.

The cross sections are sensitive to as, vi, Gr and Mz. T(Z — bb)/T(Z — hadrons) is via
electroweak vertex corrections in m?/ m%, dependent on the top mass.

e Higgs search.

Since the Higgs boson, if produced at LEP, mainly decays in b quark pairs (the Higgs couples to

fermions with a strength proportional to their mass), an efficient b tagging facilitates the Higgs
search.

e Lifetime measurements.

Measurements of the lifetimes of D and B mesons give values for their corresponding elements
in the CKM matrix.

e Forward-backward asymmetries.

The forward-backward charge asymmetry is proportional to the product of vector and axial
couplings, so it determines sin26yy, .

2 ¢ = 299792458 ms—1 (defined) and eppg = 1/¢? with po = 47 x 10~7 NA~2, values taken from!3]
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e Mixing studies of K°-K° and B°-B°.

Precise measurements of the mixing parameter put constraints on the CKM matrix elements V34,
Vis and on my, the mass of the top quark. Mixing takes place in both the KO%-K0 system and
the B%-B0 system, the latter will be the topic of the next subsection.

The basis of all these analyses is the actual heavy quark tagging. Because the ¢ and the b are much
heavier than the other quarks, they can be identified through the decay properties of their (heavy)
mesons and baryons. Some methods to tag heavy quarks are for example:

e High p,; lepton tagging.

Leptons from B decay have a significantly higher transverse momentum p; relative to the hadron
direction than do leptons from other sources.

e Using dependence on shape variables.

For example, a B enriched sample can be created using the directed sphericity S-Q of a set of Q
tracks in a jet:

(1.5) 5o = %

S'_Q follows a different distribution for B decays than for light quark decays, because the B decays
more isotropically than the longitudinal fragmentation of hadrons in light quark jets.

e Secondary vertex reconstruction.

Events with a large distance between the primary and secondary vertex contain a heavy meson
because they live longer.

e Through decay of the J/¥.

By identifying a B meson decay into a charmonium state through observation of a J/¢ into a
lepton anti-lepton pair.

1.2.1 B°B° Mixing

Neutral B mesons, originating from the fragmentation of b quarks at LEP, are either a bd (BY) or
a bs (BY) bound state. Before these mesons decay oscillations may occur: a BO transforms into its
anti-particle B® and vice versa, see figure 1.1 for BY-BY. This phenomenon is called BY-B° mizing: the
weak interaction connects the |B°) and the |B°) state and the CP eigenstates |Bi 2) of the complete
Hamiltonian are linear combinations of the flavour eigenstates, i.e.

(1.6) |Bi2) = @—\%wﬂ

B; and B, have a mass difference AM, which introduces a time-dependent phase difference between
their wave functions and thereby an oscillation between the B® and B° components with a period
proportional to 1/AM. This is in complete analogy to the well-known oscillations in the neutral kaon
system, which were observed for the first time in the 19507s!8!,

BP-B° mixing has been first observed experimentally in 1987, by the UA1Y! collaboration in proton-
antiproton collisions and by the ARGUS!Y and CLEO!! collaborations in eTe~ scattering at the
energy of the T(4s).

In 1964[12) it was observed that the K decays a small fraction of the time into #tx~. This was
the first evidence for CP wviolation: the weak interaction is not invariant under a simultaneous Charge
conjugation and Parity (CP) operation. Consequently, the two neutral kaon mass eigenstates Kp and
Ks are not precisely CP eigenstates. The same is true for the eigenstates |B1) and |Ba).
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b Vi W= v d

LU L L Y

R T N

d o wH Vi b
b Vi u,c,t o d

BY w- w+ B
d 74 u,e,t b b

Figure 1.1: The Feynman boz diagrams responsible for Bg-B—g mizing. The dominant contribution

comes from the top quark ezchange and therefore only the CKM elements of the top quark have been
indicated at the vertices.

In the following mixing in the B%- B0 system, with the presence of CP violation, will be described in
more detail.

In general, a stable free particle of mass M at rest has a wave function ¥(t) which is proportional
to e=*M*. This becomes W(t) oc e=M=iT/2)t for an unstable particle with a ‘width’ I' and a lifetime
T=1/T.

For coupled systems, like B%-B%, M and T become 2x2 complex Hermitian matrices with positive
eigenvalues. The Hamiltonian H of this coupled system takes the form:

B M-i Mig — T, B°
— = 2 2 —
(1.7) M ( Bo ) - ( My, - 4T, M —ir Bo

The universal invariance of a simultaneous CP and Time reversal (CPT) operation requires the diagonal
elements of M to be equal, thus B and BP have the same mass M and width T'. The off-diagonal
elements represent the B°-B° mixing and they are only equal if CP violation is neglected. After
diagonalising , its eigenstates can be written in the form:

_ (14918 + (1= |5Y)
VAT )

(1.8) |B1,2)
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with

_ M* — i[\*
(1.9) p=ize_ [Mi2za i
1+e Mya — 5T

The parameter ¢ quantifies the CP violation. If ¢ = 0 in equation (1.8) then |B;) and |B3) would be
exactly CP eigenstates like in equation 1.6.

The eigenvalues of H corresponding to the states | By 3) are:

(1.10) Hyip= M- %rl,z =M-3:0%Q
with

i i
(1.11) Q= \/(Mﬁ - 'iF;z)(Mlz - 5[‘12)
and their mass difference AM and width difference AT is:
(1.12) AM=M; — My;=2Re @
(1.13) AT =T;-Ty=-4ImQ

BO-BO oscillations are caused by the different time evolution of the mass eigenstates |B;) and |Bs).
Starting at t = 0 from a pure B° state, gives at a time ¢:

V3i+Iel?, _iom-i Ci(Ma—t
(114) |B(t)>=_\/ﬁ(e (M, ,Fl)t|B1>+e (M2 21"2)t|B2))

|B(t)) can be written as a superposition of |B°) and |BY) using equation (1.8). The coefficients are
the transition amplitudes A(B® — B°) and A(B® — BY); they are:

(1.15) A(B® — B%) = %(e—iMﬂe-%Flt + emiMatem 3ot
(1.16) A(B® — B) = G;z) %(e-ifoe-%W — e~ iMato=3Tat)

The ratio r of the total (amplitudes squared and integrated over time) probabilities is:

_ P(B°—> B _ J3° |A(B® — BY)|*dt
T P(B°—B°) " [ |A(B° — BO)|2dt

(1.17) r

Using equations (1.15) and (1.16) and doing the integrals gives:
1—¢|?
1+e¢

x2+y2

(1.18) "= 242yt

_ AM _ _M;-M. _ AL _ L}-Ty
where z = 55 = -1—’—2—7(1,1“,2) andy = 55 = ves
Similarly, starting from ¢ = 0 from a pure |B) state, one would have obtained:

2 x2+y2

(1.19) = 2+x2—y2

P(B° — B°) _.1+e
P(B*— B%)  |l—e¢
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Therefore, the asymmetry

_r=r _ Pl g

1.2 = - = ~
(120 v

is a measure of CP violation. The last step of (1.20) follows using:

2

1—e¢
1+¢

4 Re €

(1.21) Inf* = ‘ Tt

It will now be shown that CP violation effects are small. From analysis of the box diagrams of figure 1.1
in the limit when all quarks are massless except for b and ¢, follows!!3:14]:

(1.22) My oc m} (Vs Vi)

V unit
(1.23) Tup o m2(VasVitg 4 Vg V)2 0 Vrery)

m} (Ve Via)?

The box calculations have two consequences. First of all, I';5 and M2 have almost the same phase,
because both are determined by ViVy. In the limit that they have the same phase, ¢ is purely
imaginary as seen from (1.9), thus Re ¢ is small and |5|? ~ 1. In this limit equations (1.11), (1.12) and
(1.13) become:

(1.24) Q =~ | M| - %u‘w{
(1.25) AM =~ 2| Mys|
(1.26) AT =~ 2|1

Furthermore, I'13/Mis ~ O(m} /m?). Because mZ < m?, [T'13| < |Mi2| and AT < AM, so y is very
small compared to . With the two consequences y < z and |n|? ~ 1 of the box calculations, it follows
that a good approximation for B mesons is:

1.27 2
(127 e

Experimentally, the flip probability is often used to represent B°-B° mixing:

P(B° — BY) r z?

1.28 — = =
(1.28) X= BB = BY+PB =B 1+r 201+22)

This is the B%-B® mizing parameter x that is measured in this thesis. ~

x (0<x< %) is determined by observing a convenient final state in a sample where a B°-B0 pair
is produced. The analysis of this thesis uses the dilepton state, in which there are two leptons, each
coming from a different B meson. An excess of like sign dilepton events is an indication for mixing,
because with no mixing b—semi-leptonic decays always result in unlike sign dilepton events (B? — I~
and B® — I, where the lepton [ is either an electron, a muon or a tau).

X is calculated by determining the ratio R, which is defined as the number of like sign dileptons
N(I£1*) over the total number of dileptons, N (I*IF) + N(I£i%).

CP violation effects are ignored (e = 0), because as shown before, they are small. If CP violation
effects could not have been neglected, (1.20) is an asymmetry between the like-sign pairs {*[* and
[717, namely

r—7 N - N@I7)

(1:29) A= T T NEFm ENGD)
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Ignoring CP and explicitly writing all possible sign combinations, it follows from (1.28) that x, 7 and
R are related according to:

N(IFI%) + N(I-1- o
(1.30) = NEF) + NEIiIi; =21 =0= 7y

When R has been measured, (1.30) therefore gives:

(1.31) 1-VvI-2R

X = B
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Chapter 2

Neural Networks

Until the late 1980’s essentially all information processing applications used a single basic approach:
programmed computing. This involves devising an algorithmic procedure for solving the problem and
coding it correctly in software.

Sometimes however, a precise algorithm is not known or is very time consuming; then a new
approach to information processing that does not require rule development is the solution. Such an
approach is offered by neural networks. They are parallel, distributed and adaptive systems that
develop information processing capabilities after exposure to an environment.

The general function of a neural network is often similar to that of a subroutine (input — processing
— output) so it can be embedded inside a programmed computing environment. However, neural
networks are not meant to be immediately used as ‘black boxes’; first a sufficient level of understanding
should be reached as well as care taken during the development phase.

This chapter is a concise introduction to neural networks and serves as background information to
the more practical treatment of the next chapter, which focusses on the type of the neural network

used in this thesis. Those already familiar with ‘neural terminology’ and learning concepts might skip
this chapter.

2.1 Neural Network Concepts

A neural network is a parallel information processing structure consisting of a set of nodes with a set of
directed line segments between them. Figure 2.1 shows the organisation of a generic node, also referred
to as a processing element, unit or (formal) neuron.

In general, a node has the following properties:

o The directed line segments are connections. Each connection is an instantaneous uni-directional
signal conduction path. The strength of a connection is represented by a number, often called
the weight of that specific connection.

e Each node receives a number of signals z;,--- ,zn via its incoming connections. A node has
a transfer function that uses only its local memory and incoming signals to compute its output
signal y. During this process its local memory may be updated also.

e Nodes are connected to other nodes and/or to the outside world. If they are receiving input from
outside the network they are called input nodes and if they output their signal to the outside
world they are called output nodes. The other nodes are called hidden nodes since they function
entirely within the network.

Nodes can be connected in any way to form a neural network with a specific architecture. Any neural
network can be divided in a number of disjoint layers in which the nodes have the same transfer
function. Generally, one layer is reserved for the input nodes and another one for the output nodes.
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TRANSFER FUNCTION

X X x x
1 2 3 h

Figure 2.1: A generic node.
Information enters the network via the input nodes and leaves it via the output nodes. Nodes are
numbered according to a convenient scheme, such as left to right, bottom layer to top layer.
Figure 2.2 displays a small example neural network architecture, consisting of three layers. Arrows
indicate the direction in which the connections operate and the connection strength between a node
with index j and a node with index i is designated as w;j. When describing the information flow in a

neural network, a target based approach is used. This means that each node uses the connections that

impinge on it as ‘come from’ links rather than that they are treated as ‘goto’ links by their sending
nodes.

OUTPUT LAYER
Wa3

HIDDEN LAYER

INPUT LAYER

Figure 2.2: A simple neural network architecture with three layers.
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2.2 Learning

Learning is modifying a system in such a way that it better achieves a stated goal. For a neural network
that means that the weights between the nodes should be modified. Although there are many different
ways to implement learning behaviour, only three learning strategies will be discussed here. They (or
a mixture of them) are widely used in different neural network architectures.

The main learning strategies are:

e Coincidence Learning.

Weight changes take place in response to events within a node that oceur simultaneously, for
example an incoming line and its output are both high.

e Performance Learning.

Learning laws in this category try to find a set of weights that minimise or maximise a performance
(cost) function defined for the network.

o Competitive Learning.

A competitive process involving some or all nodes selects nodes which are ‘winners’ and are thus
allowed to modify their weights (or modify them in a different way from the ‘losers’).

Apart from a learning strategy the adaptation of the network always takes place according to a
training regime, which is the way in which the environment is presented to the network during the
learning process. There are three different training regimes:

e Supervised Training.

Supervised training is the most common training regime. Repeatedly a large set of input-output
pairs is presented to the network, which consists of example inputs together with their desired
or target network response. This set is called the training set. During the training the network
forms a reduced internal representation that is able to map the input on the output space.

e Graded Training.

Although similar to supervised training, the network only receives a score or grade that tells it
how well it has done over a sequence of multiple inputs. This is useful if the correct output is
not known for every input.

e Self Organisation.

A totally different philosophy in which the network is required to extract the features of the
probability distribution of the data presented to the network.

The above mentioned learning strategies will each be described in more detail in separate paragraphs
below in the context of their usual training regime.

2.2.1 Coincidence Learning

Coincidence learning has been introduced by the Canadian psychologist Donald Hebb. In his 1949
book The Organisation of Behaviourl'®] he poses that if a specific input to a neuron helps to let that
neuron emit a pulse, the efficacy of that input will be increased to help that happen again in the future.
An appealing concept because it implies behavioural reward even at the cellular level.

