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eDepartmento de F́ısica, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco

Pais 1, P-1049-001 Lisboa, Portugal
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Abstract: We revisit the calculation of the soft gluon emission probability off a colour-

singlet qq̄ system that evolves in a quark-gluon plasma. The qq̄ antenna is created in the

presence of a medium and then emits a soft gluon outside. The gluon emission probability

is modified with respect to the vacuum baseline due to interactions with the medium

during the formation of the antenna and its propagation. Previous studies disregarded

the former effect and found that the medium modification to the interference pattern of

the antenna was controlled by the so-called critical angle θc, that exclusively depends on

medium properties. We find that accounting for medium interactions during the antenna

formation enhances the total rate of emissions off the qq̄ antenna. Interestingly, it also

promotes the notion of a critical angle to a dynamic quantity, denoted θ̃c, that depends on

both the medium and the antenna properties and is thus different for every splitting. As

a consequence, depending on the region of parameter space, colour decoherence can either

be delayed or accelerated with respect to previous estimates.
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1 Introduction

Jet physics plays a key role in the characterization of the hot and dense coloured medium

created in heavy-ion collisions known as the quark-gluon plasma (QGP) [1–7]. One of

the most robust experimental signatures of QGP formation is the modification of the jet

transverse momentum (pt) spectrum with respect to proton-proton collisions (pp). Namely,

the cross-section for producing a highly energetic jet with a given cone size R in a heavy-

ion collision is suppressed [8–11], with, for instance, a 30% suppression being observed for

central PbPb collisions at pt = 400 GeV and R = 0.4 [10].

The depletion of the jet spectrum is closely related to the angular structure of the

single emission matrix-element in QCD. In the absence of a medium, the probability of

radiating at small angles is logarithmically enhanced because the matrix element contains a

collinear singularity. In the medium, colour and momentum exchanges with the QGP, both

during the formation time of the emission and its propagation, lead to a finite emission

probability in the collinear limit [12–15]. Consequently, medium-induced emissions are

radiated preferably at wide angles and broadened away from the emitter’s direction by

subsequent interactions with the medium [16]. Some of this radiation might end up outside

of the jet-cone of radius R, leading to some pt being lost when reconstructing the jet, and

thus inducing a shift in the spectrum compared to the pp result.

A natural question is whether this simple explanation for the suppression of high-pt jets

still holds when accounting for subsequent emissions. For instance, it is well known that
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the angular structure of the QCD cascade in vacuum is dictated by quantum mechanical

interference effects [17–20]. This can be understood at the level of two emissions by calcu-

lating the soft-gluon emission probability off a qq̄ antenna in a colour singlet configuration.

Considering the emission probability from the quark leg one finds (see e.g. [21, 22])

dNvac
q =

αsCF

π

dEg

Eg

sin θg dθg
1− cos θg

Θ(θqq̄ − θg) , (1.1)

where θqq̄ denotes the angle between the two prongs of the antenna, and θg the angle be-

tween the gluon and the quark. This result indicates that soft radiation at angles larger

than the antenna’s opening angle is forbidden.1 Diagrammatically, this angular structure

arises from the interplay between the contributions where the gluon is emitted and reab-

sorbed by the (anti-)quark in the amplitude and conjugate amplitude, and those where

the gluon is emitted by the quark in the amplitude and absorbed by the anti-quark in the

conjugate amplitude. Thus, interference effects are responsible for the angular-ordering

property of QCD radiation in vacuum, often called colour coherence.

The soft-gluon emission probability off a qq̄ antenna including in-medium effects was

computed almost 15 years ago in a series of works [23–31]. The theoretical setup considered

a qq̄ antenna that propagates through a brick of QGP with length L, emitting a soft gluon

either inside or outside the medium. For simplicity, and because it already captures the

main dynamical effects, we will only discuss the case in which the gluon is emitted outside.

