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Abstract: We derive and solve the renormalisation-group (RG) equation of the shape

function g17(ω, ω1;µ), which appears at subleading power in the factorization of the in-

clusive decays B̄ → Xsγ and B̄ → Xsℓ
+ℓ−. Our results provide the first ingredient for

a next-to-leading order analysis of the respective resolved-photon Qc
1 − Q7γ interference

contribution, whose current uncertainties are among the largest ones in both inclusive pen-

guin modes. As a by-product of our study, we find that the analytic properties of the soft

anomalous dimension as well as the jet functions in a factorization theorem allow for a sim-

plified renormalisation of operators in Heavy-Quark Effective Theory that are composed of

fields smeared along distinct light-cone directions. Their hadronic matrix elements become

relevant in various inclusive and exclusive B-decays beyond leading power in the heavy-

quark and large-energy expansion. Using these insights, we derive and solve a simpler

“reduced” RG equation of an amplitude-level soft function that describes the long-distance

QCD dynamics for penguin contributions to exclusive B̄d,s → γγ decays, and which has

recently been discussed in the literature.
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1 Introduction

The inclusive penguin modes B̄ → Xs,dγ and B̄ → Xs,dℓ
+ℓ− are theoretically very clean

modes to indirectly search for new physics (for reviews see [1–3]). In particular the semi-

leptonic B̄ → Xsℓ
+ℓ− modes have the potential to corroborate present tensions [4] in

corresponding exclusive decays measured by LHCb (see [5] and references therein), but are

affected by independent hadronic uncertainties. These inclusive penguin modes are golden

modes for the Belle II experiment, but measurements of the decay mode B̄ → Xs,dℓ
+ℓ−

might be also possible with the LHCb experiment, especially at high-q2 [6–8]. The expected

precision of the Belle II measurements [9] calls for a systematic reduction of the theoretical

errors in the calculations of the decay rates, CP asymmetries and other observables.

Within the local operator product expansion (OPE), the inclusive penguin modes are

dominated by the perturbatively calculable contributions, and subleading contributions

start only at the quadratic level in the small expansion parameter (Λ/mb)
2. However,

the OPE breaks down in these inclusive modes if one considers operators beyond the

leading ones. This breakdown manifests in non-local power corrections, also called resolved
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contributions, which are characterised by a sub-processes in which the photon couples to

light partons instead of connecting directly to the effective weak-interaction vertex [10].

These non-local power corrections can be systematically included using the framework

of soft-collinear effective theory (SCET) [11–15]. In case of the inclusive B̄ → Xsγ decays,

all resolved contributions to O(1/mb) have been calculated some time ago at leading order

(LO) in perturbation theory [10, 16, 17]. The analogous contributions to B̄ → Xs,dℓ
+ℓ−

have also been analysed to O(1/mb) more recently [18, 19]. In both cases, an additional

uncertainty of 4−5% was found, which represented the largest uncertainty in the prediction

of the decay rate of B̄ → Xsγ [20] and of the low-q2 observables of B̄ → Xs,dℓ
+ℓ− [21, 22].

Numerically, the most important resolved contribution is due to the interference of the

current-current four-quark operator Qc
1 with the electromagnetic dipole operator Q7γ ,

Qq
1 = [q̄γµ(1 − γ5)b] [s̄γµ(1 − γ5)q] , Q7γ =

−emb

8π2
s̄σµν(1 + γ5)F

µνb , (1.1)

with q = u, c. It is worth mentioning that this resolved contribution was first calculated

in a local expansion, which implies that the shape function effects were neglected [23–26].

It was shown that this leads to an underestimation of that resolved contribution in both

penguin inclusive modes [16, 19]. A new theoretical input [27, 28], namely the derivation

of the second moment of the non-perturbative subleading shape function g17(ω, ω1;µ) in

the resolved Qc
1 − Q7γ contribution, reduced the corresponding uncertainty within the

B̄ → Xsγ decay rate. A more recent analysis, however, found a smaller reduction and

additional uncertainties [29]: A clear underestimation of the charm-mass dependence and

the missing uncertainty due to the 1/m2
b corrections in [28] were shown to be the reasons

for this discrepancy [29].1

The uncertainties due to the resolved contributions are still among the largest ones in

the inclusive penguin modes. In total, the resolved contribution due to the interference of

Qc
1−Q7γ is found to be (5.15±2.55)% in case of the B̄ → Xsγ mode [18, 19], corresponding

1Both recent analyses [28, 29] follow the systematic approach using a complete set of basis functions,

in this case Hermite polynomials multiplied by a Gaussian function. In both analyses the largest value

of the resolved contribution was found with a Hermite polynomial of degree 6. This systematic approach

was already advocated before and used in several analyses [30, 31]. It avoids any prejudice regarding the

functional form of the shape functions and only uses known constraints like the moments of the shape

functions. The difference of the results in [28, 29] are twofold: In [29] the charm-mass dependence was

estimated by the running MS mass within the charm penguin diagram, which is naturally calculated at the

hard-collinear scale. Variation of the hard-collinear scale from 1.3 GeV to 1.7 GeV leads to 1.14GeV ≤
mc ≤ 1.26GeV. In contrast, the authors in [28] took into account in the parametric uncertainties only what

leads to the unnaturally small variation of the charm mass, 1.17GeV ≤ mc ≤ 1.23GeV. This represents

an underestimation of the charm-mass dependence. Moreover, the authors of [28] dropped the 1/m2
b term

that is of kinematic origin – which was included in the initial analysis in [16] – and did also not include

an estimate of 1/m2
b contributions in their result. But this 1/m2

b associated with a 1/mb shape function

is rather large, but other 1/m2
b corrections were estimated to be negligible [16]. Thus, before the 1/m2

b

corrections are not fully estimated [32], it is most reasonable to use the large 1/m2
b term as conservative

estimate of all 1/m2
b corrections in the current result - as it was now done in the initial analysis in [16] and

in the more recent analysis in [29]. Not to include any errors related to the 1/m2
b corrections as the authors

in [28] did is a further underestimation of the current theoretical error. However, the latter result in [28]

was taken over in a recent analysis about the B̄ → Xsγ decay [33] before the analysis in [29] was finalised.
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to the range [2.6%, 7.7%]. Here, the Voloshin term of +3% – which was calculated based

on a local expansion [23–26], and is traditionally subtracted from the resolved contribution

– was added back. Furthermore, there is a very large scale ambiguity of the order of

almost 40%, which still has to be taken into account in the result above: In the LO result

(including the Voloshin term), the scale of the hard functions (i.e. the Wilson coefficients),

is not fixed. If one changes their scale from the hard scale to the hard-collinear scale, the

final result increases by 40% [29].

This large scale ambiguity and the large charm-mass dependence strongly motivate

a systematic calculation of the O(αs) radiative corrections within renormalisation-group

(RG) improved perturbation theory. The starting point for such an analysis is an all-order

factorisation formula for the subleading non-local contributions in terms of hard, jet and

soft functions, which was first established in [16]. More recently, a partial failure of that

factorisation formula was healed in [34] by using new refactorisation techniques [35–38].

The present paper provides the first step in this direction, focusing on the largest resolved

contribution from the Qc
1 − Q7γ interference. We here calculate the one-loop anomalous

dimension of the respective soft function in the factorisation theorem – the subleading

shape function g17(ω, ω1, µ).

Conceptually, our analysis also reveals new insights about the renormalisation of a

specific set of soft functions. Whereas for example the leading-power shape function (and

also conventional light-cone distribution amplitudes in exclusive B-meson decays),

S(ω;µ) =
1

2MB

∫
dt

2π
e−iωt ⟨B̄v|(h̄vSn)(tn) (S†

nhv)(0)|B̄v⟩ , (1.2)

whose renormalisation has been studied in [39, 40], is defined by an operator that only

contains soft fields smeared along one common light-cone vector nµ in the direction of the

energetic s-quark, a technical complication in the case of g17(ω, ω1;µ) is that the underlying

operator contains fields smeared along two different light-cones, see the definition below

in (2.3) and (2.4). The reason is that the soft gluon in Fig. 1 couples to the quark loop

that converts into the energetic photon in the direction opposite to that of the s-quark.

Such soft functions with a dependence on multiple light-cone directions will become

relevant in various power-corrections to inclusive and exclusive processes, see e.g. [16, 41–

43], or when QED corrections are included and the external particles are electrically

charged [44–50] (see also [51] for a summary of QED corrections in the factorization ap-

proach). In fact, in the context of B-meson decays, their renormalisation was first rigorously

studied in [49] for the QED-generalized B-meson light-cone distribution amplitude. Most

importantly, in the present article we find that the anomalous dimension of such a multi-

light-cone operator contains terms that are irrelevant in factorization theorems (and hence

for physical quantities), generalizing an observation made in [49]. This allows one to solve

considerably simpler “reduced” renormalisation-group (RG) equations. As an example, we

simplify a recent analysis of the RG evolution for an amplitude-level soft function that

appears in the factorization of exclusive B̄d,s → γγ decays, and has recently been studied

in [42].
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Figure 1: Leading-order contribution to the B̄ → Xsγ decay rate from the Qc
1 − Q7γ

interference. Symmetric diagrams are not shown.

As a cross-check of this simplification, we have confirmed that all 1/ε singularities

cancel at next-to-leading order (NLO) between the hard, (anti-)hard-collinear and soft

loops. Whereas the NLO corrections to the quark jet function and the hard matching

coefficients are well-known, we have computed all 1/ε singularities of the anti-hard-collinear

two-loop diagrams from gluon attachments to the quark loop. These corrections turn out

to be identical for the inclusive and exclusive process. We have used the fact that the

massless-quark limit can be taken smoothly to simplify the calculation. This represents

a further important step towards a consistent RG analysis, and will be discussed in a

forthcoming publication [52].

We also note that all results on the shape function g17 which we derive in the present

manuscript can directly be used also in the case of the B̄ → Xsℓ
+ℓ− mode.

The remainder of the article is organized as follows. In section 2, we compute the

ultraviolet singularities of the soft operator underlying the subleading shape function. An

analytic solution to the corresponding RG equation in momentum-space is presented in

section 3, and some phenomenological implications of the scale evolution are discussed. In

section 4, we compare our calculation to a closely related soft function at the amplitude

level, which is relevant for penguin contributions to exclusive processes. We conclude in

section 5.

2 Renormalisation of the subleading shape function g17

The B̄ → Xsγ decay rate cannot be expressed as the imaginary part of a B-meson forward

matrix element of time-ordered operators, because not all possible cuts also contribute to

the b → sγ decay. Instead, it is related to a restricted discontinuity of the forward matrix

element of the product of two effective weak Hamiltonians,

dΓ(B̄ → Xsγ) ∝ Disc restr.

[
i

∫
d4x ⟨B̄|H†

eff(x)Heff(0)|B̄⟩
]
, (2.1)

where restricted means that at leading order only the cuts including the photon and the

strange quark are considered. The dominant resolved-photon contribution arises from the
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interference of the current-current operator Qq
1 with the electromagnetic dipole operator

Q7γ . The leading order contribution to the decay rate is shown in Fig. 1.

We remind the reader that taking restricted cuts using Cutkosky cutting rules implies

that on the left side of the cut one uses standard Feynman rules, whereas on the right

side one uses complex-conjugate Feynman rules. More precisely, on the left of the cut one

uses the standard Feynman rules for propagators i/(k2 + i0) from time-ordered products

as well as for vertices, whereas on the right of the cut one uses complex-conjugate propaga-

tors (−i)/(k2 − i0) from anti-time-ordered products as well as complex-conjugate vertices.