Hebb’s learning concept is the basis for the Hebb learning law for neural networks, which operates
in the context of an architectural element called the Lnear associator. In figure 2.3, a linear associator
layer consisting of M nodes is displayed. Its input is a vector & = (z1, 29, z3, . . . ,zn)T drawn from
RN, coming from the outside world or from other nodes in the network. The transfer function of
a node in the linear associator computes a weighted sum of its inputs, so the output vector § =
(Y1,92,93,...,ym)T at the top is derived from & by means of the product:

(2.1) 7=W&
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where W (= w;j) is an MxN weight matrix with rows @], @7 ,- - , @}, which are the weight vectors
of the individual nodes.

The basic idea is that the linear associator should learn, under a supervised training regime, the
correct input-output pairs (zl,tl) (a:g,tg) (fL‘L,{L) that form the training set. After that, input
of one of the training vectors &, should give an ¥ equal to tp, but moreover the input of any vector
close to &, should give an output vector close to t,. This is achieved when the weights are updated
with the following form of the Hebb learning law:

(2.2) wi = wf}d + tpitp;

zp; and tp; are respectively the j** and ¢** component of the vectors &, and t_;,. The w;;’s play the
role of the efficacy of the input to neuron i coming from neuron j. All w;;’s start off at zero, therefore
the efficacy wi; is only altered if both z,; and tp; are not equal to zero.

The Hebb learning law can of course be implemented in parallel for all nodes in the whole linear
associator layer, therefore in terms of the whole weight matrix:

(23) wnew — Wold + t‘pfl"

As the pairs (Zp,1t ) are entered, W is built up by their outer product sum. The llnear associator can
store at most N pairs of vectors if one requires it to map each &, exactly on its target tp Note however
that this full capacity is only reached if the vectors that have to be stored are orthogonal. If they are
not, one makes an error attempting to reconstruct f, using the product of formula 2.1.

If the vectors are not orthogonal, a mean-square error measure can be introduced, which leads to
a general method to find the best W. This is the Widrow-Hoff learning law, which will be discussed
in the next paragraph about performance learning.

X, X, XN

Figure 2.3: The linear associator.



2.2. Learning 15

2.2.2 Performance Learning

All forms of performance learning use an error measure that indicates how well the network performs
during its training. A very common goal is the mean-square error measure criterion, which quantifies
the difference between current behaviour of (nodes in) the network and their desired behaviour. In
Widrow-Hoff learning'®, the performance is for each node 7 defined as the mean-square €ITor measure
F(;) for a large number (L) of training pairs:

L
1
(2.4) F(;) = lim Z;(ypi — tpi)?

where y,; = w; - &) is the response of the node when fed with the training vector £, and t,; its desired
output.

The gradient —V g, F'(;) is the direction in which F(i;) decreases at the fastest possible rate.
Using definition (2.4) and 6p; = (yp; — t,;), this gradient is:

L
" .1
Vg, F(w) = - LlLl’rolo Z};Q(ypi - tpi)vz,;,.y,,i
1 &
(2.5) =~ Jim fp;za,,,-f,, = =2 < 6pidp >

To find the direction in which F(w;) decreases, a large number of 6pi&p vectors has to be averaged.
The idea of Widrow and Hoff was to use each 8,iTp as a correction to w; to minimise F (w;); they
proposed:

(2.6) T = T = b,

where 7 is a small positive constant, which has to be tuned by hand and is called the step-size or
learning rate. Typically one uses 0.01 < 7 < 10.0, but every different problem requires another 5 that
has to be varied during the training process. If 7 is too small, convergence of the weight vector will
take too long and if 7 is too big, there will be no convergence and the vector keeps oscillating around
the minimum.

Formula (2.6), the Widrow-Hoff learning rule, is also known as the least-mean-square (LMS) learn-
ing rule or the delta-rule for linear associator networks. In order to fully explore the capabilities of
the linear associator, one often adds a bias input to the network. This means that the input vectors &
each artificially get an extra coordinate equal to one. If these augmented vectors are then subjected
to the linear transformation W& then the associator layer can implement all affine transformations:
arbitrary rotation, scaling and translation operations.

It is not useful to add a second linear associator layer, since a sequence of two affine transformations
can always be implemented by a single other affine transformation. Adding more layers is only useful
if the nodes have a non-linear transfer function. This accesses a whole new range of powerful networks,
which can also implement non-linear mappings. In the next chapter about feed-forward networks their
capabilities will be described in detail.

2.2.3 Competitive Learning

Competitive learning laws are inspired by nature’s principle of ‘survival of the fittest’: only winning
nodes are allowed to learn. In this section a specific type of competition learning known as Kohonen
learning will be explained. It is a good example of the use of the self organisation training regime. Self
organisation implies that it is not needed to supply the network with the correct responses t-;y The
weights in the network will represent the (sub)structures in the input space, thus the training set only
consists of data vectors &.

The Kohonen learning lawl!?] operates in a substrate known as a Kohonen layer. Like the linear
associator of figure 2.3, it consists of M nodes each receiving an input vector of length M.
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However, it functions in a different way since each node calculates the quantity:
I; = D(&,, ;)

where D is any distance measuring function, for example the Euclidean distance D(Z,, @;) = ||£, — ]|
After that, a competition takes place between the nodes to find out which node has its weight vector
w; the closest to the currently fed &,.

The idea is that the weights of the Kohonen layer should form an accurate and compact represen-
tation for the probability density function of the data. This is very useful, because all information
that can be known about the data is contained in its probability density function p(ai, 23, ..., 2p).
All the @; vectors should arrange themselves so that they are approximately equiprobable, in a nearest
neighbour sense, with respect to the data vectors Z,,.

Moving a weight vector ; of the winning node towards a data vector &, can be achieved by the
basic Kohonen learning law

(27) P = 7+ (E, - )

In order to make this work in practice, two major problems have to be overcome.

First, if p contains disconnected regions in which the weight vectors can get stuck, there will be
under-represented regions of p. Two common methods exist that solve this problem. In the first one,
called radial sprouting, all weight vectors start off as the zero vector and the inputs Z, are multiplied
with a small positive number . During learning, § is slowly increased to 1, so the weight vectors are
slowly peeled off from the origin, as they follow the Z,’s. The second solution to solve the problem of
under-represented regions is to add uniformly distributed noise vectors to the data. First the amplitude
of the noise vectors is very high and as training proceeds their level gets lowered.

Apart from the problem of under-represented regions, the Kohonen learning law also does not
produce an equiprobable positioning of the w; vectors: their density tends to be too low where p is
small and too high where p is large. The solution is to build a ‘conscience’ into each node, which
keeps track of the fraction of time that that node wins the competition. This is called the conscience
mechanism!'8l: nodes with a frequency of winning the distance competition below (or above) the desired
equiprobable level 1/M are favoured (or disfavoured) to win the weight modification competition.
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Chapter 3

Back-propagation in Feed-forward
Neural Networks

Back-propagation, the learning strategy for an important class of neural networks, was first introduced
in 1974 by Paul Werbos'®). For more than ten years the algorithm remained obscure and unappre-
ciated. It was in 1985 due to David Rumelhart and the other members of the PDP group!29! that
back-propagation became available to a large audience in usable form. After that, the technique was
there to stay and many applications quickly emerged.

In this chapter, first the architecture and operation of the standard feed-forward back-propagation
network will be described. Next, the capabilities of these networks will be shown and practical is-
sues will be addressed that are important in their design and training stages. Finally, examples of
applications in high energy physics will be given.

3.1 Architecture and Operation

The architecture of a standard feed-forward neural network comprises two or more layers with only
connections between subsequent layers. In order to simplify the discussion the example network of
figure 3.1 that has only three layers will be used here. The nodes in its input layer are labelled k, the
nodes in the hidden layer are labelled J and the output nodes are labelled ;.

Nodes i

Nodes j

Nodes k

Figure 3.1: A feed-forward neural network with three layers.
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In a feed-forward neural network, information flows from the bottom to the top. The input to the
network (see figure 3.1) are the values zx, which directly are the outputs of the nodes in the first layer.
Each node in the next layer uses the outputs of the previous layer and the weights between the two
layers to compute its output.

Like in the linear associator, introduced in the previous chapter, each node calculates the weighted

sum of its inputs. This value is called the activity a of the node. In addition, the output of each node
is bounded by a function g.

In figure 3.1 the nodes in the hidden layer compute:

(3.1) aj = YL WikTy = Wj-&
hi= " g(q)

After that, the nodes in the output layer similarly compute their activities and outputs using the
outputs of the previous layer and the weights w;;:

(3.2) a; = Zj wi]-hj = ’u-f,' -h
Y = g9(a;)

g is called an activation or threshold function; its purpose is to limit the response of a node to a certain
range of values.

In the simplest case each node behaves like a binary threshold neuron and g is a step function: if
the activity is above some threshold 8 the output of the node becomes 1 otherwise 0. Unfortunately, it
is not possible to find a learning algorithm for a network with binary threshold neurons that has more
than two layers. An intuitive learning rule does exist if there are only two layers. A two layer linear
associator with binary threshold neurons is called a perceptronl?ll; however it has a limited usefulness
and will not be considered any further here.

g(x)

Figure 3.2: The sigmoid function g(z) = 1/(1+ e %TY for T=0,T=05T7=10 and T = 2.0.
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In order to devise a learning rule a continuous non-decreasing differentiable function replacing the step
function is necessary. A common choice is the sigmoid function:

(3.3) g(a) = 1_+e.-ia—-9)/—T = % + %tanh((a - 9)/T)

The output of g(a) is a real number between 0.0 and 1.0. The sigmoid function acts as a soft
threshold function: the network is given an effective ‘temperature’ T that is the inverse slope of the
sigmoid (see figure 3.2).

After introducing g(a), the gradient descent procedure introduced in the previous chapter can be
generalised to feed-forward architectures with one or more hidden layers. The resulting recipe that
minimises the mean-square-error over the training set is called the generalised delta-rulel29l or the
back-propagation algorithm, a derivation of which is found in appendix A.

Back-propagation consists of two passes. In the first pass an input vector & proceeds through the
network and generates a certain output vector 7. Next, in the backward pass, the difference between
¥ and desired output ¢ generates an error signal that is propagated back through the network to teach
it to come closer to the desired output. This is achieved by applying the following steps:

1. Initialise all the weights with small random positive or negative values: wi? and w;:’,:".

ij
2. REPEAT 3-6
3. Take the next training pair (Z, 7).

4 Calculate k and the network output § according to formulae (3.1) and (3.2).
5. Calculate for each node in the output layer the error signal 6; = y; — t;.
6

Update the weights with learning rate 7.
Output nodes: wfi™ = wld — né;h;
Hidden nodes: w® = wold — 37, wi;8i9/ (a;)ax

7. UNTIL the w;; have converged or the desired performance level is reached.

The back-propagation algorithm minimises the mean square error:
1
(3.4) E(w) = 3 Z Z(ypi —tp)?
4 i

where p runs over all training pairs (fp,t_;,). At any time, E(w) is a function of all the weights w of
the network. The values E(w) constitute the error surface of the network.

Many variations exist on the basic back-propagation algorithm. A very common extension is the
addition of a momentum term to the weight update equations. The idea is to provide each weight with
some inertia with strength « to avoid oscillations around the minimum:

(35) Awij = —néih,- + QAOMU),']'
(3.6) Awjy = —nz wi; 65" (aj)zy + aA"Idwjk

More drastic changes to achieve faster convergence usually involve the introduction of individual learn-
ing rates. Manipulation of individual learning rates enables a more efficient exploration of the error
surface and therefore yields a faster convergence. Examples of these self adapting back-propagation
algorithms are the SAB[??], SuperSABI?3] and delta-bar-deltal?4] methods,

A different approach is the incremental neural network technique of Timur Ash!2%). This method
starts with a small number of hidden nodes and adds nodes in response to changes in the error level
as measured using test data.

The use of back-propagation is not limited to simple architectures with layer to next-layer connec-
tions. For example, it can be applied to architectures in which connections skip layers (see figure 2.2
in chapter 2), recurrent architectures!26] and higher order architectures27].
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3.2 Capabilities of a Feed-forward Network

Like other multivariate classifiers, a feed-forward neural network exploits the correlations among vari-
ables describing the objects to discriminate. It is clear that this is a much more powerful approach
than simply projecting each of the variables on their axis, because then their correlation is lost and
the individual distributions will usually overlap.

In the simplest type of classifier, the Fisher discriminant282°] one searches for another projection
axis, that is a linear combination of the variables, to reduce the amount of overlap. Fisher discriminant
analysis can not be outperformed if the distributions of the individual variables are Gaussian and have
the same correlation matrices, i.e. if they have the same shape and just distinct centroids. If the
distributions have different correlation matrices, one can introduce a more general Gaussian classifier,
that can not be outperformed if distributions are Gaussian!2%l.

If the distributions are not Gaussian, the Gaussian classifier does not achieve the best possible
separation. That is where back-propagation neural networks come to help: they can form a non-linear
discriminating function that is able to separate also non-Gaussian distributions. In general the nodes
in the hidden layer(s) act as feature detectors in the sense that each of them ‘sees’ two different regions
in the multi-dimensional space and divides them using hyper-planes.

A two-dimensional example of this mechanism is shown in figure 3.3 with two distributions A and
B, which are clearly not Gaussian. Dashed lines in this figure indicate the three hyper-planes (in two
dimensions they are lines), that correspond to three hidden nodes together forming a curve to separate
the distributions. A more detailed and numerically explicit example of this mechanism is described in
appendix C.

There is mathematical justification, although not completely satisfactory up till now, that a feed-
forward neural network can implement a very wide range of discriminating functions. After David
Hilbert presented in the beginning of this century 23 problems for future mathematicians to solvel30],
Andrei Kolmogorov and Vladimir Arnol’d started a friendly mathematical battle in which they tried to
solve the 13th problem. Kolmogorov wonl3!! and his victory and later improvements from others!32-34]
led to the theorem below, which is relevant to the capabilities of feed-forward neural networks.

Kolmogorov’s Mapping Neural Network Ezistence Theorem!34] Given any continuous
function f : [0,1]* — R™, f(Z) = §, f can be implemented exactly by a three-layer feed-forward
neural network having n nodes in the first (Z input) layer, (2n + 1) nodes in the middle layer, and m
nodes in the top (¥ output) layer.

Kolmogorov’s feed-forward network does not have nodes with a sigmoid activation function. The
existence theorem was proved for semi-linear nodes in the hidden layer and highly non-linear nodes in
the output layer.!