Physically, this corresponds to gluon emissions with long formation times2 compared to the

length of the medium, and therefore very soft. Regarding the formation of the antenna,

the authors considered an instantaneous formation in the medium, which effectively sets

to zero the light-cone time difference ∆x+A between the splitting in the amplitude and

conjugate amplitude. Within this setup, the squared matrix element for gluon emission off

the antenna was found to be

M2
qq̄g ∼

(
1

κ2
+

1

κ̄2
− 2

κ · κ̄
κ2κ̄2

)
+ 2

κ · κ̄
κ2κ̄2

∆med, (1.2)

where the first term in brackets is the vacuum result leading to the angular-ordered ra-

diation described by Eq. (1.1), and the term proportional to ∆med leads to anti-angular-

ordered radiation in the complementary angular region, that is in the region corresponding

to Θ(θg − θqq̄). The strength of this radiation is controlled by the value of ∆med, the so-

called ‘decoherence factor’, which accounts for medium effects and is such that ∆med → 0

for vacuum and ∆med → 1 for completely opaque media. Eq. (1.2) unveils a region of

phase-space, controlled by medium properties, for which vacuum-like emissions at angles

larger than θqq̄ are allowed. Thus, interference effects enable anti-angular ordered medium-

induced emissions.

1For a non-singlet configuration, Eq. (1.1) receives another contribution to the spectrum proportional

to CAΘ(θg − θqq̄) that can be interpreted as the large-angle gluon emissions triggered by the parent gluon.
2The concept of formation time is subtle, and we will return to it in the rest of the paper. To be

more explicit here, let us denote the opening angle of a dipole as θ. The prongs have transverse momen-

ta/energies pt1 and pt2. Then, the vacuum formation time of an emission is given by tf = 2/(ktθ), with

kt = min(pt1, pt2)θ.
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The physical mechanism underlying this striking observation is called colour decoher-

ence, and it relies on the fact that, to first approximation, the parton-medium interaction

is a colour rotation. Therefore, the antenna, which starts its propagation in a colour singlet

configuration, will undergo multiple interactions with the QGP which amount to colour ro-

tations, and eventually the prongs become de-correlated in colour space. Effectively, after

interacting sufficiently with the medium, the quark and anti-quark will behave as indepen-

dent colour charges and the radiation phase-space is thus unconstrained. This is known

as the total decoherence regime [24], and corresponds to setting ∆med = 1 in Eq. (1.2),

canceling the interference contribution.

The previous discussion disregards the medium-modification to the antenna formation

itself. Indeed, the cross-section to create an antenna is modified with respect to vacuum

when allowing for a (light-cone) time gap ∆x+A between its formation in amplitude and

conjugate amplitude [32, 33]. Owing to this interference effect, the in-medium antenna

cross-section can be written as

dσ

dzqdθqq̄
=

dσvac

dzqdθqq̄
[1 + Fmed(Eγ , zq, θqq̄)], (1.3)

where Eγ is the energy of the parent photon, zq is the energy-sharing fraction between the

antenna prongs, and θqq̄ the opening angle. The medium-modification factor Fmed vanishes

in the case of no medium. As one would expect, Eq. (1.3) reduces to the vacuum expression

when ∆x+A = 0 (even though this limit is more subtle to take). This effect has been studied

in Refs. [32] and [33]. The former used a semi-classical treatment, while the latter included

finite Nc and finite zq corrections. These studies have shown that Fmed deviates from unity

for a colour-singlet antenna γ → qq̄ for unbalanced splittings (zq ≪ 0.5) at wide angles.

Interestingly, this indicates that hard-collinear splittings remain vacuum-like even in the

presence of a medium, as was also pointed out in Ref. [34].

In this work, we calculate the soft-gluon emission probability off a QCD antenna in

a colour singlet configuration, including both medium interference effects discussed above.