Propagators that cross the cut are set on-shell with a positive-energy constraint,2

i

ℓ2 + i0
→ 2πδ(ℓ2)θ(ℓ0) . (2.2)

The other equivalent option is to consider the absolute-square of the amplitude and sum

over the intermediate states X in |⟨B̄|Heff |X⟩|2= ⟨B̄|Heff |X⟩⟨B̄|Heff |X⟩∗. A path integral

formulation for the evaluation of matrix elements with (restricted) cuts is given by the

so-called Keldysh formalism [54, 55] to which we come back below.

The subleading shape-function g17(ω, ω1;µ), introduced in [16], is the relevant soft

function that captures the non-perturbative low-energy QCD dynamics in the factorization

formula of this resolved contribution. It is defined as the Fourier-transformed forward

matrix element between two static B̄-meson states,

g17(ω, ω1;µ) =
1

2MB

∫
dr

2π
e−iω1r

∫
dt

2π
e−iωt ⟨B̄v|O17(t, r)|B̄v⟩ , (2.3)

of an operator in Heavy-Quark Effective Theory (HQET),

O17(t, r) = (h̄vSn)(tn) /̄n(S†
nSn̄)(0) iγ⊥α n̄β (S†

n̄ gsG
αβ
s Sn̄)(rn̄) (S†

n̄hv)(0) . (2.4)

Here, nµ is a light-like vector that points into the direction of the energetic s-quark (the

collinear direction), and, the energetic photon has momentum in the opposite n̄µ direction

(the anti-collinear direction). Furthermore, the Sn are soft Wilson lines from the decou-

pling of the hard-collinear s-quark propagator, and correspondingly the Sn̄ arise from the

decoupling of anti-hard-collinear propagators in the quark-loop, see Fig. 1. Importantly,

the Wilson-lines in both light-cone directions combine to segments of finite length.

2.1 UV singularities of O17

We compute the ultraviolet (UV) singularities of the momentum-space operator

Õ(bare)
17 (ω, ω1) =

∫
dr

2π
e−iω1r

∫
dt

2π
e−iωtO(bare)

17 (t, r) (2.5)

at one-loop order, and extract its Z-factor in the MS-scheme from

Õ(bare)
17 (ω, ω1) =

∫
dω′

∫
dω′

1 Z
−1
17 (ω, ω1, ω

′, ω′
1;µ) Õ(ren)

17 (ω, ω1;µ) . (2.6)

2See for example eq. (06-128) in the Quantum Field Theory textbook by C. Itzykson and J.-B. Zuber [53].
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Figure 2: One-loop diagrams that contribute to the partonic matrix element ⟨Õ17⟩. The

square denotes the insertion of the operator. Self-energy contributions are not shown.

Despite the non-perturbative nature of the shape function g17, the UV-singularities of the

defining operator can safely be computed in perturbation theory using partonic external

states. More specifically, in the following we compute one-loop corrections to the matrix

element ⟨Õ(bare)
17 (ω, ω′)⟩ ≡ ⟨hv(k, s)g(kg, λ)|Õ(bare)

17 (ω, ω′)|hv(k′, s′)⟩. As a consequence of

the space-time arguments of the fields in (2.4), it suffices at tree-level to set the residual

heavy-quark momentum to kµ = 1
2(nk)n̄µ ≡ 1

2k+n̄
µ, and similarly the gluon momentum

to kµg = 1
2(n̄kg)nµ ≡ 1

2kg−n
µ. At O(αs), however, we keep the parton momenta slightly

off-shell whenever necessary to regularize potential infrared (IR) divergences in the loop

integrals. Further, we perform the calculation with a “physical gluon”, i.e. its polarization

vector ϵaµ(kg, λ)∗ is chosen to be perpendicular to nµ and n̄µ.

At tree-level, the partonic matrix element follows from the Feynman rule

= δ(ω − k+)δ(ω1 − ℓ1−)gst
a /̄n(n̄µ/ℓ1⊥ − γµ⊥ℓ1−) , (2.7)

and evaluates to

⟨Õ(bare)
17 (ω, ω1)⟩(0) = −ω1δ(ω1 − kg−)δ(ω − k+) [h̄v /̄n /A⊥hv] , (2.8)

where now the objects in the square brackets represent on-shell spinors for the heavy quarks,

and a polarization vector for the gluon, Aµ = gsϵ
a
µ(kg, λ)∗ta. Due to the spin-symmetry of

soft-gluon interactions with heavy-quark fields, the spinor product remains unchanged at

the loop level. The prefactor (−ω1) arises from the derivatives in the gluon field-strength

tensor.

All one-loop graphs that contribute to the UV singularities in Feynman gauge are

shown in Fig. 2. We note that the external gluon does not couple directly to the heavy-
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quark line due to its perpendicular polarisation. Diagrams without the additional gluon

in the final state vanish due to rotational symmetry, i.e. O17 does not mix into operators

with only two quark fields. Additionally, the gluon exchange between the two heavy-quark

lines in diagram (a) is UV-finite. Evaluating the diagrams in Feynman gauge demands

Feynman rules for up to three gluon emissions from the operator O17. They arise from

the gluon field-strength tensor as well as from the various Wilson lines in (2.4). For the

two-gluon emission Feynman rule one finds

= −δ(ω − k+)δ(ω1 − ℓ1− − ℓ2−) g2s if
abctc /̄nγµ⊥n̄

ν (2.9)

+ δ(ω1 − ℓ2−)
nµ

ℓ1+

(
δ(ω − k+ − ℓ1+) − δ(ω − k+)

)
g2s t

atb /̄n(n̄ν/ℓ2⊥ − γν⊥ℓ2−)

− δ(ω − k+)
n̄µ

ℓ1−

(
δ(ω1 − ℓ1− − ℓ2−) − δ(ω1 − ℓ2−)

)
g2s if

abctc /̄n(n̄ν/ℓ2⊥ − γν⊥ℓ2−)

+ (l1, µ, a) ↔ (l2, ν, b) .

Here the first line describes two gluons that are emitted from the field-strength tensor

Gαβ
s , whereas the second and third line describe one gluon from Gαβ

s and one from the

finite-length Wilson lines in the nµ and n̄µ direction, respectively.

For diagram (g) we also need the three-gluon emission Feynman rule, which is a quite

lengthy expression. However, most of the contractions vanish in Feynman gauge, or due to

rotational symmetry, and here we only quote the relevant piece that gives a non-vanishing

contraction in diagram (g):

∋ − nµ

ℓ1+

(
δ(ω − k+ − ℓ1+) − δ(ω − k+)

)
ig3sf

bcdtatd /̄n (2.10)

×
[
δ(ω1 − ℓ2− − ℓ3−)γν⊥n̄

ρ +
n̄ν

ℓ2−

(
δ(ω1 − l2− − ℓ3−) − δ(ω1 − l3−)

)(
/ℓ3⊥n̄

ρ − γρ⊥ℓ3−

)]
+ permutations .

We regulate UV-divergences in dimensional regularization, i.e. by evaluating the loop

integrals in d = 4 − 2ε space-time dimensions. After the integrations have been carried

out, the respective expressions need to be expanded around ε = 0 in the distribution sense.

Besides the standard plus-distributions,∫
dω′ [ . . . ]+ f(ω′) ≡

∫
dω′ [ . . . ] (f(ω′) − f(ω)) , (2.11)

one also needs the modified plus-distributions,∫
dω′ [ . . . ]⊕/⊖ f(ω′) ≡

∫
dω′ [ . . . ] (f(ω′) − θ(±ω′)f(ω)) , (2.12)
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which arise because the variables ω and ω1 can take both positive and negative values. It

turns out to be convenient to define

F>(ω, ω′) =

[
ω θ(ω′ − ω)

ω′ (ω′ − ω)

]
+

+

[
θ(ω − ω′)

ω − ω′

]
⊕
,

F<(ω, ω′) =

[
ω θ(ω − ω′)

ω′ (ω − ω′)

]
+

+

[
θ(ω′ − ω)

ω′ − ω

]
⊖
,

G>(ω, ω′) = (ω + ω′)

[
θ(ω′ − ω)

ω′ (ω′ − ω)

]
+

− iπδ(ω − ω′) ,

G<(ω, ω′) = (ω + ω′)

[
θ(ω − ω′)

ω′ (ω − ω′)

]
+

+ iπδ(ω − ω′) , (2.13)

as well as the linear combinations

H±(ω, ω′) = θ(±ω)F>(<)(ω, ω′) + θ(∓ω)G<(>)(ω, ω′) , (2.14)

which have been introduced in the study of QED corrections to the B-meson light-cone

distribution amplitude in [49].

2.2 Abelian contributions

In the Abelian limit, all soft Wilson lines in the n̄-direction in (2.4) cancel. From the

spin-symmetry of HQET, it follows that the UV singularities of O17 proportional to the

color factor CF coincide with those of the leading shape function, computed e.g. in [39].

The contribution to the Z-factor, which arises from diagrams (b) and (c) in Fig. 2 (recall

that diagram (a) is UV-finite in Feynman gauge), reads

Z(ω, ω1, ω
′, ω′

1;µ) = δ(ω1 − ω′
1)δ(ω − ω′) (2.15)

+
αsCF

4π
δ(ω1 − ω′

1)

{(
2

ε2
+

4

ε
ln

µ

Λ̄ − ω
− 2

ε

)
δ(ω − ω′) − 4

ε

[
θ(ω′ − ω)

ω′ − ω

](Λ̄)
+

}
+ O(α2

s) ,

where Λ̄ = MB−mb is the difference of the B-meson mass and the b-quark pole mass. The

superscript (Λ̄) on the plus-distribution indicates that the integral in ω′ is restricted to the

interval (−∞, Λ̄], ∫ Λ̄

−∞
dω′ [ . . . ]+ f(ω′) ≡

∫ Λ̄

−∞
dω′ [ . . . ] (f(ω′) − f(ω)) , (2.16)

which is also the reason for the logarithmic dependence on Λ̄.

In the following, we prefer to use an alternative representation that is independent of

the IR parameter Λ̄, but is equivalent to (2.15) when acting on a function supported on

aforementioned interval. This expression is derived by computing diagrams (b) and (c) by

means of the residue theorem. We choose ℓ to be the gluon momentum that flows into the

square vertex. Picking up the residues in the ℓ−-component and performing the integration

over the perpendicular directions, one obtains the following integral for the contribution
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to the Z-factor from diagram (b):

− αsCF e
εγEµ2ε

2π
δ(ω1 − ω′

1)Γ(ε)

∫ ∞

0
dℓ+ ℓ−2ε

+

1

ℓ+ + ∆

(
δ(ω − ω′ + ℓ+) − δ(ω − ω′)

)
= − αsCF

2π
δ(ω1 − ω′

1)
1

ε

{
θ(ω′ − ω)

ω′ − ω + ∆
− δ(ω − ω′)

(
1

2ε
− ln

∆

µ

)}
+ O(ε0) . (2.17)

Here ∆, with Im ∆ > 0, is a shift in the Wilson-line propagator that arises from off-shell

lines in QCD diagrams, and regularizes IR divergences from ℓ+ → 0 in the two individual

terms. We note that, because the Wilson lines are of finite length, the UV-poles in ε

in (2.17) are independent of ∆ in the limit ∆ → 0 once consistently expanded in the

distribution sense.3 The expansion of the second line of (2.17) in terms of (modified)

plus-distributions has been discussed in detail in [49]. The result reads

αsCF

2π
δ(ω1 − ω′

1)

{
δ(ω − ω′)

(
1

2ε2
+

1

2ε
ln

µ2

ω2

)
− 1

ε
θ(ω)

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

ω′ − 1

ε
θ(−ω)

[
θ(ω′ − ω)

ω′ − ω

]
⊖

}
, (2.18)

and is indeed independent of ∆. Diagram (c) yields the same result, and, after taking into

account the divergent one-loop contribution from the heavy-quark wave-function renormal-

isation constant,4

Z
(1)
h − 1 =

αsCF

2πε
, (2.19)

we obtain for the Abelian part of the Z-factor

Z
(1)
17 (ω, ω1, ω

′, ω′
1;µ)

∣∣∣
CF

=
αsCF

4π
δ(ω1 − ω′

1)

{(
2

ε2
+

2

ε
ln

µ2

ω2
− 2

ε

)
δ(ω − ω′) (2.20)

− 4

ε
θ(ω)

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

ω′ − 4

ε
θ(−ω)

[
θ(ω′ − ω)

ω′ − ω

]
⊖

}
.