Although the theorem indicates that the quest for approximations of functions by a feed-forward
network is theoretically justified, it is not constructive: it only says such a three layer network must
exist, but not how to find it. Specific examples of the transfer functions for the nodes in the hidden
and output layers have not been found yet.

Kolmogov’s theorem was a first step, but the next theorem below shows that a back-propagation
network is also able to implement any function of practical interest.

Back-propagation Theorem!3%] Given any € > 0 and any function f : [0,1]" — R™ for which
each of its coordinate functions is square-integrable on the unit cube?, there is a three-layer back-
propagation neural network that can approximate f to within e mean-square-error accuracy.?

1 The actual requirements were: hidden nodes j calculate hj = Z:= 1 AU (g + je) + 7, where ¥ is monotonically
increasing, continuous and real. X is real and € a rational number with 0 < € < § with § > 0 an arbitrary chosen
constant. Qutput nodes calculate y; = E::Tl gi(hj), the g;'s are real, continuous and highly non-linear.

2 A function g(&) is said to be square-integrable on the unit cube if f[o " |g(2)|?d# exists.

3 e= f[o e @ = F(#)|2d# with f(£) an approximation of f(&).
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Note that this theorem only says that for any f :[0,1]® — R™, there exists a set of weights for a
back-propagation network that implement it. This does not imply that the back-propagation algorithm
or any other known learning algorithm is able to develop these specific weights.

Figure 3.3: Separation of two distributions A(z,y) and B(a,y).

3.3 Practical Issues using a Back-propagation Network

When developing a back-propagation neural network, one has to choose an architecture and a set of
initial parameters for the training. Most of these choices are a matter of experience and depend on

the problem at hand. This section contains guidelines for the design and training of back-propagation
networks.

3.3.1 Network Architecture

Number of layers

The back-propagation theorem indicated that three layers is always enough, and in practice that is
often true. However, sometimes it is necessary to use four layers or even more. This is when too many
hidden nodes would be required to solve the problem with only one hidden layer, whereas an adequate
solution can be obtained with a smaller network size by using more than three layers.

Number of input nodes

The number of input nodes is equal to the number of distinctive and sensitive variables chosen to solve
the problem. Often this number can be decreased significantly by combining basic variables to form a
‘smart’ variable, which is known to be more sensitive to the problem.
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The number of output nodes

The function of the output layer is to represent the networks response on anything fed into the input
layer. So, if the network is used to discriminate between between two predetermined classes of events,
A and B, one output node is needed (binary coding). If the output of that node is less than 0.5,
the event presented at the input layers is assigned to class A, otherwise to class B. For N classes,
the number of output nodes should be at least equal to the number of bits required for the binary
representation of N. In practice, one chooses the number of output nodes equal to N.

Number of hidden nodes

The hidden nodes implement separation planes in the multi-dimensional space of the input variables.
Choosing more hidden nodes increases the number of paths to the global minima of the problem and
decreases the chance of getting stuck in local minima during the training. On the other hand increasing
the number of hidden nodes also increases the dimensionality of the weight space thereby giving rise
to a lower generalisation performance (see section 3.3.3). The normal approach is to start out with
many hidden nodes and decrease their number if the performance of the network is still satisfactory.

For many problems the number of hidden nodes is in between half and two times the number of input
nodes.

3.3.2 Setting the Training Parameters

A number of items are important for the learning behaviour of the network. For standard back-
propagation learning (with the momentum extension) they are:

e Scaling of the input variables.

The network learns more easily if the all inputs are scaled O(1). The optimal weights between
the input and the (first) hidden layer will then be of the same order of magnitude as in the rest
of the network. Moreover, if one of the inputs would be significantly larger than the others the
network will concentrate on it too much and take a very long time to learn the others.

e The learning rate 7.

The optimal learning rate n for a node scales like 1/(its fan-in) or stronger®®!. The fan-in
to a node is the number of nodes connecting to that node in the forward direction. In back-
propagation where there is only one learning rate for all nodes in the network the initial learning
rate can be safely chosen of the order of 1/(average fan-in of nodes in the network). As learning

proceeds, 7 is usually decreased (weight decay) to allow for a less coarse search for (and near)
the minimum.

e The strength o of the momentum term.

In practice all values between 0 and 1 are used. Since the momentum term is supposed to damp
out oscillations near the minimum, its value is increased as training proceeds.

e The temperature 7.

The higher the temperature, the less likely it is for the network to end up in a stable state. If the
temperature is too low however, the network will be unable to escape local minima. In practice
T = 1.0 is often a convenient and good choice.

e The initial weights.

In back-propagation the weight changes Aw;x = wig® — w?td are proportional to g’ (a). The

initial changes to the weights should be large, this means g (a) should be large and the initial
summed inputs should be small. As a rule of thumb choose the initial weights wi}*, wit® =
0.1/(maximum fan-in).
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3.3.3 Achieving Generalisation

The upper limit of generalisation performance for a classification problem is given by the Bayes limit37],
which is the minimum overlap of the multidimensional distributions. For simple problems with over-
lapping Gaussian distributions, the Bayes limit is easy to calculate and it has been demonstrated that
back-propagation networks generalise to values very close to this limit[8]. For ‘real’ problems with
higher dimensionality it is often not feasible to calculate the Bayes limit.

In practice the network generalisation performance depends mainly on the ratio Ny /Ny, where N,
is the total number of weights in the network and N, the total number of training patterns. N, is
a measure for the amount of information that can be stored in the network. If Np is too small, the
training set can be completely stored in the network and the network has found a useless solution to
the problem only valid for that specific training set. Feed-forward networks with one hidden layer have
a generalisation error of order O(N,, /N, ). A rule of thumb is that one should at least use 10 times
more training sets than there are weights in the network. It is anyway advisable to use the biggest
training set available, that is independent of the set where the network will be applied to.

To improve the generalisation performance, it also sometimes helps to add random noise to the
training vectors, which smears them. Another method is to train, after initial training with the whole
set, only with sets whose outputs are close to the midpoint value of the activation function. These are
the difficult cases that are close to the border between classes.

Another phenomenon that has to be dealt with is over-training. This sometimes happens in the very
last phase of the training when the performance on an independent data sample actually goes down,
while the error on the training set still (slowly) decreases. The reason is probably that, because of the
finite size of the training set, the network starts focusing on details in the training set in its attempt
to fit the data better and better. There are two ways to attack over-training. First of all, one can stop
training when the error on the training set starts decreasing very slowly, because usually a satisfying
level of performance has then been reached anyway. This, of course, has to be checked afterwards on
an independent data set: the test sef. Another method is to keep track of the error on the test set
during training on the training set; when the error on the former goes up, the training is stopped.

3.4 High Energy Physics Applications

High energy physics contains many interesting feature recognition problems in both off-line analysis
and on-line event selection. Obvious examples are heavy quark taggingl40-43] Higgs tagging*¥], mass
reconstruction(*3], trackingl*®! and many other situations in which the separation of signal from back-
ground is essential. There are many established neural network solutions to these problems around.
Many results have been achieved which are superior to conventional approaches” %% and when their
performance was equivalent to conventional approaches their solution was found to be stable[59]

In this section an existing implementation of quark-gluon separation with a feed-forward neural
network will be described in some more detail, and a second example, a possible implementation of
noise suppression will be presented.

3.4.1 Quark-Gluon Separation

Tests of QCD often require the knowledge of the parton origin of a hadronic jet. For example, the
distinction between quark and gluon jets provides a measurement of the gluon-gluon and quark-gluon
coupling in multi-jet events.

Hadronic jets originating from quarks have on average a larger energy than those originating from
gluons, which is exploited in the standard quark-jet tags. For heavy flavours the presence of a lepton
from semi-leptonic decay indicates a quark jet. The neural network approach, described below, offers
a tag t[};gmlt doesn’t rely on the jet energy but exploits the fragmentation difference between quarks and
gluons!?®),

The data available to the network were simulated ete~ events at 29 GeV/c and 92 GeV/c centre-
of-mass energy, produced by the three different Monte Carlo generators JETSETB! ARIADNE(52]
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and HERWIG®3, All of these were forced 3-jet events with the angles between the jets greater than
40 degrees and clustered with LUCLUSPBY.

The network used 16 variables: the four-momenta (p, E') of the four leading tracks in the jet. It
was trained on a single jet basis using a three layered feed-forward back-propagation network with 16
input nodes, 10 hidden nodes and 1 output node. Gluons were expected to give an output of 1.0 and
quarks an output of 0.0. If the output was greater than 0.5 the jet was interpreted as a gluon jet
otherwise it was interpreted as a quark jet.

The resulting network classifies gluon and quark jets (85 & 1)% of the time correctly. The perfor-
mance of the network was found to be stable for all three Monte Carlo generators at both centre-of-mass
energies.

This is a spectacular result, because selecting the jet with the smallest energy as the gluon jet
typically yields 65% identification ratel®¥ and even the best more elaborate schemes have a 70-75%
performancel®3].

For this problem it was possible to calculate an estimate for the Bayes limit using the total energy
and momentum of the jet and reducing the accuracy of the kinematical variables. After dividing the
kinematical ranges into 100x100 bins, the integration indicated ~88% maximum performance. The
neural network prediction is just a few percent below this theoretical limit.

3.4.2 Noise Suppression

Feed-forward back-propagation networks don’t always have to be provided with example inputs to-
gether with their desired outputs during training. When auto-associative learning is applied, the
network is taught to perform the identity function: the input to the network should be reproduced as
good as possible in the output layer.

Typically the number of hidden nodes is less than the number of output nodes. The network
encodes general properties of the input data as efficient as possible into the nodes of the hidden layer.
The smaller the number of hidden nodes, the less detail can be kept by the non-linear dimensional
reduction carried out in the step between input and hidden layer. The hidden nodes act as feature
detectors, they keep what they can parametrise, the rest like random noise they discard.

Auto-associative feed-forward networks have been used already with success in digital signal pro-
cessing applications!®®57] outside of high energy physics. A possible implementation in high energy
physics could be the removal of noise from signals of the strips of a Multi Wire Proportional Chamber
(MWPC) and other situations that could benefit from a non-standard low pass filter.
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Chapter 4

The DELPHI Detector

The DELPHIP®] experiment is one of the four experiments at the LEP collider facility at CERN. It
has been designed as a general purpose detector for the study of ete~ collisions. For the last five
years, LEP has been operated around the Z° peak to obtain high precision measurements of Standard
Model parameters.

The various detector components of DELPHI, which surround the interaction point like layers of
an onion, combine precise track reconstruction, calorimetry and particle identification, to make a full
reconstruction of the event possible.

In this chapter the different parts of the DELPHI detector (shown in figure 4.1) will be briefly
discussed. A short functional description of each component will be given as well as performance
information relevant to their operation in 1992.

In the following, the (longitudinal) z-coordinate is defined as the coordinate along the beam axis,
0 < @ < 7 as the polar angle and 0 < ¢ < 27 as the azimuthal angle in the transverse zy-plane.
Around the polar angles 40° and 140°, space was needed for cabling and support structures of the
various sub-detectors. These areas are the separation between the barrel and forward (or end cap)
region of the detector.

One of the sub-detectors, the Inner Detector, will be discussed in more detail in chapter 5.

4.1 Tracking Detectors

The tracking detectors of DELPHI handle the track reconstruction of charged particles. They all
reside within the 2.75 meter radius of DELPHI’s super conducting magnet: a solenoid 6.8 meters long.
The magnet’s very uniform axial field with a strength of 1.2 Tesla allows precise measurement of the
momenta of charged tracks.

Together, the barrel tracking detectors cover the polar angles between 25° and 155° and yield a
reconstruction efficiency of practically 100%. The combined average momentum resolution §p/p ranges
from 0.6 to 1.3 10~3p[GeV], depending on 4.

The following sections describe DELPHI’s tracking detectors starting from the centre of the detector
towards larger radii.

Vertex Detector (VD)

The VD consists of three cylindrical layers of silicon micro-strip detectors, which immediately
surround the 6 cm radius beam pipe. The layers cover all polar angles between 44° and 136° and
reside at radii of 6.3 cm, 9.0 em, and 11.0 ¢m. The VD provides r¢ coordinates of charged tracks close
to the interaction point. This improves the reconstruction of the primary vertex and of secondary
vertices from heavy flavour decays.

In 1992 the VD had an intrinsic point resolution for isolated tracks in the transverse plane of 8 um.
The track separation is better than 100 pm and the impact parameter resolution oip depends on the
transverse momentum p, and can be parametrised as oip = (0.069/p:[GeV/c) + 0.024) mml59],
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Figure 4.1: Perspective view of the DELPHI detector.
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Inner Detector (ID)

The ID is a cylindrical wire chamber covering polar angles between 29° and 151° with an in-
ner radius of 12 ¢m and outer radius of 28 em. It comprises a jet chamber section providing 24
r¢-coordinates, surrounded by five Multi Wire Proportional Chambers, which give both r¢- and lon-
gitudinal z-coordinates. Together with the Outer Detector, the ID provides a fast first level trigger.

The resolution figures for the ID are or¢ = 90 pm for the jet chamber and ¢, < 1.0 mm for the
proportional chambers. The ID will be more elaborately discussed in chapter 5.

Time Projection Chamber (TPC)

The TPC is DELPHI’s central tracking detector and provides the major part of the three dimen-
sional spatial information. It has an inner radius of 0.35 m and and outer radius of 1.11 m. With its
length of 2.60 m, it covers polar angles between 20° and 160°.

The large drift volume of the TPC is read out by MWPC’s at the end caps and is divided in
two parts by a wall at z = 0. The cathodes of the MWPC’s do the reconstruction of ré-coordinates
and drift times yield the z-coordinates. The anode wires measure dE/dz: the energy loss through
lonisation per unit of length. dE/dz behaves differently for different particles of the same momentum
and is therefore used for particle identification, in particular for electron identification (see section 6.2).

The TPC’s drift volume is operated at normal (atmospheric) pressure. By operating at atmospheric
pressure however, some momentum and dE/dz resolution is lost; however the former is improved by
combining all tracking detectors.

The TPC achieves a single point ré-resolution in the range 180-250 um depending on ¢ and on z,
and a z-resolution of about 1.0 mm.

Outer Detector (OD)

The OD consists of five layers of drift tubes, covers the polar angles between 42° and 138°, and is
situated between 1.98 m radius and 2.06 m radius.