That is, we account for interactions during the antenna propagation through a medium of

length L while considering a non-zero ∆x+A. Consistently with the fact that the emitted

gluon is much less energetic than the antenna legs, we focus on the case in which the

emission takes place outside the medium. The main result of this paper is the squared

matrix element for gluon emission off a colour singlet antenna, accounting for non-zero

∆x+A effects, which is given by

M2
qq̄g ∼ (1 + Fmed)

[(
1

κ2
+

1

κ̄2
− 2

κ · κ̄
κ2κ̄2

)
+ 2

κ · κ̄
κ2κ̄2

∆̃med

]
. (1.4)

The generalized decoherence factor ∆̃med(Eγ , zq, θqq̄) is controlled by both medium and

antenna properties. Fmed is the same medium modification factor as in Eq. (1.3). In the

vacuum limit, both Fmed and ∆̃med vanish and Eq. (1.4) reproduces the vacuum result.

When setting ∆x+A = 0, Eq. (1.4) reduces to Eq. (1.2) as discussed later in the paper.

Unlike ∆med, ∆̃med(Eγ , zq, θqq̄) has an intricate functional dependence on Eγ , zq and θqq̄,

and we find that it can be either smaller or larger than ∆med, thus reducing or enhancing
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the anti-angular ordered contribution. Finally, compared to Eq. (1.2) the total rate of

emissions is enhanced by the Fmed factor.

The rest of this paper is organized as follows. In Section 2 we introduce the building

blocks of the calculation together with the approximations we adopted. The squared ma-

trix element for γ∗ → qq̄g is computed in Section 3, where we also define the generalized

decoherence factor ∆̃med. In Section 4, we present a numerical study of our results, com-

paring them to the ∆med baseline. We conclude with some future prospects and discussion

of phenomenological applications of this study in Section 5. In Appendix A we include

plots to illustrate the behaviour of Fmed, as well as a Lund plane representation of ∆̃med.

2 Amplitudes for γ∗ → qq̄g in a dense medium

We consider the creation and propagation of a highly boosted ultra-relativistic qq̄ antenna

in the presence of a finite, dense medium. Each prong of the antenna, with momentum p

for the quark and p̄ for the anti-quark, is highly boosted in the z direction, that is p0 ∼ pz
and similarly for p̄. It is thus convenient to introduce light-cone coordinates3 such that

p = (p+, p−,p), where p+ ≫ |p|, p−. The antenna emits a gluon of momentum k, which

we take to be very soft. As it has been argued in the introduction and will be explicitly

seen below, this implies that its formation time is very large compared to the length of the

medium, and therefore it is emitted outside of it.

Let us start by collecting the variables that we will be using throughout this paper and

comment on their relative sizes. The quark and anti-quark light-cone energies are denoted

Eq and Eq̄ (i.e., Eq ≡ p+ and Eq̄ ≡ p̄+), and since the gluon is very soft its energy Eg

satisfies Eg ≪ Eq, Eq̄. The total energy is Eγ = Eq + Eq̄ + Eg. In intermediate steps,

before taking the aforementioned limits, we keep explicit the sum of the quark (anti-quark)

and gluon energies, which we write as

El = Eq + Eg , El̄ = Eq̄ + Eg . (2.1)

Finally, we introduce energy fractions which are particularly convenient for expressing our

final result. We have the gluon relative energy,

zg =
Eg

El
∼ Eg

Eq
, z̄g =

Eg

El̄

∼ Eg

Eq̄
, (2.2)

and the quark and anti-quark relative energies,

zq =
Eq + Eg

Eq + Eq̄ + Eg
∼ Eq

Eγ
, z̄q =

Eq̄ + Eg

Eq + Eq̄ + Eg
∼ Eq̄

Eγ
. (2.3)

These variables are not all independent since z̄q = 1− zq and z̄q z̄g = zqzg, but introducing

them is convenient to write more compact expressions.