Here the superscript (1) denotes that we work at O(αs). It is straightforward to see that

this form is equivalent to (2.15) by employing the following identities

θ(ω)

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

ω′ = θ(ω)

[
θ(ω′ − ω)

ω′ − ω

](Λ̄)
+

+ θ(ω)δ(ω − ω′) ln
Λ̄ − ω

ω
,

θ(−ω)

[
θ(ω′ − ω)

ω′ − ω

]
⊖

= θ(−ω)

[
θ(ω′ − ω)

ω′ − ω

](Λ̄)
+

+ θ(−ω)δ(ω − ω′) ln
Λ̄ − ω

−ω
, (2.21)

which hold if the test functions have support on the interval {ω, ω′} ∈ (−∞, Λ̄]. For the

two expressions in (2.15) and (2.20) to be equivalent, it is crucial that only θ-functions that

enforce ω′ > ω appear inside the plus distributions. This guarantees that a function with

support Λ̄ > ω′ is mapped onto a function with support Λ̄ > ω.

3We note that in some cases the Wilson lines do not combine to finite segments, but instead extend to

infinity. The UV poles of the operators then depend logarithmically on such a regulator, hence spoiling its

renormalisation. An additional rearrangement needs to be performed to remove these contributions from

“charges at infinity”, see e.g. [45–47, 49, 56].
4Note that this constant contributes to Z

(1)
17 with a negative sign due to Z

1/2
h hren

v = hbare
v .
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2.3 Non-Abelian contributions

Next, we examine the non-Abelian contributions, which arise from all diagrams shown in

Fig. 2 except (a). For transparency, we separately discuss the contributions that arise from

gluons emitted from the field-strength tensor, from the Wilson lines in the nµ direction

or the n̄µ direction. The contraction of Wilson lines in the two light-cone directions in

diagram (g) is discussed on its own.

Setting all Wilson lines to unity leaves diagrams (d) and (e), as well as (b), (c), and

(f), but using only the first line of the Feynman rule in (2.9) for the latter three. In

this case, the UV poles of diagrams (d) and (b) cancel. Similarly, the contribution from

diagram (c) is canceled by a piece from diagram (e), but a UV-divergent contribution from

(e) remains. This piece can simply be expanded in the dimensional regulator ε without the

need of introducing plus-type distributions. The contribution to the Z-factor reads

αsCA

8πε
δ(ω − ω′)

ω1

(ω′
1)

2
[θ(ω1)θ(ω′

1 − ω1) − θ(−ω1)θ(ω1 − ω′
1)] . (2.22)

Lastly, the contribution from diagram (f) is purely local. Taking into account the symmetry

factor 2, one finds
3αsCA

8πε
δ(ω − ω′)δ(ω1 − ω′

1) . (2.23)

Next, we investigate diagrams (b), (c) and (f) using the second line of (2.9), as well

as diagram (g) using only the first term in the second line of (2.10). These Feynman rules

represent one gluon emitted from the finite-distance Wilson line in the nµ direction, and

one or two gluons emitted from the field-strength tensor. The respective contribution from

diagram (b) is proportional to CF and already contained in (2.15), whereas the one from (c)

is proportional to (CF−CA/2), and therefore comes with the same integral (2.17). Diagram

(g), which also needs to be divided by its symmetry factor 2, is canceled by a piece from

diagram (f), and the remaining terms from (f) result again in the expression (2.22).

The Feynman rule that represents one gluon emitted from the Wilson line in the n̄µ

direction and one from the field-strength tensor is given by the third line of (2.9). Diagram

(c) then contributes the following term to the Z-factor,

− αsCAe
εγEµ2ε

4π
δ(ω − ω′)Γ(ε)

∫ ∞

0
dℓ− ℓ−2ε

−
1

ℓ− − ∆̄

(
δ(ω1 − ω′

1 + ℓ−) − δ(ω1 − ω′
1)
)

= − αsCA

4π
δ(ω − ω′)

1

ε

{
θ(ω′

1 − ω1)

ω′
1 − ω1 − ∆̄

− δ(ω1 − ω′
1)

(
1

2ε
− ln

−∆̄

µ

)}
+ O(ε0) . (2.24)

Similar to (2.17), the quantity ∆̄, with Im ∆̄ > 0, is an off-shell regulator for IR diver-

gences, that can be set to zero after expanding in terms of plus-type distributions, which
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is analogous to (2.18). The UV-divergent piece of diagram (f) yields the integral

− αsCA

4π
δ(ω − ω′)

1

ε

∫ ω′
1

0

dℓ−
ℓ− − ∆̄

(
δ(ω1 − ω′

1 + ℓ−) − δ(ω1 − ω′
1)
)(ω′

1 − ℓ−)(2ω′
1 − ℓ−)

(ω′
1)

2

= − αsCA

4π
δ(ω − ω′)

1

ε

{
− ω1

(ω′
1)

2
[θ(ω1)θ(ω′

1 − ω1) − θ(−ω1)θ(ω1 − ω′
1)] (2.25)

+
2ω1[θ(ω1)θ(ω′

1 − ω1) − θ(−ω1)θ(ω1 − ω′
1)]

ω′
1(ω

′
1 − ω1 − ∆̄)

+ δ(ω1 − ω′
1)

(
5

2
+ 2 ln

∆̄

∆̄ − ω1

)}
.

Compared to (2.18), the additional constraint θ(±ω1) in the first term of the last line

allows to expand this piece in standard plus-distributions, after which we can set ∆̄ → 0.

Diagram (f) then results in

− αsCA

4π
δ(ω − ω′)

1

ε

{
− ω1

(ω′
1)

2
[θ(ω1)θ(ω′

1 − ω1) − θ(−ω1)θ(ω1 − ω′
1)]

+ 2θ(ω1)ω1

[
θ(ω′

1 − ω1)

ω′
1(ω

′
1 − ω1)

]
+

+ 2θ(−ω1)ω1

[
θ(ω1 − ω′

1)

ω′
1(ω1 − ω′

1)

]
+

+
5

2
δ(ω1 − ω′

1)

}
. (2.26)

The contribution from diagram (b) turns out to be more subtle. Carrying out the

integration over the ℓ+-component is trivial due to the appearing δ-function. Performing

additionally the integration over the perpendicular components yields for the UV-divergent

piece

− αsCA

4πε

1

2πi

∫
dℓ−

1

ω − ω′ + ℓ− + δ

1

ℓ− − ∆̄

(
δ(ω1 − ω′

1 + ℓ−) − δ(ω1 − ω′
1)
)

= − αsCA

4πε

( 1

2πi

1

ω − ω′ + ω′
1 − ω1 + i0

1

ω′
1 − ω1 − i0

− δ(ω1 − ω′
1)

1

ω − ω′ + i0

)
, (2.27)

with δ = 2vk + i0 an off-shellness for the residual momentum of the external heavy-quark

line. However, note the important fact that no θ-functions appear in this expression, and

the only relevant piece of the IR regulators is their i0 prescriptions that dictate how the

pole is shifted to the complex plane. The equal sign in (2.27) has to be understood in that

sense. In our convention, all IR regulators have a +i0 prescription, which matches the

Feynman propagators of the corresponding QCD diagrams. The second term in (2.27) can

be further expressed in terms of the H± distributions, defined in (2.13) and (2.14), via

1

ω − ω′ + i0
= H+(ω, ω′) −H−(ω, ω′) − 2πiδ(ω − ω′) . (2.28)

For reasons that become clear later, we do not further manipulate the first term in (2.27)

at this point.

The last missing contribution arises from diagram (g) using the second term in the

second line of the Feynman rule in (2.10). This contribution describes the contraction of

one gluon field from the Wilson line in the nµ direction with a gluon field from the n̄µ

Wilson line. The gluon-field from the field-strength tensor is contracted with the external

state. Note that, because the field-strength tensor is contracted with an n̄β in (2.3), there
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is no non-vanishing contraction of two gluons from Gαβ
s and one gluon from the n̄µ Wilson

line. After performing the integral over the perpendicular components one finds

αsCA

4π
Γ(ε)eεγEµ2ε 1

2πi

∫
dℓ+

∫
dℓ− (−ℓ+ℓ− − i0)−ε

× 1

ℓ+ + ∆

(
δ(ω − ω′ − ℓ+) − δ(ω − ω′)

) 1

ℓ− − ∆̄

(
δ(ω1 − ω′

1 + ℓ−) − δ(ω1 − ω′
1)
)

= − αsCA

4π

1

ε

{
1

2πi

1

ω′ − ω − i0

1

ω′
1 − ω1 − i0

−
(

1

ε
+ iπ

)
δ(ω − ω′)δ(ω1 − ω′

1)

+ δ(ω1 − ω′
1)

(
θ(ω − ω′)

ω − ω′ + ∆
+ δ(ω − ω′) ln

∆

µ

)
+ δ(ω − ω′)

(
θ(ω1 − ω′

1)

ω1 − ω′
1 + ∆̄

+ δ(ω1 − ω′
1) ln

∆̄

µ

)}
+ O(ε0) . (2.29)

The expression of the last two lines in terms of plus-type distributions reads

θ(ω − ω′)

ω − ω′ + ∆
+ δ(ω − ω′) ln

∆

µ

= θ(ω)

[
θ(ω − ω′)

ω − ω′

]
⊕

+ θ(−ω)

[
θ(ω − ω′)

ω′(ω − ω′)

]
+

ω′ − 1

2
ln

µ2

ω2
δ(ω − ω′) , (2.30)

whereas for the first term in (2.29) one could use the identity (2.28). However, we again

prefer to not manipulate this term.

Summing up all pieces, and including the O(αs) coupling and gluon-field renormalisa-

tion factors

Zgs

√
Z3 − 1 = −αsCA

4πε
+ O(α2

s) , (2.31)

one finally obtains for the non-Abelian contributions to the Z-factor

Z
(1)
17 (ω, ω1, ω

′, ω′
1;µ)

∣∣∣
CA

=
αsCA

4π
δ(ω − ω′)

{(
1

ε2
+

1

ε
ln

µ2

ω2
1

)
δ(ω1 − ω′

1)

+
2

ε

ω1

(ω′
1)

2
[θ(ω1)θ(ω′

1 − ω1) − θ(−ω1)θ(ω1 − ω′
1)] −

1

ε
ReH(ω1, ω

′
1)

}
+ ∆Z17(ω, ω1, ω

′, ω′
1;µ) , (2.32)

where we have defined H(ω1, ω
′
1) = H+(ω1, ω

′
1) +H−(ω1, ω

′
1). The quantity ∆Z17 contains

the terms which have non-trivial structures in both sets of arguments (ω, ω′) and (ω1, ω
′
1)

simultaneously,

∆Z17(ω, ω1, ω
′, ω′

1;µ) =
αsCA

4πε

1

2πi

1

ω′
1 − ω1 − i0

( 1

ω′ − ω + ω1 − ω′
1 − i0

− 1

ω′ − ω − i0

)
.