In r¢, the OD provides fast trigger information in conjunction with the ID (see section 5.3 for the
ID-OD trigger).

Furthermore, the OD adds an accurate r¢ measurement (about 100 pm) at large distance from the
interaction point, which improves the momentum resolution of fast tracks. In the z measurement, only
three layers of the OD are employed; they give a fast but coarse (x4 cm) point, used in the trigger.

Forward Chamber A (FCA) and Forward Chamber B (FCB)

The FCA and FCB are positioned perpendicular to the beam axis in the end cap region of DELPHI,;
the former directly after the TPC and the latter between the forward RICH and the FEMC.

They are wire chambers yielding resolutions of about 300 pm in the zy-plane and measure the
momentum and angle for particles produced at 8 < 35°. Furthermore, the forward chambers are a first
level forward trigger and complete the particle trajectories before and after the two RICH counters.

4.2 Calorimetry

Calorimeters measure energies of photons, electrons and other neutral and charged particles. These
particles interact with the material of the calorimeters and thereby induce a shower of particles of
which energy and position are measured. The characteristics of DELPHPI’s electromagnetic and hadron
calorimeters are described in the following paragraphs.
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High-density Projection Chamber (HPC)

The HPC is the main electromagnetic calorimeter covering polar angles between 42° and 138°. It
uses a lead converter structure for shower development interleaved with nine gas sampling volumes. An
electric field extracts the resulting ionisation electrons onto a proportional wire chamber, which provides
three dimensional reconstruction of electromagnetic showers. The energy resolution per electron of the
HPC has been measured in Z° — ete~ 4% and amounts to (25/+/E[GeV/c] + 6.3)%.

Electron identification in DELPHI relies mainly on the HPC. Identification is based on the com-
parison between the observed longitudinal shower profile and that of an electron of the same energy.
More on electron identification can be found in section 6.2.

Forward Electro-magnetic Calorimeter (FEMC)
The FEMC is the electromagnetic calorimeter for the forward direction (143.5° < 6 < 170° and

10° < 6 < 36.5°). It consists of counters of homogeneous lead glass blocks equipped with one-stage
photo-multipliers (triodes). The energy resolution of the FEMC was measured to bel60l;

2 2
oE 20 20
( E )FEMC (,/E[GeV] * ) * (E[GeV]> %
Hadron Calorimeter (HAC or HCAL)

The HAC covers the full solid angle 10° < 6§ < 170° (barrel + end cap) and is a sampling gas
detector incorporated in the magnet yoke, which is used as absorber. It detects both neutral and
charged hadronic particles and measures the total hadronic energy.

During the 1992 run the achieved energy resolution og/E was about (120/\/E[GeV])%.

4.3 Particle Identification

DELPHI uses various types of information to identify particles in an event:
e Velocity measurements, see the Ring Imaging Cherenkov Counters below.

e Energy loss measurements in the TPC.

Total (electromagnetic) energy in the calorimeters.

Momenta of charged particles derived from their curvature in the magnetic field in all tracking
detectors.

e Penetrating power: the particle in question reached the Muon Chambers, see below.

This quantitative information is combined to form a consistent ‘four-vector’ reconstruction of an event.
Two groups of particles though, escape direct detection.

First, the short lived particles that decay before they leave the beam pipe. They can only be
identified by their decay products and good vertex reconstruction by the VD.

Secondly, the neutrino’s, which can not be measured directly because of their very meager interac-
tion with matter. Their presence is deduced from missing energy and momentum in the event.

Ring Imaging Cherenkov Counters (RICH)
A charged particle causes emission of a light cone when it traverses a medium with a velocity which

is greater than the speed of light in that medium; this is called the Cherenkov effect. The opening
angle of the emitted light cone depends on the velocity of the particle.
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DELPHI’s RICH counters, which are unique at LEP, make use of this principle in both the barrel
RICH and the forward RICH. They contain two types of radiators: a liquid radiator and a gas radiator.
Cherenkov photons, formed in the gas radiator, are focussed by parabolic mirrors into a drift tube with
MWPC read-out; the liquid gas radiator uses proximity focussing. More information about the RICH
can be found in(58:61],

The RICH is used to separate protons, pions and kaons over a large momentum range, making it
unique among the LEP detectors. See references!®2-64 for recent studies that depend on the RICH.

Barrel Muon Chambers and Forward Muon Chambers (MUB and MUF)

The muon chambers are a set of drift chambers giving three dimensional information about a
traversing particle. Charged particles have to penetrate the HAC over its full depth to get here, so
they are very likely to be muons.

In the MUB (52° < 6 < 128°) there are three sets of chambers with each set consisting of two layers
of chambers. The first set lies within the slots in the iron of the HAC about 1 meter deep and the other
two are just outside of the iron. Muons are tagged by demanding the presence of two reconstructed
space points on the tracks of traversing particles for each set. Measurement of the angle of the charged
particle separates real muons from background events. The resolutions of the MUB measured using
ptp~ events extrapolated to the muon chambers are 0rg =4 mm and o, = 25 mm.

The MUF handle the muon identification for the forward region, they cover the polar angles 9° <
f < 43° and 137° < 6 < 171°. The resolution figures for the MUF: 0z = 0y = 3 mm, have been
determined using so-called halo muons. These are muons created at the collimators far from the
interaction point; they enter DELPHI parallel to the beam axis, accompanying the beams.

Detailed information about the muon identification can be found in section 6.1.

4.4 Other Sub-detectors

Luminosity detectors detect Bhabha events: ete~ — ete=. Using the known cross section for this
process, they can then be used to measure/monitor the luminosity. In DELPHI these are the Small
Angle Tagger (SAT) and Very Small Angle Tagger (VSAT). They distinguish photons from charged
particles for tracks in 2.5° < § < 7.7° and 0.3° < 6 < 0.4° respectively.

Finally, the barrel and the end cap region are equipped with scintillation counters, namely the
Tvme-Of-Flight Counters (TOF) and Forward Hodoscope (HOF). They are used to separate background
events (cosmics) from real events at the trigger level.

4.5 Data Taking and Data Handling

This section describes the way experimental high energy physics is practised using the DELPHI detec-
tor; from the moment the LEP beams collide and possibly produce an interesting event, to the time
the data is ready to be analysed.

Collision — Triggers — Raw Data

Four (or eight) bunches of electrons and positrons, which are accelerated by radio-frequency cavities,
bent by dipole magnets and prevented to disperse by quadrupole magnets, circulate the LEP ring in
opposite directions. This results in a bunch crossing (BCO) every 22 (or 11) ps. At the four points
along the ring where the LEP detectors L3[65], ALEPH®¢] OPAL[S”) and DELPHI are situated, they
are focussed by quadrupole magnets such that a collision can take place. At each BCO, a signal is
sent from LEP to activate the read-out systems of the LEP detectors.

In order to discriminate between real events and background processes, DELPHI uses an hierarchical
filter procedure embodying four trigger levelsl68-70l. T1, T2, T3 and T4. The first two triggers T1
and T2 are implemented in hardware and are synchronous to the BCO. T3 and T4, implemented in
the data acquisition system from the 1992 run on, are software filters.
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The first level trigger (T1), studies the significance of incoming signals within 3 ps and therefore
must be implemented in hardware. It comprises several sub-triggers for the various detectors and
produces a global characterisation of the event. Only minimal information such as energy or transverse
momentum thresholds, satisfying certain requirements in terms of multiplicity, is considered. No
correlation between the different sub-detectors is introduced at this level. If an event is uninteresting,
the TPC and the RICH-counters close. T1 combines all sub-trigger information and reduces the ‘event’
rate from the 45 (90) kHz BCO rate to about 1 kHz.

The second level trigger (T2), which is also implemented in hardware, makes a decision within 35
us. It combines the trigger signals arising from the different sub-detectors. Because T2 has to wait for
the data of the large drift counters (TPC and HPC), several BCO’s are lost. The 1 kHz event rate,
which persists after T1 is now reduced to about 3-5 Hz.

The third level trigger (T3) has to respond within 50 ms. A more accurate characterisation of an
event is now possible with a software approach, such as a simple pattern recognition technique. T3
was implemented in 1992 with the aim of keeping the data logging rate in the vicinity of 2 Hz. After
the third level trigger, the event rate is reduced to 2-3 Hz.

Finally, the fourth level trigger (T4) was devised in late 1992 with the aim to disentangle background
triggers from physics candidates in real time. In practice T4 tags the events and rejects those regarded
as empty.

Only events that have passed at least T2 are ever written to tape. These data are called raw data
and consist of the information as it is directly delivered by the read-out electronics, such as drift times,
charges and hit patterns.

DST — DSTFIX — N-Tuple

The raw data are treated by DELPHI’s general analysis program DELANA[™Y to create Data
Summary Tapes (DST’s). DELANA has software modules for every sub-detector of DELPHI to
perform local pattern recognition, which finds valid track elements and energy clusters.

After that, DELANA reconstructs the event by linking the individual track elements and energy clusters
together to form complete tracks. It hereby relies on an updated DELPHI detector description and
calibration database to provide calibration and alignment constants for each sub-detector.

After study of the DST’s, it often turns out that the alignment/calibration of the detector is not
completely correct and that adjustments are necessary at the single sub-detector level. Most of these
inaccuracies are solved by directly adapting the DST, performing a so-called DSTFIX; then it is not
necessary to process the bulky raw data again.

The (fixed) DST can be the starting point for the physics analysis, but many people prefer to
condense the data even more, for example because their analysis doesn’t need the information of all
sub-detectors or only needs a limited set of DST derived variables. Programs that can read the DST,
like PHDSTI? | are used to produce mini-DST’s and N-tuples, which contain a limited set of physics
variables.

At NIKHEF a general purpose package has been developed called NIKLIB based on PHDST, which
allows intuitive embedding of user modules and produces portable N-tuples. This package has been
used to create the N-tuples that were the basis of the analysis presented in this thesis.

Analysis

After the data is available in a handy form, like a mini-DST or an N-Tuple, the analysis can begin.
In order to understand the DELPHI data, simulated data produced by DELPHI’s simulation program
DELSIMI™ has to be studied. Simulated events have gone through the same reconstruction chain as
real events, but contain extra information which reveals the true nature (momenta, particle type etc.)
of all tracks. Consequently, one can check efficiencies of the reconstruction, consistency of applied cuts
and many other issues.
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The Inner Detector

The Inner Detector (ID, a transverse view is shown in figure 5.1) immediately surrounds the Vertex
Detector and consists of two major parts: the Jet Chamber and the Trigger Layers, which both provide
a track trigger. The Jet Chamber delivers accurate points in the r¢-plane and the Trigger Layers r2z-
and r¢-coordinates. As a whole the ID is a fast single track trigger that is also used in combination
with the Outer Detector (OD).

The Jet Chamber is segmented azimuthally into 24 sectors. Each sector is a separate drift chamber
with an electric field arranged in such a way that drifting electrons have a constant angular velocity
towards the centrally located anode plane. The drift time information of (up to) 24 anode wires gives
an accurate r¢ track element at about 17 em from the interaction point.

The Trigger Layers are situated outside the Jet Chamber. They consist of five layers of cylindrical
Multi Wire Proportional Chambers (MWPC’S[74]). Cathode strips run perpendicular to the anode
wires and form loops around the detector. A signal along an anode wire induces a charge on several
cathode strips. The charge distribution on the cathodes is analysed to obtain z-coordinates. The r¢
information from the five layers of anode wires is used to resolve left-right ambiguities present in the
Jet Chamber.

The following sections elaborate on the ID parts and the ID-OD trigger. After that, the ID
calibration database and the determination of the internal z resolution will be described in more
detail.

5.1 The Jet Chamber

The Jet Chamber occupies the region between 12.0 and 23.0 cm radius and consists of 24 wedge-shaped
drift sectors, each containing 24 signal wires. In the gap between Jet Chamber and Trigger Layers, a
mirror is installed at every fourth sector to allow laser calibration of the Jet Chamber.

The electric field in a drift sector increases linearly in the radial direction, which causes a linear
dependency of the drift velocity on the distance to the interaction point. As a result, tracks originating
from the vertex region give a coincident signal on all sense wires. This feature is used in the pattern
recognition and in the trigger.

Because the Jet Chamber only delivers drift time information of a track, it is impossible to tell at
which side of the anode plane the particle passed: every track has an associated ‘mirror track’. This
left-right ambiguity is resolved by the r¢ information provided by the Trigger Layers, or in a later
stage by the reconstructed track segment in the TPC.

For the Jet Chamber a gas mixture consisting mainly of CO, (94.7%) was chosen as drift gas because
of its small Lorentz angle and low diffusion coefficient. Furthermore, small amounts of isobuthane
(4.6%) and alcohol (0.7%) were added, which make the detector more stable. The Jet chamber is
operated at a constant pressure of 996.1 4+ 0.2 mbar.

The drift times are measured using LTD’s: Time to Digital Converters (TDC’s) capable of regis-
tering multiple hits at one wire (input channel). The LTD’s have a time resolution of 2.2 ns.
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In practice, response time spread, charge collection, diffusion and noise cause the chamber to have a
resolution of about 90 pm per point.

5.2 The Trigger Layers

The Trigger Layers are five layers of cylindrical MWPC’s with cathode strip read-out and occupy the
region between 23.0 and 28.0 ¢ radius and —40.0 to 4+40.0 ¢m in z.

Each layer (see figure 5.2) contains 192 anode wires (20 um diameter W/Au) and 192 cathode strips.
Signals on the cathodes are read out from 192 pickup strips, which are parted from the cathodes by a
100 pm Kapton layer. The anode wires are separated by field wires (70 ym diameter Cu/Be) to form
9 mm wide drift cells. The remainder of the layer is a 2 mm thick cylinder wall consisting of support
and shielding material.

The drift gas employed in the Trigger Layers is Ar/CO; (70%/30%), which gives a good cell
separation in a perpendicular magnetic field("%.

The charges on both the anode wires and the pickup strips are sampled by 8-bit Flash Analog to
Digital Converters (FADC’s(7®]). One FADC handles 96 channels, therefore four FADC’s are needed
to cover the 192 anodes and 192 cathodes of each trigger layer. The FADC’s deliver 32 samples of the
charge pulse at 15 M Hz with values in the 0-255 range, which are summed to a total pulse height for
both anodes and cathodes.