The medium has a length L ≡ L+, and it is modelled by a classical colour field, gener-

ated by static quasi-particle sources which are unaffected by interactions with the traversing

3The light-cone coordinates are defined as v± = v0±vz
√
2

, v = (vx, vy), with the dot product of two

4-vectors becoming v · w = v+w− + v−w+ − v ·w.
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x+
A

x+
g

J

k

p

p̄

L

(a) in: Antenna formation inside the medium

x+
A

x+
g

J

k

p

p̄

L

(b) out: Antenna formation outside the medium

Figure 1: Finite medium, with gluon emission outside the medium

particles. Therefore, the high-energy partons interact with a stochastic background field

which can be written as

gAa,µ
ext(q) = gµ+

∫

x+

ei q
−x+ Aa(x+, q) (2π)δ(q+) , (2.4)

where gµν is the metric tensor. Aa(x+, q) contains the information about both the colour

density of the medium scattering centres and the potential that controls the interaction

between the traversing partons and the medium quasi-particles. We note that since the

partons are highly boosted in the + direction, the static medium sources are effectively

boosted in the opposite direction and the field in Eq. (2.4) only has a non-zero component

in the − direction.

When computing an observable, the stochastic background field must be averaged

over all possible configurations. We assume the field to have Gaussian statistics, i.e., with

only pairwise averages being non-zero [35, 36]. Furthermore, we assume that interactions

between the partons and the medium are local, and that there are no correlations between

different sources. The average over the field configurations is then given by

⟨Aa(x+,p)A∗b(x̄+, p̄)⟩ = δab

2CR̄

ρ(x+) δ(x+ − x̄+)(2π)2 δ(2)(p− p̄)V(p) , (2.5)

where ρ(x+) is the number density of in-medium sources, CR̄ = CA for quarks and CR̄ = CF

for gluons interacting with the medium, and V(p) is a screened Coulomb-like potential that

controls the interaction between the traversing partons and the medium. Corrections to

this simple description of the medium incorporating inhomogeneities and flow effects are

the subject of an active field of research [37–46].

Given our assumption that the gluon is very soft and emitted outside the medium, there

are two different amplitudes we should consider (see Fig. 1): the one where the antenna is

formed inside the medium (denoted in), and the one where the antenna is formed outside

(denoted out). That is, when the gluon is emitted by the quark we write

Mq = M in
q +Mout

q , (2.6)
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x+
A

x+
g x+

∞

J

k

p

p̄

Figure 2: Antenna formation and gluon emission inside an infinite medium

and similarly for Mq̄, when the gluon is emitted off the anti-quark line. For simplicity,

however, we will first write the amplitude for the process where the antenna formation and

the gluon emission both happen inside an infinite medium (see Fig. 2), and then take the

necessary limits of this expression.

The Feynman rules describing the propagation of particles inside a medium as described

above are well known and have been widely used. They can be found in e.g. Refs. [47, 48].

With these Feynman rules, the amplitude corresponding to Fig. 2 is:

iMmed
q =− g e

4ElEγ

∫ x+
∞

0
dx+g

∫ x+
g

0
dx+A

∫

l1,k1,p1,p̄1

e
i k2

2Eg
x+
∞Gbb1

(
x+∞,k;x+g ,k1

)

e
i p2

2Eq
x+
∞Gii2

(
x+∞,p;x+g ,p1

)
tb1i2i1γ

σq ,σ
g,λg

[p1; k1]Gi1iA

(
x+g ,p1 + k1;x

+
A, l1

)

δiAjAγ
σ,σq̄

A,λA
[l1; p̄1] ϵ

∗λA (l1 + p̄1) · J (l1 + p̄1) e
−i

(l1+p̄1)
2

2Eγ
x+
a

e
i p̄2

2Eq̄
x+
∞ ḠjAj

(
x+∞, p̄;x+a , p̄1

)
.