(2.33)

Interestingly, besides these pieces the dependence on ω in (2.32) is purely local, as the

distributions exactly cancel in sum of all diagrams. The complete one-loop Z-factor of the

operator Õ17 is then given by

Z17 = δ(ω − ω′)δ(ω1 − ω′
1) + Z

(1)
17

∣∣∣
CF

+ Z
(1)
17

∣∣∣
CA

+ O(α2
s) , (2.34)

where we have suppressed the arguments for brevity.
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2.4 Cut diagrams and the relevance of ∆Z17

The appearance of structures like (2.33) in the UV-poles of the soft HQET operator O17

seems problematic. In the effective theory, the two collinear directions are decoupled, and

each hard-collinear sector is described by a jet function that only depends either on ω (the

soft momentum component associated with the nµ direction) or ω1 (the soft momentum

component associated with the n̄µ direction).

At O(αs), all divergences in ε must cancel in the sum of the hard, hard-collinear, anti-

hard-collinear and soft loops, where the hard functions do not depend on the soft momenta.

This would indicate that the Z-factor of the operator O17 should be of the form

Z(1)(ω, ω1, ω
′, ω′

1;µ) = δ(ω1 − ω′
1)Z

(1)
n (ω, ω′;µ) + δ(ω − ω′)Z

(1)
n̄ (ω1, ω

′
1;µ) , (2.35)

i.e. the dependence on the two light-cone momentum projections decouples. The terms

in (2.33) obviously have a different form, and might suggest the presence of other long-

range interactions between the two collinear sectors which superficially would violate soft-

collinear factorization. However, in the following we will argue that both terms in ∆Z17

are irrelevant for the decay rate, thus, our results agree with factorization in terms of hard,

(anti-)hard-collinear and soft modes.

First, we emphasize that the UV-singularities in (2.20) and (2.32) were calculated using

standard Feynman rules from time-ordered products in a B-meson forward matrix element.

In other words, we have not yet applied the necessary cuts that contribute to the B̄ → Xsγ

decay rate. In that case, we will now argue that the problematic terms (2.33) vanish when

convoluted with the jet functions due to the location of singularities in the complex plane. A

crucial property for this argument is that the terms in ∆Z17 do not contain any integration

constraints from θ-functions, i.e. in any matrix element of Õ17 all light-cone momenta are

unrestricted, and hence integrated over the entire real axis in factorization theorems.5 Due

to the directed energy flow, the relevant (time-ordered) jet functions for the forward matrix

element have singularities or branch cuts only in the lower half-plane, i.e. they depend on

ω + i0 and ω1 + i0, respectively. At leading order, for example, the jet function in the nµ

direction is simply given by the inverse hard-collinear propagator ∼ (ω + i0)−1, and the

same is true for the jet function in the n̄µ direction in the massless-quark limit mu = 0.

The convolution of ∆Z17 with these jet functions can be performed with contour methods,

and because the singularities of ∆Z17 in (2.33) are located in the same half-plane, the

convolution integrals vanish. Both terms in the expression (2.33) vanish upon integration

in ω, while the ω1 integration would only eliminate the second term.

We have explicitly checked that ∆Z17 is irrelevant for the cancellation of all 1/ε sin-

gularities between hard, (anti-)hard-collinear and soft loops at next-to-leading order. To

do so, we have also computed all 1/ε singularities of the two-loop n̄-jet function in the

massless case, which will be discussed in a separate publication [52]. Note that for this

cross-check to hold it is important that the limit mc → mu = 0 is smooth.

5We argue in appendix A that imposing a restricted support with cut-offs leads to inconsistencies with

the local limit of the operator.
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An alternative point-of-view provides a discussion in position space [16]. The large

energy in the nµ direction flows from left to right in the Feynman diagram in Fig. 1.

Hence, after convolution with the (time-ordered) jet functions, the heavy-quark field with

position argument (tn) is evaluated at a later time than the one at space-time point 0.

This is ensured by the relation∫
dω

e−iωt

ω + p+ + i0
= −2πieitp+θ(t) , (2.36)

where p+ is the small component of the hard-collinear momentum. Indeed, the field h̄v(tn)

appears to the left of hv(0) in (2.4) such that the fields are correctly time-ordered. Con-

trarily, after a Fourier transform to position space, the terms in ∆Z17 are non-zero only

for t < 0, and thus do not contribute. It would be interesting to investigate the UV singu-

larities of the operator directly in position space, as was done for the soft-quark function

in gg → h at next-to-leading power in [56].

It is important to recall that the relevant integrals that contribute to the B̄ → Xsγ

decay rate contain cuts. In particular, at leading order, the n-jet function is given by the

discontinuity of the hard-collinear s-quark propagator, whereas the n̄-jet function is defined

at the amplitude level and arises from the anti-hard-collinear momentum configuration in

the quark-loop in Fig. 1. While the potentially problematic terms vanish after convolution

with the time-ordered propagators, they certainly do not when convoluted with the physi-

cally relevant n-jet function. However, it turns out that both terms in ∆Z17 arise from soft

gluons connecting the amplitude with the complex conjugate amplitude. Since taking the

cut enforces t > 0 from the positive-energy constraint, a definition of the shape function

g17(ω, ω1;µ) that contains the relevant cut-propagators would directly eliminate ∆Z17. In

summary, the contribution ∆Z17, which is non-zero only for t < 0, is irrelevant in both

cases, since either taking the cut or the convolution with the time-ordered jet function

enforces t > 0.

As already mentioned above, the B̄ → Xsγ decay rate cannot be expressed as the

imaginary part of a B-meson forward matrix element of time-ordered operators. The

reason is that not all possible cuts also contribute to the b → sγ decay. In order to

comprise only the relevant cut diagrams, the definition of the operator O17 should also be

modified. A path-integral method to evaluate such cut diagrams is given by the Keldysh

formalism [54, 55], see also [57] for a concise summary. Here one introduces fields with

a subscript “+” that belong the the amplitude and are evaluated with standard HQET

Feynman rules from time-ordered products. On the other hand, fields with a subscript

“−” belong to the complex conjugate amplitude and are evaluated with complex-conjugate

Feynman rules from anti-time-ordered products. The Feynman rule for the contraction of

two fields with different indices, i.e. a propagator that connects the amplitude with the

complex conjugate amplitude, is evaluated using the on-shell condition on the right-hand

side in (2.2). On a diagrammatic level, these rules precisely correspond to the cutting-

rules explained in the beginning of this section. However, since the shape function g17 is

defined by a hadronic matrix element, a non-perturbative definition at the level of the path

integral is required. The soft operator (2.4) that defines the shape function g17 should thus
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be replaced by

O17(t, r) → (h̄vSn)−(tn) /̄n(S†
nSn̄)+(0) iγ⊥α n̄β (S†

n̄ gsG
αβ
s Sn̄)+(rn̄) (S†

n̄hv)+(0) . (2.37)

Indeed, evaluating all diagrams in Fig. 2 with these cutting rules leaves most of the

results from the previous two subsections unchanged. In particular the Abelian part of the

Z-factor remains unaffected. Notable differences are that the contribution (2.27) becomes

UV-finite, and second, the expression in (2.29) becomes

−αsCA

4π

1

ε

{
− 1

ε
δ(ω − ω′)δ(ω1 − ω′

1) + δ(ω1 − ω′
1)

(
θ(ω′ − ω)

ω′ − ω − ∆
+ δ(ω − ω′) ln

−∆

µ

)
+ δ(ω − ω′)

(
θ(ω1 − ω′

1)

ω1 − ω′
1 + ∆̄

+ δ(ω1 − ω′
1) ln

∆̄

µ

)}
+ O(ε0) . (2.38)

This is indeed the sum of (2.27) and (2.29) apart from the two terms in ∆Z17. In other

words, one finds the same soft UV poles when computing time-ordered diagrams and drop-

ping irrelevant terms that vanish after convolution with the jet functions, or by directly

computing cut diagrams. The reason for this is likely the absence of imaginary parts in the

non-vanishing soft contributions, as in that case the cuts in the respective diagrams for the

decay rate only affect the s-quark propagator, which belongs to the n-jet function. The

shape function g17 that appears in the factorization theorem for the B̄ → Xsγ decay rate,

and is convoluted with the discontinuity of the n-jet function, should thus be defined using

the operator (2.37). We will adopt this definition in the following. Evaluating the matrix

element with time-ordered products, on the other hand, would be the relevant soft function

that appears in the factorization of the B-meson forward matrix element of time-ordered

weak Hamiltonians, i.e. before the restricted cuts are taken.

Interestingly, such irrelevant contributions also arise for soft functions defined at the

amplitude level, for example in exclusive B decays. In this case indeed only ordinary (time-

ordered) Feynman diagrams contribute. We will discuss an example from the literature [42]

in greater detail in section 4.

3 Analytic solution to the renormalisation-group equation

In this section we present an analytic solution to the RG equation for the subleading shape

function g17(ω, ω1;µ) as defined using time-ordered and anti-time-ordered fields in (2.37),

d

d lnµ
g17(ω, ω1;µ) = −

∫
dω′

∫
dω′

1 γ17(ω, ω1, ω
′, ω′

1;µ) g17(ω
′, ω′

1;µ) , (3.1)

in momentum space. To do so, let us first recall that the anomalous dimension which

governs the scale evolution of g17(ω, ω1;µ) is defined as

γ17(ω, ω1, ω
′, ω′

1;µ) = −
∫
dω̂

∫
dω̂1

dZ17(ω, ω1, ω̂, ω̂1;µ)

d lnµ
Z−1
17 (ω̂, ω̂1, ω

′, ω′
1;µ) , (3.2)

with the Z-factor from (2.20) and (2.32) without ∆Z17. At O(αs), we can decompose the

anomalous dimension as a sum of two pieces, each of which is associated with only one of
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the two light-cone directions,

γ17(ω, ω1, ω
′, ω′

1;µ) =
αs

π

{
CF δ(ω1 − ω′

1)γn(ω, ω′;µ) +
CA

2
δ(ω − ω′)γn̄(ω1, ω

′
1;µ)

}
. (3.3)

The Abelian part

γn(ω, ω′;µ) =

(
ln

µ2

ω2
− 1

)
δ(ω − ω′) − 2θ(ω)

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

ω′ − 2θ(−ω)

[
θ(ω′ − ω)

ω′ − ω

]
⊖

(3.4)

only acts on the soft variables associated with the collinear direction, and the non-Abelian

part

γn̄(ω1, ω
′
1;µ) = ln

µ2

ω2
1

δ(ω1−ω′
1)−ReH(ω1, ω

′
1)+

2ω1

(ω′
1)

2
[θ(ω1)θ(ω′

1−ω1)−θ(−ω1)θ(ω1−ω′
1)]

(3.5)

only acts on the soft variables associated with the anti-collinear direction. Because the

dependence on the two momentum variables ω and ω1 factorizes, the RG equation (3.1)

can be separated in two independent equations which we solve consecutively.