A non-zero pulse height on the anodes produces an r¢-trigger bit. If the pattern formed by the
ré-trigger bits in different layers indicate a valid track, this track (and possibly track elements from
the TPC or OD) is used to solve the r¢ ambiguity of the Jet Chamber.

The cathodes carry signals induced by charges on the anode wires. The induced charge originating
from one anode wire is spread out over 2-7 cathode strips. First, a cluster algorithm disentangles the
individual induced charges. After that, calculating the centre of a charge cluster gives the z-coordinate.

The determination of the internal z resolution using the Trigger Layers is described in detail in
section 5.5.

5.3 The ID-OD Trigger

This section describes the ID-OD track trigger with emphasis on the ID trigger and how its output
is combined with the OD. Already at the first level trigger, trigger information of the ID is combined
with that of the OD. At the second level the ID outputs the same information while the OD uses z
information to confirm its r¢ information.

The Jet Chamber returns 24 trigger bits in r¢, one for each sector, the Trigger Layers similarly
return 24 r¢ trigger bits for each ‘sector’ plus 48 trigger bits in rz. Two hardware modules implement
the ID trigger: the JET Trigger Module (JETTMU"™) and the LAYer Trigger Module (LAYTMU81).
In this section only the LAYTM will be discussed in some detail, more information about the JETTM
can be found in referencel3%.

LAYTM handles both the r¢ and the rz triggering, which are implemented on two identical elec-
tronic boards. The two different functions can be jumper selected.

The LAYTM r¢-trigger is implemented by 12 trigger modules each containing 16 Track Finder
(TF) chips; a single trigger module handles two neighbouring sectors. A TF-chip monitors eleven
anode wires centred around an anode wire of the middle (third) trigger layer and looks for valid hit
patterns: the patterns are displayed in Figure 5.3. If a TF-chip lies at a sector boundary, neighbouring
wires are taken into account.

Three trigger modules implement the LAYTM rz-trigger, where each module handles 16 super-
strips in 5 layers. A super-strip consists of 4 adjacent cathode strips whose pulse heights are summed.
Such a super-strip may or may not contain a pulse height and like in r¢ the TF-chips search for valid
hit patterns in rz.
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Figure 5.2: A Trigger Layer in detail.
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a b

Figure 5.3: The two valid hit patterns in a TF-chip region, a diagonal patiern (a) and a straight
pattern (b); the other two valid patterns are their mirror images.

The following summarises the operation of the ID-OD trigger:

e JETTM checks for valid tracks in each sector.

The JETTM sets a trigger bit for a sector when at least 12 out of the 24 wires receive a signal
within a time window of about 200 ns. The JETTM modules output a total of 24 trigger bits,
one for each sector.

e LAYTM checks for valid tracks in each sector.

For the r¢-trigger, LAYTM looks for (one of the four) valid track patterns, in which at least 3
out of 5 layers must have a hit. If there is a valid track somewhere in the TF-chips of a sector
(logical OR) then the r¢-trigger bit of this sector is set. The LAYTM modules output a total of
24 r¢-trigger bits.

For the rz-trigger, LAYTM similarly looks for valid rz-patterns in the super-strips of the five
layers and a rz-trigger bit is set when at least 3 out of 5 layers in a super-strip are hit. In total
there are 48 rz-trigger bits.

e Trigger information from ID and OD is combined.

Valid ID tracks in ré are found by a sector by sector logical AND of JETTM and LAYTM. The
first level trigger of the ID consists of the OR of all 24 ID bits, the z bits are not used.

ID tracks are ANDed with the OD, but only for the six sectors that correspond to the holes in
the TPC because of its segmentation in ré.

The ID-OD correlation in r¢ is (ID track in sector N) AND (OD track in sector N+a), with
a=—1or 0 or +1. For the correlation in z, rz-patterns in the ID are combined with rz-patterns
in the Outer Detector.

After the above combined first and second level trigger, the third level trigger of the ID operates on

the remaining tracks only in 7¢. The central third level trigger, data transfer and other overhead leave
20 ms for the third level trigger decision of the ID. This turned out to be long enough to implement
the third level trigger algorithm in software. It has a high efficiency (98.5 + 0.8%) for tracks with
transverse momentum p; > 2.0 GeV/c and rejects tracks not coming from the interaction region.

Detailed information about the ID third level trigger can be found in referencel™.
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5.4 The Inner Detector Calibration Database

The Inner Detector calibration needs about 1 permille sensitivity of the relevant parameters, because
this corresponds to about 25 um variation on a track in the Jet Chamber, its most sensitive component.

All parameters are recorded during the data-taking in the on-line database and updated at the
moment their change influences the calibration by more than 1 permille. After a maximum of one day,
the on-line updates are imported into the off-line calibration database.

The ID calibration database comprises the following parameters and their sensitivities :
Gas Information, 1 mbar or 1 vol % sensitivity.

The atmospheric pressure (PRESA), the Jet Chamber pressure (PRESJ), and volume percentages
of the gas mixture in the Jet Chamber: nominally at 94.7% CO,, 4.6% isobuthane and 0.7% alcohol.

Furthermore, the volume percentages of the gas mixture in the Trigger Layers: 70.0% Argon and
30.0% COa.

Temperatures (TEMP), 0.3° C sensitivity.

Ten temperatures measured by probes located at various places around the Inner Detector. During
normal operation these temperatures read in the order of 27 degrees centigrade.

Jet Chamber and Trigger Layers High Voltages, 2 V sensitivity.

The high voltages of the 24 sectors of the Jet Chamber (JET HV, nominally at 2224 V) and the

high voltages of the 5 planes of the Trigger Layers (TL HV at 1600, 1610, 1620, 1630 and 1640 V
respectively).

Jet Chamber Field Shaping Voltages, 3 V sensitivity.

These are the 24 field shaping voltages (JETFS 1-24, nominally at 5500 V) and the voltage applied
on the inner cylinder (VCYL at 2750 V). For each sector in the Jet Chamber, JETFS feeds a resistor
chain running along the edges which produces an isochronous drift field. The actual field shaping

voltages are monitored by means of a digital voltmeter measuring the voltage over a 1 in 1000 resistor
divider.

All calibration parameters are stored in so-called GASD(ata) and SLOW (control) fields of the
calibration tree of the off-line databasel®). The records from the ID on-line database are checked
during data taking by the monitor programme DBMON. It only performs simple monitoring, because
the load of on-line processing jobs must be kept low.

It is very important that the information on the off-line database is correct, because DELANA uses
the database for the track reconstruction. In particular errors have to be corrected before DELANA’s
main (re)processings, which produce the most recent batches of tapes for physics analyses.

The ID off-line calibration database is checked regularly by the monitor programme DBPIT, which
1s described in detail in appendix D.
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5.5 Z Measurement with the Trigger Layers

A traversing particle ionises the drift gas in the Trigger Layers, which is followed by the forming of an
electron avalanche. The avalanche forms the signal on the anode wire and the signal induces a charge
spread out over a cluster of typically 2-7 adjacent cathode strips.

In general, the z-coordinate of a particle traversing a MWPC is obtained by determining the centre
of the charge distribution on the cathodes(®:82], In the Trigger Layers, cathode charge centres are
calculated with the modified Centre-Of-Gravity (COG) algorithm.

The COG algorithm computes a weighted sum of the strip charges in a cluster to find the centre
of the induced charge pattern. If one adds a threshold for strip charges, the modified COGEY of a
cluster of n. adjacent induced charges A; at positions Z; becomes:

7 _ Z?.—H(Ai — B)Zi
&) 2= 5 4B

for (A; — B) > 0, where:

(5.2) B=b i A;

i=1

and b is a bias level. The bias level and the number of contributing strips n. must be suitably chosen

to reduce the effects of pickup and electronic noise. Wrong choices of n, can lead to unnecessary big
systematic errors(83].

The modified COG delivered satisfying results in the prototype test of summer 19871841 where a z
resolution of 125+ 15 um was obtained with small bias level (~2%) utilising 6 significant strips in the
COG for tracks with incident angles between +4 degrees.

Tracks in the ID have in the z projection incident angles varying from 0 to 60 degrees. As shown
by Hajduk!®®! Landau fluctuations, which are fluctuations in the anode (and thus cathode) charge
distribution, become important if the incident angles are bigger than about 20 degrees.

In 1989, a study of the internal z resolution was performed for tracks from a pion test beam with
an incident angle of about 30 degrees!®®]. This measurement indicated that the overall z resolution was
about 0.9 mm, but the quality of the data was far from optimal. There were electronic pickup signals
on the strips and only planes 2,4 and 5 were partly connected because only one FADC was available at
the time. Nevertheless, it was suspected that it would be difficult to reach the overall design resolution
of about 0.5 mm.

During the real data taking it indeed became clear that tracks in hadronic Z9 events had internal
z resolutions of about 1 mm. Although this 1 mm was at that time the best z-measurement available
in DELPHI, it was still somewhat disappointing.

In 1991 and 1992, various attempts have been undertaken to improve the resolution, but invariably
one found internal single track resolutions no better than 700 um averaged over all angles.

In the next section the result of one of these attempts is described, using isolated tracks coming
from 1992 lepton-pair events.

5.5.1 Results

The following choices were made for single tracks participating in the measurement of the internal z
resolution:

e Pulse heights were only accepted if there were more than 6 FADC samples available. FADC
overflows, if present, were corrected with a parabolic fit around the top.

e b =0.02 in the COG calculation.

e The induced charge cluster must be 3-7 strips wide.
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o At least 4 out of 5 planes must be hit. The difference between a data point and the fit through
the other points forms the residual distribution.

Figure 5.4 displays the obtained z residual distribution; a double Gaussian fit is applied to make
better quality tracks (the ones with lower incident angles) visible. The width of the main Gaussian
indicates an average z resolution of 800 pm. Figure 5.5 shows how the residuals depend on the polar
angle 6. An incident angle of 0 degrees corresponds to a polar angle of 90 degrees.

Finally, figure 5.6 displays the z resolution as a function of the polar angle 6.

There could be various reasons why the measured z resolution is worse than the prototype promised.
First of all, the prototype was flat and the real detector is not. Hardware imperfections, in particular

a slight distortion of the ID cylinder, therefore have a significant influence on the z reconstruction.
In addition, varying noise conditions probably yielded non-optimal calibration constants for the

cathodes, which are for each cathode strip parametrised as a gain value and an average noise level
(pedestal).
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Figure 5.4: Z residual distribution for b = 0.02.
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Chapter 6

Determination of the BY-BY Mixing
Parameter

This chapter contains the determination of the B-B0° mixing parameter x, using a dilepton sample
extracted from data taken by DELPHI in 1992.

The first two sections elaborate on lepton identification in DELPHI. To identify muons the package
MUFLAG was used and for electrons the package ELPROB; both packages will be introduced.

The next section describes the composition of the simulation and data samples, which formed the
starting point for the extraction of the mixing parameter .

After that, a neural network classifier is introduced, which is used to suppress the decays that
are background for the mixing measurement. The performance of nn™" | the variable constructed by
the neural network, is compared to that of the common minimum transverse momentum P in the
dilepton.

Finally, x is determined exploiting P or nn™in a5 g separating variable. This chapter ends with
a discussion of the obtained results.

6.1 Muon Identification

DELPHI’s muon chambers in the barrel (MUB) and in the forward region (MUF) are employed to
identify muons. In a mixing measurement one is primarily interested in muons originating from heavy
quarks. The background consists of particles that penetrate the iron of the hadron calorimeter and
give a signal in the muon chambers:

e ‘Punch-through’.

If a hadron interacts in the iron of the calorimeter, secondary particles like pions, kaons and

protons are produced. If they leave the iron, they can give a signal in the muon chambers and
are then misidentified as muons.

e ‘Sail-through’.

This refers to hadrons that have traversed the calorimeter without interacting and are misiden-
tified as muons in the muon chambers.

e Muons from light hadron decays.
Light hadrons which decay in flight into muons (e.g. K* — 7%utv,), which are detected in the
muon chambers.

Backgrounds from the above sources are reduced by extrapolating tracks from the tracking detectors
to the muon chambers and associating them to the measured hits.
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In addition, punch-through is substantially reduced by requiring at least one hit in the outer layers of
the muon chambers. The outer layers are layers 4-7 for the MUB and layers 3-4 for the MUF.

MUFLAGP is the standard muon identification package in DELPHI. In the MUFLAG environment,
all tracks which are potential muons are identified and re-fitted (with MUCFIX!®8!) under conditions
suitable for a specific tag philosophy.

All muon information available to MUFLAG comes originally from the DELANA module EM-
MASSI®! that fits tracks to muon chamber hits. MUFLAG compares measured coordinates (R¢ and
z for MUB, z and y for MUF) to the equivalent coordinates of the extrapolated track, plus the polar
and azimuthal directions © and ®.

EMMASS delivers chi-squared’s, which are a measure of the association quality, and hit patterns
of the associated muon chamber layers. They are a global chi-squared of fit, le obat» @nd X%, that
expresses the contribution to the fit from the extrapolation. xj,o,m, is build up from x2, and x2,,.,
the contribution to the fit from the muon chamber hit points only.

In addition, MUFLAG constructs chi-squared’s that are used as tagging variables for the barrel.
In the following formulae the subscript ‘muc’ refers to the muon chamber measurement points, ‘fit’ to
the internally fitted muon chamber track, and ‘ex’ to the extrapolated track.

First, there is the extrapolated azimuthal chi-squared:

Résit — Roex 2 [ @it — Bz \’
(6.1) X2s azth = (%) + —f—'a{,—”
Oex ex

Analogously, the extrapolated polar chi-squared is defined by:

2 2
2t — 2 O — O
(62) X?ez polar = ( L z ") + ( = © ”)
ez Oex

Finally, the global azimuthal chi-squared, defined by:

RQS 1 _R¢muc 2
(63) X;Iobal azth = Xzz azth + E ('—NT-—)

layers Omuc

where the sum runs over the layers with associated hits.

In the re-fit performed by MUCFIX, bad hits are dropped according to a x2;,, which for the MUB is
given by:

2 2
(6.4) X?Ait = (Rd’fzt R¢R¢muc) + (Zfzt zmuc)

Omuc afnuc
and for the MUF it is:
Tt — & 2 Yrit — U 2
(65) X%it = ( fit "WC) + ( fit " muc)

z
Omue Omuc

Three muon tags have been implemented in MUFLAG. By cutting on the chi-squared’s with increasing
severity a loose, a standard and a tight muon identification level is achieved. For the loose and standard
selections the last term in equation (6.4) is zero, because they don’t use the z information in the refit.