3.1 Abelian part

Our strategy to solve the integro-differential evolution equation closely follows the discus-

sion from [49]. The RG equation in the Abelian limit is identical to the one of the leading

shape function. To introduce some notation and concepts for the later sections, we now

re-derive its well-known solution [39].

To do so, we first divide the support of the shape function in the variable ω into two

branches,

g17(ω, ω1;µ) = θ(ω)g>17(ω, ω1;µ) + θ(−ω)g<17(ω, ω1;µ) , (3.6)

after which we perform a Mellin transformation that translates the distributions into or-

dinary functions or derivatives in the conjugate variable [58–60]. The Mellin transform is

defined separately for positive values of ω via

g̃>17(η, ω1;µ) =

∫ ∞

0

dω

ω

(µ
ω

)η
g>17(ω, ω1;µ) ,

g>17(ω, ω1;µ) =

∫ c+i∞

c−i∞

dη

2πi

(µ
ω

)−η
g̃>17(η, ω1;µ) , (3.7)

and for negative ω by

g̃<17(η, ω1;µ) =

∫ ∞

0

dω

ω

(µ
ω

)η
g<17(−ω, ω1;µ) ,

g<17(−ω, ω1;µ) =

∫ c+i∞

c−i∞

dη

2πi

(µ
ω

)−η
g̃<17(η, ω1;µ) . (3.8)

The expressions for the different types of distributions convoluted with pure powers in ω

are collected in Appendix B of [49], and we do not repeat them here. In Mellin space, the
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Abelian part of the evolution equation turns into the following coupled system of differential

equations (
d

d lnµ
− η

)
g̃>17(η, ω1;µ) =

αsCF

π

[
− 2H−1−η − 2∂η + 1

]
g̃>17(η, ω1;µ) , (3.9)(

d

d lnµ
− η

)
g̃<17(η, ω1;µ) =

αsCF

π

[
− 2Hη − 2∂η + 1

]
g̃<17(η, ω1;µ)

+
αsCF

π
2Γ(−η)Γ(1 + η)g̃>17(η, ω1;µ) , (3.10)

which hold for −1 < Re(η) < 0, and Hη is the Harmonic number function. This system

can be diagonalized by choosing g̃>17(η, ω1;µ) and the linear combination

g̃17(η, ω1;µ) ≡
∫ +∞

−∞

dω

−ω − i0

(
µ

−ω − i0

)η

g17(ω, ω1;µ) = g̃<17(η, ω1;µ) − g̃>17(η, ω1;µ)eiπη ,

(3.11)

as the two independent functions. The latter fulfills(
d

d lnµ
− η

)
g̃17(η, ω1;µ) =

αsCF

π

[
− 2Hη − 2∂η + 1

]
g̃17(η, ω1;µ) , (3.12)

which can be easily verified using the identity Γ(−η)Γ(1 + η) = eiπη(iπ + Hη − H−1−η).

We note that the integral in (3.11) does not have an inverse transformation and should

therefore not be considered as an integral transform.

Instead of solving (3.9) and (3.10), it is simpler to solve (3.9) and (3.12) and then

use (3.11) to obtain g̃<17(η, ω1;µ). The two solutions to the diagonal equations read

g̃>17(η, ω1;µ) = e2V+2γEa

(
µ

µ0

)η Γ(−η)

Γ(−η − 2a)
g̃>17(η + 2a, ω1;µ0) , (3.13)

g̃17(η, ω1;µ) = e2V+2γEa

(
µ

µ0

)η Γ(1 + η + 2a)

Γ(1 + η)
g̃17(η + 2a, ω1;µ0) , (3.14)

with the evolution factors

V (µ, µ0) = −
∫ µ

µ0

dµ′

µ′
αs(µ

′)CF

π

[
ln

µ′

µ0
− 1

2

]
,

a(µ, µ0) = −
∫ µ

µ0

dµ′

µ′
αs(µ

′)CF

π
, (3.15)

whose dependence on µ and µ0 has been omitted in (3.13) and (3.14) for brevity. Further,

in the integrand we can identify the factor γcusp = αsCF /π +O(α2
s) with the leading term

of the universal cusp anomalous dimension.

After performing the inverse transformations (3.7) and (3.8), one finds the momentum-

space solution for the ω > 0 branch,

g>17(ω, ω1;µ) =
e2V+2γEa

Γ(−2a)

∫ ∞

ω

dω′

ω′ − ω

(
µ0

ω′ − ω

)2a

g>17(ω
′, ω1;µ0) , (3.16)
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and for the ω < 0 branch,

g<17(ω, ω1;µ) =
e2V+2γEa

Γ(−2a)

[ ∫ ∞

0

dω′

ω′ − ω

(
µ0

ω′ − ω

)2a

g>17(ω
′, ω1;µ0)

+

∫ 0

ω

dω′

ω′ − ω

(
µ0

ω′ − ω

)2a

g<17(ω
′, ω1;µ0)

]
. (3.17)

Combining the two then simply yields

g17(ω, ω1;µ) =
e2V+2γEa

Γ(−2a)

∫ ∞

ω

dω′

ω′ − ω

(
µ0

ω′ − ω

)2a

g17(ω
′, ω1;µ0) . (3.18)

This result trivially reproduces the one presented in [39] for the leading shape function, once

a restricted support ω′ ∈ (−∞, Λ̄] is assumed for the initial condition g17(ω
′, ω1;µ0). Recall

that this is only consistent with renormalisation if we adopt the definition of g17(ω, ω1;µ) in

terms of time-ordered and anti-time-ordered fields in (2.37). From now on we will explicitly

include the upper cut-off in ω.

3.2 Non-Abelian part

We now move on to the non-Abelian part of the evolution equation, and adopt the same

procedure as discussed before. First, we perform a similar split into a positive-support and

negative-support branch,

g17(ω, ω1;µ) = θ(ω1)g
>
17(ω, ω1;µ) + θ(−ω1)g

<
17(ω, ω1;µ) . (3.19)

For compactness of the notation we use the same symbols as in (3.6). The variable to which

the superscripts > and < refer is always clear from the context: In this subsection 3.2 they

always refer to ω1, whereas in the previous subsection 3.1 they refer to ω.

Transforming the distributions from (3.5) to Mellin space yields the differential equa-

tions(
d

d lnµ
− η1

)
g̃>17(ω, η1;µ) (3.20)

= − αsCA

2π

{
[H−1−η1 + Hη1 + 2H1−η1 + 2∂η1 ] g̃>17(ω, η1;µ) − Γ(−η1)Γ(1 + η1) g̃

<
17(ω, η1;µ)

}
,

and(
d

d lnµ
− η1

)
g̃<17(ω, η1;µ) (3.21)

= − αsCA

2π

{
[H−1−η1 + Hη1 + 2H1−η1 + 2∂η1 ] g̃<17(ω, η1;µ) − Γ(−η1)Γ(1 + η1) g̃

>
17(ω, η1;µ)

}
,

which again hold for −1 < Re(η1) < 0, where η1 is the Mellin-space variable conjugate to

ω1. Since this system is symmetric, it can be diagonalized by using the sum and difference

g̃±17(ω, η1;µ) ≡ g̃>17(ω, η1;µ)±g̃<17(ω, η1;µ) as independent functions. However, the equations

become somewhat simpler if one uses the following two linear combinations,

g̃
(A)
17 (ω, η1;µ) = g̃>17(ω, η1;µ)e

iπη1
2 − g̃<17(ω, η1;µ)e−

iπη1
2 ,

g̃
(B)
17 (ω, η1;µ) = g̃<17(ω, η1;µ)e

iπη1
2 − g̃>17(ω, η1;µ)e−

iπη1
2 . (3.22)
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Interestingly, it then turns out that both functions fulfill the same diagonal RG equation,(
d

d lnµ
− η1

)
g̃
(A,B)
17 (ω, η1;µ) = −αsCA

π

[
Hη1 + H1−η1 + ∂η1

]
g̃
(A,B)
17 (ω, η1;µ) , (3.23)

which is solved by

g̃
(A,B)
17 (ω, η1;µ) = eV1+2γEa1

(
µ

µ0

)η1 Γ(2 − η1)Γ(1 + η1 + a1)

Γ(2 − η1 − a1)Γ(1 + η1)
g̃
(A,B)
17 (ω, η1 + a1;µ0) , (3.24)

where now the evolution factors read

V1(µ, µ0) = −
∫ µ

µ0

dµ′

µ′
αs(µ

′)CA

π
ln

µ′

µ0
,

a1(µ, µ0) = −
∫ µ

µ0

dµ′

µ′
αs(µ

′)CA

π
. (3.25)

Solving (3.22) for the two branches g̃>,<
17 yields

g̃>,<
17 (ω, η1;µ) = − eV1+2γEa1

(
µ

µ0

)η1 Γ(−η1)Γ(2 − η1)Γ(1 + η1 + a1)

Γ(2 − η1 − a1)

[
(3.26)

1

π
sin

(
(η1 +

a1
2

)π
)
g̃>,<
17 (ω, η1 + a1;µ) +

1

π
sin

(a1π
2

)
g̃<,>
17 (ω, η1 + a1;µ)

]
.

The sine functions can be replaced by gamma functions via the reflection formula, and the

inverse Mellin transform can be expressed in terms of Meijer-G functions. In the following

we use the definition of Meijer-G functions as outlined in Appendix D of [49]. The resulting

momentum-space solution reads

g17(ω, ω1;µ) =

∫
dω′

1

|ω′
1|
U

(17)
n̄ (ω1, ω

′
1;µ, µ0)g17(ω, ω

′
1;µ0) , (3.27)

with the evolution function

U
(17)
n̄ (ω1, ω

′
1;µ, µ0) = − eV1+2γEa1

(
µ0

|ω′
1|

)a1 {
θ(τ)G1,2

3,3

( −1, 1, a1/2

a1 + 1, a1 − 1, a1/2

∣∣∣∣ τ) (3.28)

+
1

2π
sin

(a1π
2

)
θ(−τ)Γ(1 + a1)Γ(3 + a1)(−τ)1+a1

2F1(1 + a1, 3 + a1, 3; τ)

}
,

where we defined the ratio τ = ω′
1/ω1.

The appearing Meijer-G function can be reduced to a hypergeometric function on the

interval 1 > τ > −1 via

G1,2
3,3

( −1, 1, a1/2

a1 + 1, a1 − 1, a1/2

∣∣∣∣ τ)
=

1

2π
sin

(a1π
2

)
Γ(1 + a1)Γ(3 + a1)τ

1+a1
2F1(1 + a1, 3 + a1, 3; τ) , (3.29)

where the variable τ is implicitly supplemented with an +i0 prescription. From this identity

it follows that the evolution function in (3.28) is continuous at τ = 0.
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3.3 Phenomenological implications

To summarize, the solution to the RG equation takes the factorized form

g17(ω, ω1;µ) =

∫ Λ̄

ω

dω′

ω′ − ω
U (17)
n (ω, ω′;µ, µ0)

∫ ∞

−∞

dω′
1

|ω′
1|
U

(17)
n̄ (ω1, ω

′
1;µ, µ0) g17(ω

′, ω′
1;µ0) ,

(3.30)

with the evolution function for the soft momenta associated with the nµ light-cone,

U (17)
n (ω, ω′;µ, µ0) =

e2V+2γEa

Γ(−2a)

(
µ0

ω′ − ω

)2a

, (3.31)

and the evolution function for the soft momenta associated with the n̄µ light-cone given

by (3.28). Below we will discuss some consequences of RG evolution relevant in phenomeno-

logical applications. A serious numerical estimate of the evolution effects, however, is left

for future work.

Existence of convolution integrals: The functional behavior of the shape function

for ω → Λ̄ and ω → −∞ that follows from its O(αs) anomalous dimension is known from

the literature [39]. Assuming that the function at the low scale µ0 falls off like ω−ξ for

ω → −∞, one finds that for µ > µ0 it falls off as ∼ ω−2a−min(1,ξ), with a < 0 [39]. For

ω → Λ̄, on the other hand, assuming that the shape function at the low scale vanishes as

(Λ̄ − ω)ξ, at higher scales it vanishes as ∼ (Λ̄ − ω)−2a+ξ. Inverse moments of the shape

function converge at the scale µ0 as long as ξ > 0, but typically one would assume ξ > 1

such that the normalization integral, i.e. the local limit, exists. After evolution to the scale

µ, inverse moments then converge as long as 2a > −1, which is true for realistic scales. It is

well known that the normalization integral as well as positive moments, however, become

divergent, because the RG evolution generates a radiative tail that falls off slower than

1/ω [39]. Given that the cut-propagators from the jet function impose a lower cut-off on

ω, convolution integrals in factorization theorems converge for all practical purposes.

The asymptotic behavior of g17(ω, ω1;µ) for ω1 → ±∞ is determined by the location

of singularities of the Mellin-space solution (3.26). Assuming g17(ω, ω1 → ±∞;µ0) ∼ ω−ξ1
1 ,

its Mellin transform has a singularity at η1 = −ξ1. We deform the integration contour

to enclose all poles and cuts on the left half-plane with respect to Re(η1) = c, where

−1 − a1 < c < 0. The singularities of the initial condition with shifted argument at

η1 = −ξ1 − a1, as well as of the gamma function at η1 = −1 − a1 lead to

g17(ω, ω1 → ±∞;µ) ∼ ω
−a1−min(1,ξ1)
1 . (3.32)

For the limit ω1 → 0, the singularity from Γ(−η1) determines that the function approaches

a constant. After expanding the Mellin-space solutions (3.26) around η1 = 0, one finds

g̃>17(ω, η1;µ) ≃ g̃<17(ω, η1;µ), and it follows that g17(ω, ω1;µ) is continuous at ω1 = 0. This

guarantees that principal-value integrals of the form∫
dω1

ω1 + i0
g17(ω, ω1;µ) = P

∫
dω1

ω1
g17(ω, ω1;µ) − iπ g17(ω, 0;µ) (3.33)

are also well-defined. Hence, also the convolution integrals in ω1 in factorization theorems

exist for all practical purposes.
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Properties of the shape function: Two important properties of the shape function

g17(ω, ω1;µ) were derived in [16]. First, the function is real-valued, i.e. does not carry

any strong phases. Because the anomalous dimension in (3.3) itself is also real-valued, the

function trivially does not develop strong phases through RG evolution. Second, the shape

function obeys the identity∫ Λ̄

−∞
dω g17(ω, ω1;µ0) =

∫ Λ̄

−∞
dω g17(ω,−ω1;µ0) , (3.34)

which becomes ill-defined at scales µ > µ0 due to the radiative tail for large ω discussed in

the previous paragraph.

Nevertheless, the anomalous dimension associated with the n̄µ sector (3.5) is anti-

symmetric under the exchange ω1 ↔ −ω1 and ω′
1 ↔ −ω′

1. As a consequence, a symmetric

function in ω1 remains symmetric under RG evolution. To see this, assume that at some

initial scale g<17(ω, ω1;µ0) = g>17(ω,−ω1;µ0) holds, where the > and < signs refer to the

variable ω1. In that case, the solution to the RG equation in the n̄µ sector can be expressed

as

g17(ω, ω1;µ) =

∫ ∞

0

dω′
1

ω′
1

U sym
n̄ (ω1, ω

′
1;µ, µ0) g17(ω, ω

′
1;µ0) , (3.35)

with

U sym
n̄ (ω1, ω

′
1;µ, µ0) = − eV1+2γEa1

(
µ0

ω′
1

)a1 {
G1,2

3,3

( −1, 1, a1/2

a1 + 1, a1 − 1, a1/2

∣∣∣∣ |τ |) (3.36)

+
1

2π
sin

(a1π
2

)
Γ(1 + a1)Γ(3 + a1)|τ |1+a1

2F1(1 + a1, 3 + a1, 3;−|τ |)
}
.

Because the absolute value |τ |= |ω′
1/ω1| appears as an argument of the Meijer-G functions,

it is easy to see that g<17(ω, ω1;µ) = g>17(ω,−ω1;µ) holds at any scale µ.

Numerical solution via discretisation: We numerically test the derived solution of

the RG equation using a simple model at the scale µ0 = 1 GeV. We follow [16] and define

h17(ω1, µ0) =

∫ Λ̄

−∆
dω g17(ω, ω1;µ0) , (3.37)

with ∆ = mb − 2E0 and E0 is the energy cut in the photon spectrum.

As the evolution in the Abelian limit coincides with the well-known scale evolution of

the leading shape function, we restrict ourselves to the non-Abelian piece in the following,
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Figure 3: Scale evolution of the function h17(ω1;µ), using the model (3.39) with n ≤ 2

Hermite polynomials at the low scale µ0 = 1 GeV (black curve). The blue curve shows

the analytic solution (3.38) for µ = 2 GeV, which is in good agreement with the numeric

solution from discretisation of the momentum-space RG equation (blue dots). The latter

is obtained using N = 600 points that are logarithmically distributed on the intervals

[−Ω,−ε] and [ε,Ω], with ε = 10−9 GeV and Ω = 103 GeV. The strong coupling constant

is evaluated with one-loop running and nf = 4 quark flavors, using αs(µ0) = 0.48. We

emphasize that the blue curve only includes the non-Abelian piece (3.5) of the anomalous

dimension.

such that at the scale µ > µ0 one has6

h17(ω1;µ) =

∫ Λ̄

−∆
dω g17(ω, ω1;µ) =

∫ ∞

−∞

dω′
1

|ω′
1|
U

(17)
n̄ (ω1, ω

′
1;µ, µ0)h17(ω1;µ0) . (3.38)

We emphasize again, that a serious numerical analysis – including perturbative corrections

to the jet and hard functions – will be presented elsewhere.

A specific model for the function h17(ω1;µ0) has been introduced in [28], and expands

the function in Hermite polynomials multiplied by a Gaussian of width σ,

h17(ω1;µ0) =
∑
n

a2nH2n

(
ω1√
2σ

)
e−

ω2
1

2σ2 . (3.39)

6In general, including the Abelian part requires specifying a model for the shape function g17(ω, ω1;µ0)

instead of its integral h17(ω1;µ0). For example, if one assumes at µ0 a factorization of the form

g17(ω, ω1;µ0) = f̂(ω;µ0)h17(ω1;µ0) ,

with
∫ Λ̄

−∆
dω f̂(ω;µ0) = 1, then the right-hand side of (3.38) is simply multiplied by the factor

c(µ, µ0) =

∫ Λ̄

−∆

dω

∫ Λ̄

ω

dω′

ω′ − ω
U (17)

n (ω, ω′;µ, µ0)f̂(ω;µ0) .
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1

Figure 4: Leading order contribution from the operator Qc
1 to the exclusive double radia-

tive B̄d,s → γγ decay.

Here the sum runs only over even integers to ensure that h17 is an even function. In

the following, we restrict ourselves to the first two terms n ∈ (0, 1), in which case the

coefficients a0 and a2 can be related to positive moments of the function h17 [28],

a0 =
⟨ω0

1 h17⟩√
2π|σ|

, a2 =
⟨ω2

1 h17⟩ − σ2⟨ω0
1 h17⟩

4
√

2π|σ|3
. (3.40)

As representative numerical values we use ⟨ω0
1 h17⟩ = 0.25 GeV2, ⟨ω2

1 h17⟩ = 0.1 GeV4,

and σ = 0.3 GeV, which lie within the bounds quoted in [28]. Fig. 3 shows this function

at the two different scales µ0 = 1 GeV and µ = 2 GeV, where the latter function is

obtained analytically using the evolution function (3.36) for symmetric initial functions,

and numerically by discretisation of the momentum-space RG equation (see caption of

Fig. 3 for more details). The appearing integrals can be performed analytically, using e.g.

Mathematica, and result in a sum of several higher Meijer-G functions, which we do not

quote here.

4 The exclusive counterpart ΦG

In this section, we analyse the soft function that has been introduced in [41] in the context

of rare exclusive B̄s,d → γγ decays, cf. Fig 4, and whose renormalisation properties have

recently been studied in [42]. It turns out that also in this case the analytic properties of

the soft anomalous dimension allow one to considerably simplify scale evolution. Provided

the soft function is convoluted with appropriate jet functions, logarithms between the soft

and the hard-collinear scale can be resumed by solving a “reduced” RG equation.

The definition of the occurring soft function is rather similar to the one of g17(ω, ω1;µ)

in (2.3), and reads7

FB(µ)ΦG(ω, ω1;µ) =
1

2MB

∫
dr

2π
eiω1r

∫
dt

2π
eiωt ⟨0|OG(t, r)|B̄v⟩ , (4.1)

with the scale-dependent static decay constant FB(µ), and the HQET operator

OG(t, r) = (q̄sSn)(tn)/n(S†
nSn̄)(0) γ⊥α n̄βγ5 (S†

n̄ gsG
αβ
s Sn̄)(rn̄) (S†

n̄hv)(0) . (4.2)

7We slightly changed the notation to be consistent with our definition of g17. In particular, we use the

soft-momentum variables (ω, ω1) instead of (ω1, ω2) used in [42].
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The most important difference to the shape function g17 is that the soft function ΦG

is defined at the amplitude level. Consequently, the soft quark-field qs is a light-quark

field, q = s, d, and the operator contains a γ5 Dirac matrix to ensure the correct parity.

Furthermore, because all soft momenta are incoming, the signs of the exponentials are

different from those in the definition of g17 in (2.3). As a consequence, the distributions

H± transform according to

H+(−ω,−ω′) = H−(ω, ω′) + 2πiθ(ω)δ(ω − ω′) ,

H−(−ω,−ω′) = H+(ω, ω′) − 2πiθ(−ω)δ(ω − ω′) . (4.3)

4.1 Anomalous dimension

The anomalous dimension of the operator OG was calculated in [42], and reads

ΓG(ω, ω1, ω
′, ω′

1;µ) =
αsCF

π

[(
ln

µ

ω − i0
− 1

2

)
δ(ω − ω′) −H+(ω, ω′)

]
δ(ω1 − ω′

1)

+
αsCA

π

[(
ln

µ

ω1 − i0
+

iπ

2

)
δ(ω1 − ω′

1) −H+(ω1, ω
′
1)

+
ω1

(ω′
1)

2

[
θ(ω1)θ(ω′

1 − ω1) − θ(−ω1)θ(ω1 − ω′
1)
] ]

δ(ω − ω′)

+
αs

π
∆ΓG(ω, ω1;ω

′, ω′
1;µ) , (4.4)

with

∆ΓG =
i

4

CA

π

[
∆H(ω, ω′) − 2iπδ(ω − ω′)

] [
∆H(ω1, ω

′
1) − 2iπδ(ω1 − ω′

1)
]
, (4.5)

where we omitted the arguments of ∆ΓG on the left-hand side for brevity, and defined

∆H ≡ H+ − H−. The Abelian contribution coincides with the well-known evolution

kernel of the leading-twist B-meson light-cone distribution amplitude [61], or with its

generalization to functions with support on the entire real axis [49], respectively. We note

that the relation

ln
µ

ω − i0
δ(ω − ω′) −H+(ω, ω′) =

1

2
ln

µ2

ω2
δ(ω − ω′) − ReH+(ω, ω′) (4.6)

implies that the Abelian part of the anomalous dimension is real-valued. The non-Abelian

contributions can be extracted from the calculation of UV singularities presented in the

previous section 2.3 via the transformations (4.3), and by taking into account that the

contribution (2.27) from diagram (b) is UV-finite in the light-quark case.