Table 6.1 summarises the cuts for each identification level and table 6.2 shows their identification
efficiencies and misidentification probabilities in hadronic events.
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[ Tag MUB | MUF |
Loose Xzz azth pdf <7 XZIobaI pdf <7
Xjiobat azen P-AE <7
X2z potar P-d.f. < 10
X2, > 10 X3 > 20
Standard | > 1 hit in outer layers | > 1 hit in outer layers
X2 aon PAE <5 | X2 DAL <Bif2>0
Xtobat azen P-df. <5 Xgtopar P-df. <6if 2 <0
x2, polar P-4 <8 x2; p.df. <5
: Xhir > 10 Xhie > 20
Tight > 1 hit in outer layers | > 1 hit in outer layers
Xitopat P-d.£. < 2.5 X21opar P-d.f. < 2.0
Xhie > 8 Xjie > 10

Table 6.1: The cuts for the loose, standard and tight muon identification.

Tag Efficiency (%) Misid. Probability (%)
MUB MUF MUB MUF

Loose [ 003+08 (87%1) | 1.I8£0.04 (L520.06)

Standard | 81+ 1 (824+2) [ 0.70+£0.03 (0.90% 0.05)

Tight [ 66£2  (63%2) | 0.47£0.03 (0.53£0.05)

Table 6.2: MUFLAG: efficiencies and misidentification probabilities for the loose,

muon identification.

standard and tight
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6.2 FElectron Identification

Information coming from the TPC, the RICH and the HPC is used for electron identification in
DELPHI. The HPC response is a vital component of any possible electron identification scheme,
therefore identification of electrons is limited to the HPC angular coverage 42° < § < 138°. A possible
electron tag has the following variables at its disposal:

e dE/dz

dE/dz is the energy loss per unit of length of a particle measured in the TPC. For a reliable value
it is required that at least 20 wires out of 192 TPC wires contribute to the d£/dz measurement.
The mean value of dE/dz of which the scale is fixed such that a minimum ionising particle (mip)
has a value of 1.0, is bigger for electrons than for hadrons and muons.

dE/dz is always used in combination with other electron tagging variables since it divides can-
didate tracks into two sets: the ‘signal’, which is not very pure yet, and a background containing
very little electrons. For that purpose it is save to apply the cut dE/dz > 1.3 mip.

e RICH tag.

Electrons always radiate photons under the saturated angle. One can search the RICH for
- particles with a momentum between 0.7 and 2.1 GeV (muon gas threshold) whether there are
photons in the saturated angle.

e Shower position: Az and A¢.

Az = zex — zgpc is a measure for the quality of the track-shower association. It is the difference
between the z position of the shower in the HPC and the one predicted from the track extrap-

olation. A¢ = der — dapc is the similar quantity for the azimuthal association; ¢gpc is the
direction of the shower axis.

There are two reasons why the track-shower association is not perfect. First, if the energy
deposition in the HPC is too small, then the shower is lost because it can not be reconstructed
by DELANA. This effect is only important for tracks below 5 GeV'. Secondly, if a hard photon is
radiated then the electron deviates from its original trajectory and the actual impact point in the
HPC doesn’t match the one predicted by the track extrapolation anymore. The loose association
criteria of DELANA prevent these candidates to be rejected at an early stage.

e Shower profile.

A match between the fraction of the total energy collected by the nine longltudlnal layers of the
HPC and the expectation for an electron having the same energy as the one measured. The
quality of the match is expressed in a chi-squared of the form:

(66) Xshower = E -<F > /U

where the sum runs over the nine layers of the HPC, F; is the observed energy fraction and
< F; > and o; are the mean and the root mean square of the distribution of the expected energy
fraction. Their values are determined as a function of the electron energy using pure electron
samples from Z° — ete™(v) and 7~ — e~ U.v;. In the energy parametrisation HPC ‘cracks’ in
8 are also taken into account. On 1992 data the efficiency to select Compton electrons using the
shower profile was found to be (86 =+ 1.3)%[°°L.

e E/p
The ratio of the energy released by the particle in the HPC and its reconstructed momentum
from the tracking detectors. In an ideal world electrons loose all their energy inside the HPC and

hadrons deposit most of their energy in the hadron calorimeter. Selection of electrons is based
on the variable 7:

(6.7) n=(E/p— < E/p>)|o
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where the dependence of the mean value < E/p > and standard deviation o on momentum and
shower energy are tuned using the above mentioned pure electron samples.

The correction of < E/p > involves removing the effect of matter before the HPC: an uncorrected
< E/p > decreases as the track momentum measured by tracking detectors is smaller. After
tuning, a simple cut of E/p > 0.5 can be applied which retains almost all electrons and rejects
about 60% of the pions.

In an electron tagged sample, the following backgrounds are expected:

e Misidentified hadrons.

A hadron can simulate an electron by producing a 7° when interacting with the HPC lead.
Furthermore, a hadron can overlap with a true photon shower in the HPC.

® Photon conversions (y — ete™).

These are electrons produced from the conversion of photons in the detector material in front of
the HPC. This material corresponds to about 0.7 radiation lengths, of which about 0.14 is before
the TPC. If the conversion occurs after the TPC no valid track is reconstructed, but the isolated
shower may overlap with another shower.

e Electrons from light hadron deéays.

If light hadrons decay in flight into electrons (e.g. K~ — 7%~ 17%), they may give a signal in the
HPC.

Most of the background is reduced by as good a match as possible between the HPC shower and
the electron candidate. Photon conversions are suppressed by a V0 search, in which one tries to re-
construct the mass of a possible ete~-pair.

ELPROBP is an electron identification package using various combinations of the above mentioned
tagging variables, which it converts to probabilities. It includes extensive HPC fixing, which comprises
fine tuning of the shower variables and E/p.

In order to be examined by ELPROB, electron candidates must have a minimum momentum of 1.0
GeV/c and have deposited more than 0.3 GeV in the HPC. The tagging variables of ELPROB are:

P(dE/dz), the probability from the dE/dz measurement of the TPC.

P(E/p), the probability from the value of E/p.

P(Az) and P(A¢), the probabilities reflecting the quality of the shower position match.

P(sh), the probability derived from a fit to the longitudinal shower profile.

The RICH tag, which counts the number of photons in the saturated angle.

ELPROB also constructs a combined probability P(HPC) from the HPC variables P(Az), P(sh),
P(A¢) and P(E/p); it is only filled if E/p>0.5.

In analogy to MUFLAG, ELPROB divides electron candidates into three categories: loose, standard
and tight.

Table 6.3 shows the efficiencies and misidentification probabilities of the ELPROB tags in hadronic
events. A distinction is made between the case in which no reliable dE/dz is available and in which
there is. The former ELPROB cuts are displayed in table 6.4 and the latter in table 6.5.
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[ Tag [ Efficiency (%) | Misid. Probability (%) |
Loose 85 7
Standard | 65 0.6
Tight |45 01

Table 6.3: ELPROB: efficiencies and misidentification probabilities for the loose, standard and tight
electron identification. The errors on these values are in the order of 10-15%.

[_Tag | |
Toose | P(HPC)> 0.0 OR RICH>=20 OR P(HPC)> 0.05
RICH>=1.0
Standard | P(Az)> 005 OR _P(HPC)> 0.10
P(Ad)> 0.02 RICH> 1.0
P(sh)> 0.02

P(E/p)> 0.05
Tight | P(GPC)> 0.25 OR P(HPC)> 0.15
RICH> 2.0

Table 6.4: The cuts of the loose, standard and tight electron identification if no dE/dz information
ts available.

[_Teg | |
Loose | P(dE/dz)>0.02 OR P(dE/dz)>0.06 OR p.<=5.0GeV/c
P(HPC)> 0.001 RICH>= 1.0 P(dE/dz)> 0.20
Standard | dE/dz > 1.3 OR P(dE/dz)> 0.10
P(Az)> 0.05 RICH> 1.0
P(A¢)> 0.02
P(sh)> 0.02
P(E/p)> 0.05
Tight | P(dE/dz)> 0.10 OR P(dE/dz)> 0.10
P(HPC)> 0.10 RICH> 2.0

Table 6.5: The culs of the loose, standard and tight eleciron identification; dE/dx information is
available.
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6.3 Event Selection and Lepton Identification
Hadronic decays Z° — ¢g were tagged by using the following criteria:

o Events had to contain at least 7 charged tracks. This removes the events of the type Z° — 77~
and thereby the lepton background from direct tau decays.

e The total visible energy Echarged + Enecutrat had to be greater than 0.30 E.,,, where E,,, is
the centre-of-mass energy of LEP. Echarged is the energy from charged particles detected in the
tracking chambers and Eycy1rq1 the energy from the neutrals detected in the calorimeters.

The selection of hadronic events yielded about 256000 events for the 1991 data and about 720000 for
the 1992 data. In the event reconstruction both charged and neutral tracks were taken into account.
Charged tracks had to satisfy the following criteria:

e Track momentum p > 0.2 GeV/c.

e Relative error on the momentum o, /p < 100%.

e Track length > 30 cm.

e z and r¢ projection of the tracks’ impact parameter less than 10 respectively 5 cm.

e Angle  with the beam direction, | cos 8] < 0.93, TPC acceptance.
Neutral tracks had to satisfy:

¢ 0.8 < Expc < 30.0 GeV/e.

e 0.4 < Egyr < 30.0GeV/e.

e minimum 3 layers in HPC hit.

e og/FE <100% for both HPC and EMF.

e |cosf| < 0.98.

Leptons were identified by applying the standard tag, both for the electrons and the muons. Because
the ELPROB tags were not available for the 1991 data, only muons were tagged for 1991. A pre-
selective cut was made on the lepton momenta at 3 GeV/c in order to remove the kinematical region
which is most heavily dominated by background events. Furthermore, a V0 search was applied to
reject electron candidates coming from converted photons.

Two samples of simulated Z° — ¢ decays, corresponding to the 1991 and 1992 detector setups
were used for the analysis. They were generated with the LUND Parton Shower model in the JET-
SET 7.3 program[®] passed through the full detector simulation and processed with the same event
reconstruction as the data.

6.4 Single Lepton Composition

The selections described in the previous section are applied to obtain hadronic jets containing a lepton.
If a jet had more than one lepton, the lepton with the highest transverse momentum with respect to
the jet direction was chosen.

The transverse momentum p, was computed by first removing the track from the jet it belongs to
and after that recomputing the jet direction. A p: calculated by first excluding the lepton is called
p¥t, if the lepton is included it is called pi™. From now on, the variable Py 1s a po*' unless otherwise
stated.
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Table 6.6 shows the decay fractions, before and after a cut of p; > 1.0 GeV/c, for single electrons
and muons in the 1992 simulation; charge conjugate decays are implied where appropriate. This table
corresponds to about 29000 single electrons and 36000 single muons, 10000 electrons and 16000 muons
remained after p; > 1.0 GeV/c. The most important electron backgrounds are misidentified pions and
photon conversions which were not recognised by the V0 search. Prominent muon backgrounds are
misidentified pions and kaons.

In a mixing measurement it is convenient to assign single jets containing a lepton to one of the following
categories:

e PB (Primary b)
Primary semi-leptonic decays of b-hadrons: b — [~. This also includes b — 7= — ™.
e SC (Secondary c)
Cascade decays from the charm daughter of a b-parent: b — ¢ — IT.
e SC (Secondary &)
Cascade decays of a charm state from the W~ in the b-decay, denoted b — (és) — I~ or shortly
asb—c— 1.
e PC (Primary c)
Semi-leptonic decays of charm states produced in Z° — ¢, denoted ¢ — .
¢ BCK (Background)

The remaining decays: hadrons misidentified as leptons, leptons from n and K decays and
from J/¥. Furthermore, electrons from converted photons or Dalitz decays (7° — ete™v or
70— etemete).

Figure 6.1 displays examples of Feynman diagrams of semi-leptonic decays belonging to the categories
PB, PC, SC and SC respectively.

Lepton source Electrons Muons

No p; cut | p: > 1.0 GeV/c | No p; cut | ps > 1.0 GeV/c
b— 11— 25 58 33 61
[N S 1 1 1 1
b—c— 1t 9 8 14 10
b—c—1~ <1 <1 <1 <1
b— J/U — [ <1 <1 <1 <1
c— 1T 12 9 17 12
light hadron — I 3 4 7 2
converted photons 10 3 - -
misid. pions 32 17 17 7
misid. kaons 4 2 9 6
misid. protons 2 <1 <1 <1
others <1 <1 <1 <1

Table 6.6: The coniribution (in %) of various single lepton sources in the 1992 simulation, before
and after py > 1.0 GeV/e.
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Figure 6.1: Ezplicit ezamples of decays belonging to the classes PB, PC, SC and SC, respectively.
(a) B —1=. (b) D° — I*, with the D° directly produced in Z° — DO, (c) BY — (es) — I-. (d)
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6.5 Dilepton Selection and Composition

Dileptons, selected for the measurement of x, must have two back-to-back leptons. To ensure that the
leptons are from different b-hadron decays, the angle between the two leptons was required to be bigger
than 60 degrees. If more than two jets were found, the pair with leptons with the highest transverse
momenta was considered.

Table 6.7 shows the number of like sign, unlike sign and total dileptons for the 1991 and 1992
samples used in this analysis. The 1991 simulation corresponds to about 473000 hadronic events and
the 1992 simulation to about 630000 hadronic events. The 1991 dilepton statistics is much lower

because only dimuons are tagged, the reconstruction efficiency is lower and the number of hadronic
events collected in 1991 is lower.

1991 1992
Like sign | Unlike sign | Total || Like sign | Unlike sign | Total
Simulation 127 221 348 1392 1752 | 3144
Data 86 170 256 1323 1872 | 3195

Table 6.7: The number of like sign, unlike sign and total dileptons for the 1991 and 1992 simulation
and data samples.