The RG equation with the anomalous dimension (4.4) has been solved in [42]. Notably,

the distribution H− generates a non-vanishing support for negative values of the soft mo-

mentum variables [49]; a somewhat unfamiliar feature for amplitude-level soft functions.

Using similar arguments as in the previous section, we will now argue that the analytic

properties of the soft anomalous dimension and the jet functions allow one to solve a

“reduced” RG equation that features two important simplifications:
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• First, as factorization in SCET would indicate, the dependence on the soft momenta

(ω, ω1) associated with the two light-cone directions nµ and n̄µ decouples,

• and second, a positively-supported function at the low scale µ0 does not acquire

support for negative values at µ > µ0 in either of the two variables.

The latter property has the important consequence that no additional complex phases are

generated through the convolution integrals in standard inverse moments. Furthermore,

we then find that the asymptotic behavior for small arguments is consistent with the usual

conformal spin of the soft fields. Using a specific example, these features are discussed in

greater detail below.

The calculation of the anomalous dimension for an amplitude-level soft function pro-

ceeds via standard time-ordered Feynman diagrams that do not contain any cut propaga-

tors. However, given that (2.28) is equivalent to

1

ω − ω′ − i0
= H+(ω, ω′) −H−(ω, ω′) , (4.7)

and the jet functions for the exclusive B̄d,s → γγ process have singularities or branch-cuts

located in the upper half-plane (i.e. depend on ω − i0 and ω1 − i0, respectively), implies

that we can identify the two distributions H+(ω, ω′) = H−(ω, ω′).8 For the special case of

jet functions of the form ∼ (ω− i0)η this has already been realised in [49]. Here we give an

explanation for this observation, and generalize this statement to jet functions with similar

analytic properties.

To give a more formal reasoning, it is important to note that distribution-valued objects

are always defined on a function space with certain properties that are required e.g. for the

convergence of integrals. This function space is typically defined in the primed variables

(ω′, ω′
1), as these are the integration variables in the RG equation. However, as was also

discussed in [49] in the context of these specific distributions, the soft function itself can be

considered as a distribution-valued object in the variables (ω, ω1), see for example the fixed-

order expressions for the Bc-meson light-cone distributions amplitude in the non-relativistic

approximation in [62]. In this sense, the identity H+ = H− holds on a function space in

(ω, ω1) with two properties: First, all singularities and branch cuts of the test functions are

located in the upper half-plane, and second, the functions are such that the residue theorem

can be applied. The latter means that they should fall of fast enough for large (ω, ω1),

and the integration domain should extend over the entire real axis. From dimensional

arguments, and due to the directed flow of large energy, both of these properties are fulfilled

by the relevant jet functions for the B̄d,s → γγ process. For example, the leading-order

jet function in the nµ direction is simply given by the inverse hard-collinear propagator

∼ (ω − i0)−1, and similarly the jet function in the n̄µ direction is given by (ω1 − i0)−1 at

leading order and in the massless case mu = 0.

We emphasize again that we have checked the cancellation of all singularities in 1/ε

between the different elements of the factorization theorem at next-to-leading order and

8The i0 prescriptions of the jet functions differ in inclusive and exclusive processes due to the different

kinematics.
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in the limit mu = 0. The relevant two-loop n̄-jet function is the same as for the inclusive

B̄ → Xsγ decay.

To conclude this discussion let us stress that the anomalous dimension of a given

operator is well-defined and unambiguous. Identifying H+ = H− is allowed whenever the

soft operator is convoluted with the jet functions, and can hence simplify the resummation

of logarithms between the soft and the hard-collinear scale. As soon as one is concerned

about the soft function itself, however, it should be considered as a complex function with

certain analytic properties, and one is not allowed to apply any simplifying identities.

Coming back to the anomalous dimension (4.4), we can now replace

αs

π
∆ΓG → −αsCA

π
iπδ(ω − ω′)δ(ω1 − ω′

1) , (4.8)

which allows us to write

ΓG(ω, ω1, ω
′, ω′

1;µ) =
αs

π

{
CF δ(ω1 − ω′

1)Γn(ω, ω′;µ) + CA δ(ω − ω′)Γn̄(ω1, ω
′
1;µ)

}
, (4.9)

as one would naively expect from factorization in SCET. The individual O(αs) anomalous

dimensions in the two collinear sectors read

Γn(ω, ω′;µ) =
1

2

(
ln

µ2

ω2
− 1

)
δ(ω − ω′) − ReH+(ω, ω′) , (4.10)

Γn̄(ω1, ω
′
1;µ) =

1

2

(
ln

µ2

ω2
1

− iπ

)
δ(ω1 − ω′

1) − ReH+(ω1, ω
′
1)

+
ω1

(ω′
1)

2
[θ(ω1)θ(ω′

1 − ω1) − θ(−ω1)θ(ω1 − ω′
1)] , (4.11)

and again one can solve two separate RG equations related to the two variables ω and ω1,

respectively.

4.2 Solution to the “reduced” RG equation

The derivation of the solutions to these “reduced” RG equations for the Abelian and the

non-Abelian part is very similar. In the following we present some details on the latter

case, for which we follow the same procedure as in the previous section, but we quote

the complete result for the evolution functions below. Performing the usual split into a

positive-support and negative-support branch yields the Mellin-space equations(
d

d lnµ
− η1

)
Φ̃>
G(ω, η1;µ) =

αsCA

π

[
−H1−η1 −Hη1 − ∂η1 +

iπ

2

]
Φ̃>
G(ω, η1;µ)

+
αsCA

π
Γ(−η1)Γ(1 + η1)Φ̃

<
G(ω, η1;µ) ,(

d

d lnµ
− η1

)
Φ̃<
G(ω, η1;µ) =

αsCA

π

[
−H−1−η1 −H1−η1 − ∂η1 +

iπ

2

]
Φ̃<
G(ω, η1;µ) , (4.12)

which again hold for −1 < Re(η1) < 0. Notably, the equation for the negative-support

branch is diagonal, because the anomalous dimension Γn̄(ω1, ω
′
1;µ) in (4.10) does not con-

tain a respective mixing piece, which would arise for example from an H− distribution.
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This implies that a function with no negative support at the scale µ0 does not develop

support for negative ω1 through scale evolution, which can already be seen from (4.10) by

noting that the distribution H+ reduces to the the standard Lange-Neubert kernel [61],

H+(ω, ω′) → F (ω, ω′) = ω

[
θ(ω′ − ω)

ω′(ω′ − ω)

]
+

+

[
θ(ω − ω′)

ω − ω′

]
+

, for ω, ω′ > 0 . (4.13)

The solution for Φ̃<
G(ω, η1;µ) can be obtained straightforwardly and reads

Φ̃<
G(ω, η1;µ) = eVG+2γEa1

(
µ

µ0

)η1 Γ(−η1)Γ(2 − η1)

Γ(−η1 − a1)Γ(2 − η1 − a1)
Φ̃<
G(ω, η1 + a1;µ0) , (4.14)

where a1 is defined in (3.25) and the evolution factor

VG(µ, µ0) = −
∫ µ

µ0

dµ′

µ′
αs(µ

′)CA

π

[
ln

µ′

µ0
− iπ

2

]
, (4.15)

differs from the definition of V1 in (3.25) due to the presence of the imaginary part −iπ/2

in the square brackets. The system (4.12) can be diagonalized using the following linear

combination as the second independent function,

Φ̃G(ω, η1;µ) ≡
∫ +∞

−∞

dω1

ω1 − i0

(
µ

ω1 − i0

)η1

ΦG(ω, ω1;µ) = Φ̃>
G(ω, η1;µ) − Φ̃<

G(ω, η1;µ)eiπη1 ,

(4.16)

which is solved by

Φ̃G(ω, η1;µ) = eVG+2γEa1

(
µ

µ0

)η1 Γ(2 − η1)Γ(1 + η1 + a1)

Γ(1 + η1)Γ(2 − η1 − a1)
Φ̃G(ω, η1 + a1;µ0) . (4.17)

Performing the inverse Mellin transform, the momentum-space evolution functions can

again be expressed in terms of Meijer-G functions. Including also the Abelian piece, the

solution to the RG-equation for ΦG – restricted to the function space of relevant jet func-

tions – then reads

ΦG(ω, ω1;µ) =

∫
dω′

ω′

∫
dω′

1

ω′
1

U (G)
n (ω, ω′;µ, µ0)U

(G)
n̄ (ω1, ω

′
1;µ, µ0) ΦG(ω′, ω′

1;µ0) . (4.18)

The evolution functions are

U (G)
n (ω, ω′;µ, µ0) = −eV+2γEa

(
µ0

ω′ − i0

)a[
θ(−ω′)e−iπaG2,0

2,2

(−a , 1 − a

1 , 0

∣∣∣∣ ωω′

)
−θ(ω)G1,1

2,2

(−a , 1 − a

1 , 0

∣∣∣∣ ωω′

)]
, (4.19)

with V = V (µ, µ0) and a = a(µ, µ0) defined in (3.15), and

U
(G)
n̄ (ω1, ω

′
1;µ, µ0) = −eVG+2γEa1

(
µ0

ω′
1 − i0

)a1 [
θ(−ω′

1)e
−iπa1G2,0

2,2

(−a1 , 2 − a1
2 , 0

∣∣∣∣ω1

ω′
1

)
−θ(ω1)G

1,1
2,2

(−a1 , 2 − a1
2 , 0

∣∣∣∣ω1

ω′
1

)]
. (4.20)
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Again, the Meijer-G functions can be reduced to hypergeometric functions in certain inte-

gration domains. For ω/ω′ > −1 the identity

G1,1
2,2

(−x , α− x

α , 0

∣∣∣∣ ωω′

)
=

Γ(1 + x + α)

Γ(−x)Γ(1 + α)

(
min(ω, ω′)

max(ω, ω′)

)α( ω′

max(ω, ω′)

)x+1−α

× 2F1

(
x + 1, x + 1 + α;α + 1;

min(ω, ω′)

max(ω, ω′)

)
(4.21)

holds, where an implicit +i0 prescription is understood in the brackets of the first line.