In total absence of background, it was shown (equation 1.31 in section 1.2.1) that R, the ratio of
the like sign over the the total number of dileptons, relates to x as

(6.8) x = 1-VIi-2R ";_212

In practice it is impossible to purify the dilepton sample to that point and not to loose an unac-
ceptable amount of efficiency. One has to handle several dilepton categories, whose sensitivity to the
mixing parameter differs. The following dilepton categories have to be taken into account:

e PB-PB, PB-SC and SC-5C

These dileptons form the signal of the mixing measurement and have a like sign probability of
2x(1 — x). The SC component is small and therefore the PB-PB category will in the following
include the PB-SC and SC-SC dileptons. PB-PB contributes to the total like sign fraction with
a fraction designated as fi1.

e SC-SC

These dileptons have also a like sign probability of 2x(1 — x) and their fraction is indicated by
faa-

e PB-SC and SC-SC

These dileptons have a like sign probability of x? + (1 — x)? and their fraction is written as fia.
e PC-PC

Not sensitive to mixing, because they are unlike sign only. Their fraction is indicated by fa3.
e Background.

All other dileptons involving a lepton not originating from the sources mentioned above. They
do not contribute equally to the like and unlike sign samples as some memory of the original
quark remains, but with a background charge correlation quantified by &.
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From the simulation it was determined that

(6.9) € =0.4540.02

independent of p; cuts.

The background dileptons are divided into the categories PB-BCK, SC-BCK, PC-BCK and
BCK-BCK with fractions fi4, fos, f34 and fu4, respectively.

Table 6.8 displays the contribution of the different dilepton categories to the total like sign fraction.
Consequently, R relates to y as:

(6.10) R =2(fi1 — fia + fao)x — 2(fi1 — iz + fa2)x® + (fia = foa + faa + faa)€ + fia + foa

PB or 5C SC PC| BCK

PB or SC || 2x(1 = x)fu | 062+ (1 =x)Nfz2 | - fra€
SC 2x(1 = x) fe2 - | f4(1-8)

PC - - 0 faa€

BCK faa€

Table 6.8: Contributions to the like sign fraction from the different dilepton categories.

The variable p[*" is defined as the smallest of the two pe’s in a dilepton event. The contributions
of the various dilepton categories to the total dilepton sample, before and after p™i" > 1.0 GeV/c are
shown in table 6.9 for the 1991 simulation and in table 6.10 for the 1992 simulation.

The 1991 sample composition differs from the 1992 sample composition. The 1991 dileptons contain
more high p; background. This results in a significantly bigger contribution of the PB-BCK category
after pf" > 1.0 GeV/c. The BCK jets are misidentified pions and kaons but also leptons from light
hadron decays. In 1991 the track quality is lower due to association problems.

Figures 6.2(a)-(d) compare the 1992 simulation to the 1992 data. They show the distributions of
the lepton variables p, p;, py*™ and p7"%® in the 1992 dilepton sample. The variable Pi*%® is defined as

the largest of the two p,’s in the dilepton. The figures indicate that the distributions of the simulation
and the data agree well.
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Dilepton No p; cut | p™" > 1.0 GeV/c

“y sy

PB-PB 26.7+2.4 42.64+4.2

PB-SC 25.6+2.3 26.5+3.8

SC-SC 3.24+1.0 1.5+1.0

PC-PC 10.3+1.6 5.1+1.9

PB-BCK 15.5+1.9 16.2+3.2

SC-BCK 2.6+0.9 0.7+£0.7

PC-BCK 8.3£1.5 5.9+2.0

BCK-BCK 7.8+1.4 1.5+1.0

Table 6.9: Dimuon fractions in the 1991 simulation, before and after p*® > 1.0 GeV/c.
Dilepton No p; cut Py > 1.0 GeV/c

ee ep U all ee ep [ all
PB-PB 20.3+1.6 24.3+1.1 26.1+1.3 24.1+0.8 | 62.0£4.3 64.1+2.7 60.9+2.8 62.5+1.8
PB-SC 15.0+1.4 19.5+1.1 25.1+1.3 20.5+0.7 | 16.3+3.3 14.4+1.9 23.5+2.5 18.3+14
SC-SC 3.3+£0.7  3.3+£0.5 5.0£0.7 3.9+0.3 | 3.1+15 25+0.9 14407 2.1+0.5
PC-PC 6.1£1.0 6.9+£0.7 10.2+09 7.8+0.5 | 3.1x1.5 2.1+0.8 2.44+09 2.440.6
PB-BCK 18.3+1.5 17.0£1.0 12.8+1.0 15.84+0.7 | 10.1+2.7 12.9+1.9 7.5+1.5 10.3£1.1
SC-BCK 6.4+1.0 74407 5.8+0.7 6.6+0.4 | 0.840.8 1.8+0.7 0.7+£0.5 1.24+0.4
PC-BCK 8.2+1.1 8.1+40.7 7.2+0.8 7.8+0.5 | 1.6+1.1 1.5+0.7 3.441.1 2.340.5
BCK-BCK | 22.4+1.6 13.6+0.9 7.8+0.8 13.5+0.6 | 3.1+1.5 0.6+0.4 0.3+0.3 0.9+0.4

Table 6.10: Dilepton fractions in the 1992 simulation, before and after p*™ > 1.0 GeV/c.
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. Het is af te raden een neuraal netwerk eenvoudigweg alle mogelijk gevoelige
variabelen van een classificatieprobleem aan te bieden. Hoewel theoretisch
de beste separatie bereikt kan worden, maakt de vereiste grootte van de
trainingset en de benodigde rekentijd voor de training dit onpraktisch.

Dit proefschrift.

. De klassieke mechanica is niet alleen een limietgeval van de quantummecha-
nica, maar is ook noodzakelijk voor haar formulering. Dit is niet het geval
voor de modellen van De Broglie/Bohm en Everett/DeWitt. Deze modellen
zijn echter filosofisch onbevredigend.

John Bell, “Against Measurement”, Physics World, August 1990

. Het gebruik van Internet als een gedistribueerde elektronische bibliotheek
maakt deel uit van de informatie revolutie. De huidige ontwikkeling heeft
twee nadelen. Ten eerste wordt de vooruitgang tot nu toe gestimuleerd door
technologie in plaats van door de markt. Verder bevat de gemiddelde WWW
pagina te veel informatie over informatie.

. Het Rivest-Shamir-Adleman (RSA) publieke sleutel systeem is gebaseerd op
het feit dat het moeilijk is een getal te factoriseren dat het produkt is van
twee grote priemgetallen. Snellere hardware maakt cryptografie met RSA
veiliger in plaats van onveiliger. Overigens zou een onverwachte doorbraak
in factoriserings-algorithmes onmiddellijk de veiligheid van vele commerciéle
soft- en hardware produkten en van elektronische transacties in groot gevaar
brengen.

. De Polymerase Chain Reaction (PCR) methode voor de verdubbeling van een
specifiek stuk DNA is zeer gevoelig en specifiek; tevens hoeft men voor het
gebruik van deze methode slechts de exacte DNA sequenties die beide zijden
van het stuk flankeren te kennen. PCR heeft vele medische en forensische
toepassingen, en heeft bovendien ‘Jurassic Park’ dichterbij gebracht dan ooit.

Raul J. Cano and Monica K. Borucki, “Revival and identification of bacterial spores
in 25- to 40-million-year-old Dominican amber”, Science, vol. 268, May 1995



6. Het stemt tot enige ongerustheid dat slechts een kleine groep wetenschappers
voor onze beschaving waakt door systematisch asteroiden te klassificeren die
mogelijk in de buurt van de aarde komen. Een inslag zoals die van de 50 m
diameter Tunguska asteroide in 1908, die het effect van een grote atoombom
had, komt eens in de 300 jaar ergens op aarde voor. Inslagen door grotere
asteroiden (> 100 m diameter) zijn veel zeldzamer, maar zij zijn wel het
enige natuurverschijnsel dat een bedreiging vormt voor de gehele mensheid.

David Morrison, “Target: Earth!”, Astronomy, October 1995

7. Elementaire logica is niet eenvoudig. Met behulp van de basis axioma’s

(pVP)Dp, PO (PVY), (PVE D(¢Vp) en (pD¢)D((rVp)D(rVy))
kan men het volgende theorema afleiden:

(P2¢9)D((r25)21)) D ((#D((r>5)D1))D((PDu)D(s>)))
Ernest Nagel and James R. Newman, “Gdédels proof”, ISBN 0-415-04040-X

8. Gedurende droog weer in Amsterdam kunnen contactlenzendragers zich tegen
stof weren door de volgende regels in acht te nemen, die alle met de tram
verband houden:

(a) Vermijd zoveel mogelijk het fietsen door straten met tramrails.

(b) Wanneer er een tram passeert sluit de ogen gedeeltelijk om de werkzame
doorsnede voor stof te verminderen.

(c) Bij het verlaten van de tram nooit tegen de rijrichting in kijken.
9. Vijfennegentig procent van de vergiftigingen met dodelijke afloop door pad-
destoelen wordt veroorzaakt door groene of kleverige knol-amanieten die

voor champignons worden aangezien. Niet alle eetbare padddestoelen zijn

onder alle condities eetbaar; zo is de kale inktzwam bij gelijktijdig gebruik
van alcohol giftig.

Til R. Lohmeyer, “Paddestoelen”, ISBN 9064100314

Martin Ernst Los, Amsterdam, 27 november 1995
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Figure 6.2: Momenta and transverse momenta distributions in the dilepton sample for the 1992 data
(dots) and simulation (kistograms). The contributions of the different (di)lepton classes are shown.
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6.6 The Neural Network Classifier

In a mixing measurement using dileptons, the standard method to purify the sample is to exploit a
variable composed from the lepton momenta from both jets. Examples of variables used in the past
are:

e p/¥", by ALEPHP! DELPHI®? and L3[4

® pain = \/15/P1 X Po| + P, by DELPHIF?
o phimy = V/(p/10)? + p}, by OPALI®]

It was observed that all the above variables have practically the same separation power. Therefore,
the most recent measurements employ p™” the simplest one.

In order to remove a major part of the background, transverse momentum cuts must be fairly high,
p" > 1.0 GeV/c is a common choice, to ensure a workable PB-PB purity. Most backgrounds are
already significantly reduced with a lower cut, it is the trade-off between PB and SC at the single jet
level which determines the optimal pj*® cut. Figure 6.3 shows dilepton composition as a function of

p" for the components PB-PB, PB-SC and the other backgrounds; 1991 contains significantly more
background.
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Figure 6.3: Dilepton sample composition for the 1991 and 1992 simulation as a function of p*'™.
The contribution PB-SC, which dilutes the x sensitivity is shown separately.

Furthermore, the secondary decays contribute significantly to the systematic error of a mixing
measurement through the uncertainty in the branching ratio BR(b — ¢ — [).

With the above arguments in mind, it was decided to develop a neural network to suppress the
SC decays and keep the PB decays on a single jet basis. The aim was to construct another variable
that is used in the same manner as p™", but separates PB-PB and PB-SC better and of course still
suppresses the other background.

An earlier study!®® using a neural network on 1991 data showed that it was possible to separate
b — ¢ — pt jets from b — u~ without directly using the p; of the lepton. This neural network
classifier used 14 kinematical variables, amongst them the momenta components p,, p, and p, of the
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four leading tracks in the jet. Although the muon track is likely to be among these four leading tracks,
the network did not know which (pg,py,p.)-set it processed belonged to the lepton. Unfortunately,
this network was not powerful enough to use it in a mixing measurement. This was due to the high p;
background in the 1991 data in combination with the poor separation power of what was analysed to
be an ‘average p;” over the four leading tracks.

After telling the network what track was the muon, and after studying the way the network corre-
lated the momentum components, it was found that it actually constructed the p; of the lepton and
mainly used that for the separation. Its separation power was about equal to using p; directly, because
too much effort went into constructing the p; from the individual momentum components; the other
variables were not optimally exploited. Furthermore, the high dimensional input space required a large
training set, a condition which could barely be satisfied.

Therefore, it was decided to devise a much smaller network to which the momentum and transverse

momentum of the lepton are provided directly. The above studies led to the following choice of 4 input
variables:

1. The total jet momentum p;e;.

The neural network does not employ this variable for the separation, but for the scaling of the
other variables.

2. The momentum p of the lepton.

Primary leptons from beauty decay have on average larger momenta.

3. The transverse momentum p; of the lepton.

This is the standard variable to enhance the PB purity in a lepton tagged sample, because direct
beauty decays have on average larger transverse momenta than the others.

4. |Qjetl, the absolute value of the jet charge Qjet € [—1,1], calculated by:

; Pigi
(6.11) Qjet = %—P"

where the index i runs over all charged tracks in the jet, P; is the momentum of the track
projected on the sphericity axis of the event and gi (%1) the charge of the track. The sphericity

azis plays the role of the event axis and is the first eigenvector of the sphericity tensor, defined
by:

a0
6.12 §o# = ZiPiP:
(©12) > IpiJ?

where ¢ runs over all tracks in the event, p; are the track momenta and o, # = 1,2, 3 correspond
to the z y and 2 components. For more information about the sphericity axis seel7].

The jet charges for secondary decays, kaon/pion decays and misidentified hadrons are on average
small. For primary charm decays, |Qjet| is on average larger and it is on average the largest for
primary beauty decays. Figure 6.4 shows |Qjet| for ¢ — I (dashed) and for the other backgrounds
(solid); figures 6.5(e) and 6.5(f) show |Qe:| for b — I and b — ¢ — 1.

The training set consisted of about 6000 single jets with a lepton, taken from special 1992 simulation
samples: 1500 b — p, 1500 6 — ¢ — p, 1500 b — e and 1500 b — ¢ — e. Figure 6.5 shows the
distributions of the training variables of the training set. b — [ jets were given a target value of 0.05
and b — ¢ — [ jets a target value of 0.95.

During training the performance of the network was constantly monitored using an independent
test set with about the same composition as the training set. The training was stopped when the error
on the test set didn’t change any more. Table 6.11 summarises the parameters of the training.
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Figure 6.4: |Qjet| for ¢ — It (dashed) and for the other backgrounds (solid).