The second appearing Meier-G function vanishes for |ω/ω′|> 1,

G2,0
2,2

(−x , α− x

α , 0

∣∣∣∣ ωω′

)
= 0 . (4.22)

4.3 Phenomenological implications

We now consider the special case where ΦG(ω, ω1, µ0) ∼ θ(ω)θ(ω1) at the low scale µ0. The

solution to the “reduced” RG-equation then simplifies to

ΦG(ω, ω1;µ) = θ(ω)eV+2γEa

∫ ∞

0

dω′

ω′

(
µ0

ω′

)a

G1,1
2,2

(−a , 1 − a

1 , 0

∣∣∣∣ ωω′

)
(4.23)

× θ(ω1)e
VG+2γEa1

∫ ∞

0

dω′
1

ω′
1

(
µ0

ω′
1

)a1

G1,1
2,2

(−a1 , 2 − a1
2 , 0

∣∣∣∣ω1

ω′
1

)
ΦG(ω′, ω′

1;µ0) ,

and, since all variables are positive, we can substitute the Meijer-G functions using the

identity (4.21).

The solution in the Abelian limit then corresponds to the well-known solution of the

Lange-Neubert kernel for the leading-twist B-meson distribution amplitude [58], and takes

a similar form for the non-Abelian piece, but with the parameter α = 2 in (4.21). This in

particular implies that ΦG(ω, ω1;µ) falls off linearly in ω, but quadratically ω1 for small

values,

ΦG(ω, ω1;µ) ∼ ωω2
1 , for small ω, ω1 . (4.24)

For large arguments, on the other hand, the function behaves as ∼ ω
−a1−min(1,ξ1)
1 for

ω1 → ∞, and as ∼ ω−a−min(1,ξ) for ω → ∞, if the initial function falls off power-like

with exponents ξ1 and ξ. Hence, convolution integrals in factorization theorems again

converge as long as the µ is not chosen to be unphysically large. Interestingly, due to the

factorization of the two light-cone directions in (4.9), the asymptotic behavior for small

momenta is consistent with the conformal spins of the light-quark and gluon fields (see

e.g. [63]) that appear in the operator (4.2). Although this is merely an observation at this

point, a connection between the conformal spin of the fields and the asymptotic behavior

for such multi-light-cone soft functions would be important for studying the convergence of

convolution integrals. As such soft functions will become relevant in a variety of inclusive

and exclusive processes at next-to-leading power, a more rigorous understanding of this

feature would be important.
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As a concrete example, we study the same simple exponential model that was used

in [42],

Φexp
G (ω, ω1, µ0) =

λ2
E + λ2

H

6

ωω2
1

ω5
0

e
−ω+ω1

ω0 θ(ω)θ(ω1) , (4.25)

where the hadronic quantities λE and λH parametrize hadronic matrix elements of the

chromo-electric and chromo-magnetic fields, respectively [64]. In particular, as the depen-

dence on ω and ω1 factorizes, we can also express the function at the scale µ > µ0 as a

product of functions that only depend on either one of the two variables. The integrals can

easily be performed analytically, and result in

Φexp
G (ω, ω1, µ) = θ(ω)

λ2
E + λ2

H

6ω2
0

ω

ω0
eV+2γEa

(
µ0

ω0

)a

Γ (2 + a) 1F1

(
2 + a; 2;− ω

ω0

)
× θ(ω1)

1

2

ω2
1

ω2
0

eVG+2γEa1

(
µ0

ω0

)a1

Γ(3 + a1) 1F1

(
3 + a1; 3;−ω1

ω0

)
. (4.26)

Importantly, inverse moments of the form∫ +∞

−∞

dω

ω − i0

∫ +∞

−∞

dω1

ω1 − i0
ΦG(ω, ω1;µ) (4.27)

are no longer integrated over the poles at ω = 0 or ω1 = 0, respectively. Thus, the

convolution integrals do no longer give rise to complex phases, which are now explicitly

included in an imaginary part in the anomalous dimension Γn̄(ω1, ω
′
1;µ) that differs from

the one in (4.4). As a cross check of the “reduced” RG evolution, for which the integrations

can be performed analytically, we have explicitly verified that the expression for the evolved

function in (4.26) leads to the same double inverse moment as the result provided in [42]

using the full anomalous dimension,∫ ∞

0

dω

ω

∫ ∞

0

dω1

ω1
ΦG(ω, ω1;µ) =

∫ +∞

−∞

dω

ω − i0

∫ +∞

−∞

dω1

ω1 − i0
Φ
[42]
G (ω, ω1;µ)

=
λ2
E + λ2

H

6ω2
0

eVG+V+2γE(a1+a)

(
µ0

ω0

)a1+a

Γ(1 + a1)Γ(1 + a) . (4.28)

Lastly, we again verify our analytic solution numerically through discretisation of the

momentum-space RG equation in Fig. 5. To do so, we define a function ϕ(ω1;µ) that fulfills

and RG equation with anomalous dimension

αsCA

π

(
1

2
ln

µ2

ω2
1

δ(ω1 − ω′
1) − ReH+(ω1, ω

′
1) +

ω1

(ω′
1)

2
[θ(ω1)θ(ω′

1 − ω1)−θ(−ω1)θ(ω1 − ω′
1)]

)
,

(4.29)

that corresponds to Γn̄(ω1, ω
′
1;µ) up to a local complex phase which can be factored out.

We choose

ϕ(ω1, µ0) = θ(ω1)
ω2
1

ω2
0

e
−ω1

ω0 (4.30)

as an initial condition, such that its analytic expression at the scale µ precisely results in

the second line of (4.26), but with VG replaced by its real part.
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Figure 5: Scale evolution of the function ϕ(ω1;µ), using the exponential model (4.30)

with ω0 = 0.3 GeV at the low scale µ0 = 1 GeV (black curve). The blue curve shows

the analytic solution for µ = 2 GeV, which again is in good agreement with the numeric

solution from discretisation of the momentum-space RG equation (blue dots). Details on

the discretisation and the strong coupling constant are explained in the caption of Fig. 3.

5 Conclusions

In this paper, we presented the initial steps towards incorporating O(αs) radiative correc-

tions to the resolved-photon contribution from the Qc
1 −Q7γ interference in B̄ → Xsγ and

B̄ → Xsℓ
+ℓ− decays. These contributions are expected to reduce the sizeable scale am-

biguity and charm-mass dependence of the leading-order result, which currently provides

a significant source of uncertainties in these decays. More precisely, here we studied the

renormalisation of the subleading shape function g17(ω, ω1;µ), which describes the non-

perturbative soft physics in the factorization of these contributions. As next-to-leading

(NLO) order corrections to the quark jet function and the hard matching coefficients are

well-known, the last missing piece for a complete NLO analysis consists of the calculation

of the O(αs) corrections to the jet function that describes the conversion of two anti-

hard-collinear quarks to a soft gluon and an energetic photon. We have computed the

singularities in 1/ε of these two-loop corrections in the limit of vanishing quark mass, and

they serve as an important cross check for the consistency of the factorization formula at

NLO, but we relegate a detailed analysis to a forthcoming publication.

On a technical level, the underlying operator in Heavy-Quark Effective Theory is com-

posed of two heavy-quark fields with light-like separation in the nµ direction, as well as a

soft gluon field that is smeared along the opposite n̄µ light-cone. Computing the ultravi-

olet singularities of matrix elements of this operator with standard time-ordered products

results in terms in the anomalous dimension that superficially seem to be in conflict with

soft-collinear factorization, as the two collinear sectors are not decoupled. However, these
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contributions vanish upon taking the necessary restricted cuts for the B̄ → Xsγ decay rate

at the level of the soft function. Hence, the shape function g17 should be defined by an op-

erator that distinguishes the fields belonging to the amplitude and the complex-conjugate

amplitude, which can be done at the level of the path integral using the Keldysh formalism.

The resulting anomalous dimension can be expressed as a sum of two terms, each of

which only depends on the soft momentum variable associated with one of the two light-

cone directions, ω or ω1, respectively. As a consequence, the renormalisation group (RG)

equation decomposes into two separate equations associated with the two collinear sectors.

We present analytic solutions to these equations in momentum-space, and qualitatively

study some phenomenological implications of the scale evolution of g17(ω, ω1;µ).

Motivated by the observations made during this analysis, we further studied a re-

lated amplitude-level soft function ΦG(ω, ω1;µ), that describes the non-perturbative long-

distance dynamics in penguin contributions to exclusive B̄d,s → γγ decays. The renormal-

isation of this soft function has recently been studied in [42]. We confirm the reported

result for the anomalous dimension, which contains products of non-trivial distributions

in the variables ω and ω1. Again, such terms seem to spoil soft-collinear factorization,

but contrary to the inclusive modes they cannot be eliminated by taking cuts. Still, we

found that they are irrelevant in factorization theorems, i.e. after convolution with the jet

functions, due the analytic properties. More precisely, the poles and branch cuts in the

complex ω-plane (or ω1-plane) of the soft anomalous dimension and the jet functions are on

the same side, such that the integration contour can be closed to avoid these singularities.

Such multi-light-cone soft functions should hence be considered as complex-valued

functions with certain analytic properties that can be exploited and might lead to simpli-

fications in factorization theorems. We have here shown that this can be done at the level

of the one-loop anomalous dimension.

Based on this insight, we solve a much simpler “reduced” RG equation for the soft

function ΦG(ω, ω1;µ), which again decomposes into two separate equations in the variables

ω and ω1. Interestingly, we then find that scale evolution of this function is almost “Lange-

Neubert like” in both variables. This considerably simplifies the resummation of large

logarithms in RG-improved perturbation theory. An important consequence is that the

negative support, induced by some of the distributions in the full anomalous dimension,

can be avoided, provided a model with only positive support is used at the low scale µ0.
9

Furthermore, we also find that in this case the asymptotic behavior for small arguments is

consistent with the conformal spins of the light-quark and gluon fields, which – if true in

general – would be important to study the convergence of convolution integrals in many

processes at subleading power.
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Figure 6: Example full-theory (i.e. QCD) diagram that contributes to (2.29) if the virtual

gluon is soft. The outgoing photon has large energy of O(mb) in the n̄µ direction, which

is set to infinity in the heavy-quark limit. Large-energy flows “upwards” from the four-

fermion operator Q
(q)
1 to the outgoing photon, which implies that the ℓ+-component of the

soft-gluon momentum has no upper bound for Eγ → ∞. The δ-function from the Feynman

rule then enforces ω = ω′ + ℓ+ and creates a support for ω → ∞.
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A On the support of matrix elements of O17

In this appendix we argue that matrix elements of the operator O17 must be integrated

over the entire real axis in both light-cone momentum projections. In particular, the

variable ω associated with the collinear nµ direction must be integrated up to +∞ for

a consistent renormalisation in the MS-scheme. This can be seen, for example, by the

following argument, which has already been presented in [49] in a similar form. Upon

taking the local limit t → 0, the finite-length Wilson line in the nµ direction collapses

to unity. In momentum space, taking t → 0 implies integration over ω. The left-hand

side of (2.29) then obviously vanishes, as it should, because the difference of δ-functions

represents a finite-length Wilson line. This, however, only happens if ω is integrated up

to +∞. An easy way to see this is by integrating the left-hand side of (2.29) first in ω1

with the weight function (ω1 + i0)−1, which – neglecting irrelevant prefactors that do not
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depend on ω or ω′ – leads to

∝ Γ(ε)

(
θ(ω − ω′)(ω − ω′)−ε

ω − ω′ + ∆
− δ(ω − ω′)Γ(ε)Γ(1 − ε)∆−ε

)
. (A.1)

This expression is in fact almost identical to the one discussed in (2.6) of [49], but with

the roles of ω and ω′ interchanged, and it is easy to check that it does not vanish under a

cut-off integral, and would result in additional divergences. The support ω ∈ (−∞,+∞)

is hence required for consistency with the local limit t → 0, but it can also be explained

by physics arguments, see Fig. 6 and its caption for more details.
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