[ Parameter | Setting ||
initial learning rate n 0.03
decay rate of 5 5%
lower bound of 5 0.001
initial moment strength o 0.5
increase rate of « 1%
upper bound of « 0.9
temperature 1.0
initial weights [-0.1,0.1]
iterations 400

Table 6.11: Settings of the neural network training parameters.
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Figure 6.5: The distributions of the momentum p, the transverse momentum pt and the absolute

value of the jet charge |Qjee| for b — 1= (solid) and b — ¢ — I+ (dashed). These samples formed the
training sets for the neural network.
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The performance of the neural network classifier in terms of its ability to separate event classes is
quantified with the purity and the efficiency. After tagging, the purity of the sample with respect to
events of some class X, is defined by:

Number of class X events in the tagged sample

(6.13) Purity(X) =

Total number of events in the tagged sample
The efficiency for selecting events of class X is defined by:

Number of class X events in the tagged sample

(6.14) Efficiency(X) =

Number of class X events presented to the classifier

The output distribution of the neural network on the independent test set is shown in figure 6.6.
The b — I jets are on the left and the b — ¢ — [ jets are on the right.

nn output
Figure 6.6: Neural network output distribution for b — I~ (solid) and b — ¢ — It (dashed).

The performance of the neural network on the test set is quantified in terms of Efficiency(PB) and
Purity(PB) as a function of a cut in the neural network output (nn output). Figure 6.7 compares the
neural network performance on the test set to that of the p;. The neural network curve lies above the
pt curve. A cut of ps > 1.0 GeV/c¢ corresponds to a neural network cut of nn output < 0.5; at which
point the neural network offers more than 6% improvement in purity at the same efficiency.

The network can now be applied to the dilepton samples. The jet that contains the lepton with
the highest p; is labelled jet 1, the other jet is labelled jet 2. Figures 6.8(a)-(d) compare the output
distribution of the neural network applied to jet 1 and jet 2, for the 1991 and 1992 simulation and
data. In both cases there is agreement between the output distributions of the simulation and the
data.

It seems that the 1991 data contains more PB jets then the 1992 data. The network mistakes the
BCK jets with higher p;’s for PB jets: they invoke lower values of nnout.

If the network is to be used the same way as p"i", the neural network cut has to be applied
separately to both jets of each dilepton event. In the following this variable will be designated by
nn™" . Contrary to p;, the neural network output is smaller when a jet is more likely to be a PB jet.
Therefore, nn™" is defined by:

(6.15) nn™" = min(1.0 — nn output for jet 1,1.0 — nn output for jet 2)

in order to facilitate the comparison of the p/** analysis with the neural network analysis.

The result of requiring nn™ > 0.5 on the 1991 and 1992 simulation is summarised in table 6.12.
This table has to be compared with tables 6.9 and 6.10, the corresponding tables for the sample com-
position after the p/*® cut. The network enhances PB-PB and suppresses PB-SC and SC-SC better.
PC-PC is less well rejected because PC has a higher average jet charge than the other backgrounds.
This is no problem because PC-PC is not sensitive to mixing.
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Figure 6.7: Efficiency versus purity for the test set to select b — - Jjets applying neural network cuts
or py cuts. The test set consists of about 6000 b — 1= jets and 6000 b — ¢ — I+ jets.

Dilepton 1991 1992

) ee el ) all
PB-PB 46.0+4.1 | 66.7+4.5 64.8+2.8 67.042.8 66.0+1.8
PB-SC 25.0+3.6 | 12.6+3.2 14.342.0 17.0+2.2 15.1+1.4
SC-SC 0.6+0.6 | 1.8+1.3 1.04+0.6 0.44+04 0.94+0.4
PC-PC 6.8+2.1 | 3.6+1.8 3.3+1.0 4.6+1.2 3.940.7

PB-BCK 15.5+3.0 | 9.9+2.8 12.3+1.9 7.4+1.6 9.9+1.1
SC-BCK 0.7£0.7 | 1.84+1.3 1.3+0.7 0.4+04 1.0404
PC-BCK 41+1.6 | 09409 1.740.7 2.8+1.0 2.0+05
BCK-BCK | 1.440.9 | 27415 1.3+0.7 0.4+04 12404

Table 6.12: Dilepton composition of the 1991 and 1992 simulation after the neural network cut
nn™" > (.5,
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Figure 6.8: The output distribution of the neural network on

data.

(d) 1992 jet 2.

single jets for the simulation and the
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6.7 Extraction of y

A first consistency check is the mixing parameter that can be directly calculated from the simulation. If
one simply determines R for the PB-PB category, then R and y are related according to equation (6.8).
In the 1991 and 1992 simulation there are 207 like sign and 643 unlike sign PB-PB dileptons and one
finds:

(6.16) Xsim = (142 £ 1.0)%

This value is consistent with xy = 13.4%, the value which was put in the simulation.

The counting method, uses the full information contained in the simulation. It works by solving
equation (6.10) after a cut that enhances the PB-PB component so that the sensitivity of R to x
is increased. For 1991 this goal can not be achieved: even at high p; (see figure 6.3(a)) too much
background remains.

If one relies on the sample composition after P > 1.0 GeV/c given in table 6.10 with £ quoted
in (6.9), then solving (6.10) yields for the 1992 data:

(617) X1992 counting py = (90 + 28)%

The counting method can also be applied to the data after the neural network cut nn™n > 0.5 (sample
composition in table 6.12). Similarly, the neural network does not give a result for 1991 data. For the
1992 data one finds:

(6.18) X1992 countingnn = (8.5 £ 2.5)%

The two results of the counting method are compatible with each other. The statistical error in these
and the following results is composed of two parts: that due to the number of events and that due
to the statistical errors in the fractions calculated with a finite simulation sample. Both contributions
are comparable.

Finally the data sample of 1992 was used to calculate R as a function of p™" and as a function
of nn™", These distributions were compared with those predicted by the simulation as a function of
X, and the x value determined using a least squares fit. This procedure was not followed for the 1991
data because the result is very sensitive to small changes in the fractions.

The £ value given in (6.9) was not directly used in the fit, instead £ was parametrised as a function
of p/™™ per bin and as a function of nn™in per bin. Another possibility is to leave ¢ as a free parameter
in the fit.

The result of the fit was found to be stable with respect to changes in the binning. Furthermore,
the counting method and the fit method applied to the simulation gave x ~ 14%, consistent with the
input value, both for p" and nn™n,

Table 6.13 summarises the results of the fits that were performed. Figures 6.9(a)-(d) show the
corresponding R(p{*") and R(nn™") plots. In each case, the result of the fit is shown together with
the curve for no mixing (x = 0.0).

The fit results for x are consistent with one another and with the results of the counting method.
The value of £ obtained after leaving it as a free parameter in the fit is also consistent with the one
determined from simulation.

(I [ R(pP™) fit [ R(nn™™) fit 7
¢ free x=84+24 figure 6.9(a) [ x=8.6+£2.3 figure 6.9(c)
§=0.4440.04 £=0.4440.04
¢ parametrised | x =83+24 figure 6.9(b) | x=8.7+ 2.3 figure 6.9(d)
s(p;m'n) f(nn""")

Table 6.13: The results for x (in percent) of the various fits for 1992.
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Figure 6.9: Plots of R(p{"") and R(nn™") belonging to the various fits. The data points are shown
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values corresponding to x = 0.0 (dotted line).
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6.7.1 Systematic Errors

There are several sources of systematic errors intrinsic to the simulation used to estimate the back-
ground. The most important ones are shown in table 6.14, together with their effects on X-

Most sources are estimated from DELPHI’s 1994 analysis®2. The contribution of the neural
network to the systematic error is found by studying the effect of +5% changes to the individual input
variables pjes, p, p; and |Qje:|. For all variables the effect on the neural network output was found to
be less than 0.004, which has almost no effect on y.

The branching ratios Br(b — 1) and Br(b — ¢ — [) are correlated. Their ratio largely dominates
the systematic error of the mixing measurement. The total systematic error 0.4% was obtained by
adding the contributions in quadrature.

The differences between the models of semi-leptonic decay also contribute to the systematic error.
These models predict the lepton momentum distribution in the rest frame of the B meson.

In DELPHI’s 1994 analysis the ACCMMI©®®! and IGSWI®! models were considered. ACCMM
predicts the inclusive b — [ spectrum, while the IGSW spectrum depends on the relative production
rates of D, D* and D**. In the DELPHI analysis a total systematic error of 0.4% was assigned to
account for model dependencies. In the measurement described in this thesis, the same model error is
assumed.

Source Relative variation | Effect on x
Br(b — 1), Br(b — ¢ — )2 +4%, +5% F0.4%
Br(b — ¢ — I)lo2 +50% <0.05%
Br(b — 7)100] + 23% <0.05%
Br(c — [)l°2 +10% <0.05%
Hadron misid.[°?] +10% <0.05%
Fragmentation function®? | ¢, = 0.005 - 0.007 | 0.1%
Neural Network » +5% <0.05%
Total 0.4%

|| Semi-leptonic decay model | [0.4% |

Table 6.14: Contributions to the systematic uncertainty in the measurement of x. Variations given
in percent are relative to the values in the simulation.

6.8 Final Result, Comparisons and Conclusions

The B%-B° mixing parameter X has been determined using two different methods: a common pyn
based analysis and an analysis using the variable nn™" constructed with a neural network.

A comparison has been made between using /" or nn™i" to separate the signal from the back-
ground. The variable nn™" substantially enhances the signal to background ratio as shown in figure 6.7
and the comparison of table 6.12 with table 6.10.

For both methods, x has been measured with the counting method and with a fit to R, the ratio of
like sign over unlike sign dileptons, as function of the separating variable. The fits have been performed
with the background charge correlation & left free or with £ parametrised as a function of the separating
variable. The main results are listed in table 6.15.

The two methods are not independent, they use the same data sample. As the final result is taken:

(6.19) Xnn fit, ¢ free = (8.6 £ 2.3(stat) % 0.4(sys) + 0.4(model))%

From the correlation matrix in the fit, it was verified that the correlation between x and £ is small.
The statistical error of the result is dominant. This is due to the limited statistics of the simulation

sample used to estimate the composition of the data and the limited amount of events in the data
sample.
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Table 6.16 compares the measurement of this thesis with xy measured by other experiments. The
results of this work can not compete with those other experiments not withstanding the good perfor-
mance of the neural network method. This is due to the smaller data sample and the smaller simulation
sample used to calculate the fractions. The result of this thesis is not independent of the result of
DELPHI®? and therefore can not be used in a final averaging of all results.

A possible improvement of the neural network method lies in using four outputs: one for PB, one
for SC, one for PC and one for the other background. Then an optimal separation might be achieved
between the single jet classes PB, SC, PC and BCK.

Method x % (stat) (%)
Counting Fit
€ free | € parametrised
p;“"'} 9.0+ 28| 84+24 8.3 £ 2.4
nn™" | 85+ 2.5 | 8.6+ 2.3 8.7+23

Table 6.15: Summary of the results of the two different methods to determine x.

[ Experiment |

x value (%) | Dilepton Statistics [
This thesis 8.6 + 2.3 (stat) +£0.4 (sys) £0.4 (model) | 673 ee, 1414 e, 1108 pp
DELPHI®? | 12.1 4 1.6(stat) 20.4(sys) £0.4(model) | 658 ee, 2175 ep, 2349 pu
DELPHI01 14.4 £ 1.4(stat) *1-7(sys) 46497 events  high p; p — Q%Y
L34 12.3 & 1.2(stat) +0.8(sys+model) 216 ee, 766 ep, 857 pp (p" > 1.0 GeV/e)
OPALS! 14.3 + 2.2(stat) £0.7(sys) 882 ece, 1787 ep, 1163 pp
ALEPHPY | 11.3+ 1.5(stat) £0.8(sys) +0.7(model) | 710 dileptons (p; > 1.25 GeV/c)

Table 6.16: Comparison with other results. The x values are in percent.
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Appendix A

The Back-propagation Algorithm

For all patterns p in the training set and each output node i, the difference 6p; between its target value
tpi and its output y,; is defined by:

(A1) bpi = (Ypi — tpi)

At any moment a global performance measure of the network is the summed squared error:
1 2
(A.2) E=)"E =Z§Zap,.
P p i

All nodes calculate their activity by a weighted sum of their incoming lines, which are the outputs yy;
of nodes in the previous layer. For an output node 7, the activity ap; is:

(A.3) api = Z WijYpj
j

where w;; is the weight between node ¢ and node j.

Nodes apply a threshold function g to their activity that determines their final output. Thus, for
an output node 7:

(A-4) Ypi = 9(api)

To decrease the mean squared error (A.2), the weights between the nodes i in the output layer and
nodes j in the previous layer are changed applying a gradient descent with proportional constant n:
OF,
A5 Apw; = —p—L2
(4-5) P = " G

Using the chain rule in (A.2) with relations (A.1), (A.3) and (A.4), one finds:

(A.6) dwi; b—é-p;a*y;wmm = bpig (api)Yp;

If i does not refer to a node in the output layer, the error signal 6,; in (A.6) becomes (A.1)

propagated down to the lower layer in question using the weights of the higher levels. So, the back
propagation update rule is:

(A7) Apwij = ‘ﬂ‘spigl(api)ypj
with

| (ypi —tp;) if i output node
(A9 bpi = { Yk Wikbpr  otherwise
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Appendix B

The Neural Network Simulator
NNC

This appendix is a short manual for the neural network simulator N NC. The simulator is written in
the programming language C and implements the back propagation learning schemel29 for arbitrary
connected feed forward networks with up to four layers.

B.1 Installation and Running

To install NNC (on UNIX systems), undertake the following:

1. Copy the standard version 4.50 of the simulator from
/nikhefh /user/i14/neuralnets/nnc/nn450 to your directory. If you don’t have access to the
NIKHEFH computer, contact the author of this thesis to get a copy.

NNC consists of the source code nn.c and the example input files xor.par, xor.nnd, xort.nnd and
xor.str.

2. Compile and link with cc nn.c -0 nnc -Im -O, which creates the optimised executable nnec.

3. Test the neural network with nnc xor, which solves the exclusive-or (XOR) problem (see section
B.2) represented by the example files.

When NNC has finished the following output files have been created:

e xor.net, containing the weights that have been developed in the network during the training
phase.

© xor.ntp, containing the response on the test set.

Using the XOR problem as an example, the formats of the input and output files will be described in
the following sections.

B.2 Data Files, extension .nnd

The data files of NNC are the training set and the test set. Their format starts with the size of the
set followed by that number of data blocks and ends with an end-of-file identifier.

Each data block starts with two (integer) identifiers, followed by the input variables and their target
value(s) in floating point f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>