(2.7)

where g2 = 4παs and e is the electric charge. Let us make some comments on this expres-

sion. The propagation of each particle inside the medium is described by an in-medium

propagator, G, which allows for colour rotations and transverse motion as particles advance

through the matter. In our approximation, the spinor index or helicity of the particles is

not modified by medium interactions. The external spinors and polarisations are absorbed

into the definition of the medium propagators, and the vertices include the spinors and

helicities at the interaction point. More explicitly, the vertices are

γ
σ,σq̄

A,λA
[l1; p̄1] = ūσ (l1) /ϵ

λA (l1 + p̄1) v
σq̄ (p̄1) ,

γ
σq ,σ
g,λg

[p1; k1] = ūσq (p1) /ϵ
∗λg (k1)u

σ (p1 + k1) ,
(2.8)

where σq and σq̄ are the spinor indices of the external quark and anti-quark, and λg the

polarisation of the external gluon. The current Jµ describes the creation of the virtual

photon. Note that these expressions only depend on the energy and transverse components

of each of the momenta, since the minus component has been integrated out introducing
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the dependence on the light-cone time, but for simplicity of the notation we write them as

depending on the full four-momenta. Finally, in Eq. (2.7) there is a phase associated with

each external propagator, as well as the one corresponding to the vacuum propagator of

the photon.

Given that the prongs of the antenna are very energetic, we assume that they propagate

along straight lines and we write the quark propagators as (tilted) eikonal propagators.

Thus, the description of highly unbalanced splittings, with zq very close to 0 or 1, is

beyond the regime of validity of our approximation. Following Refs. [32, 49], if we further

set the initial position of the eikonal propagators in the transverse plane to zero, then we

have that

Geik
ij

(
x+2 ,p2;x

+
1 ,p1

)
= (2π)2 δ(2)(p2 − p1) e

−i
p22
2E

(x+
2 −x+

1 )Wij

(
x+2 , x

+
1 ;

p2

E
(τ − x+1 )

)
, (2.9)

and similarly for the anti-quark. Replacing the propagators in Eq. (2.7) by eikonal propa-

gators already leads to a considerable simplification that allows us to perform some of the

integrations over transverse components in the amplitude. To further simplify it, we focus

on the limits corresponding to Fig. 1. We start with the in case of Fig. 1a. Taking the

amplitude in Eq. (2.7) as our starting point, we note that the emitted gluon is outside the

medium, so its propagator becomes a free propagator,

Gbb1
(
x+∞,k;x+g ,k1

)
→ δbb1(2π)

2 δ(2)(k1 − k) e
−i k2

2Eg
(x+

∞−x+
g )

. (2.10)

Combined with the replacement of the quark and anti-quark propagators with eikonal

propagators, this allows us to perform all the transverse momentum integrals. We also note

that after these replacements the dependence on x+∞ in the phases cancels out. Finally, we

note that the Wilson lines in the quark and anti-quark eikonal propagators either simplify

or become ‘shorter’. Explicitly,

Wii2

(
x+∞, x+g ;

p

Eq
(τ − x+g )

)
→ δii2 ,

Wi1iA

(
x+g , x

+
A;

p+ k

Eq + Eg
(τ − x+g )

)
→ Wi1iA

(
L, x+A; r

a
q (τ)

)
,

W†
jAj

(
x+g , x

+
A;

p̄

Eq̄
(τ − x+g )

)
→ W†

jAj

(
L, x+A; r

A
q̄ (τ)

)
,

(2.11)

where for the quark line we also neglected the gluon momentum compared to the much

harder quark momentum, and we have defined the trajectories

rAq (τ) =
p

Eq
(τ − x+A) , rAq̄ (τ) =

p̄

Eq̄
(τ − x+A) . (2.12)

With these simplifications and assumptions, the momenta at each vertex become the ex-

ternal momenta of the quark, anti-quark and gluon.

Finally, we obtain the amplitude corresponding to the diagram in Fig. 1a:

iM in
q =− g e

4ElEγ

∫ x+
∞

L
dx+g e

i
x+g
tg

∫ L

0
dx+Ae

i
x+
A

tA tbii1 Wi1iA

(
L, x+A; r

A
q (τ)

)

×W†
iAj

(
L, x+A; r

A
q̄ (τ)

)
γ
σq ,σ
g,λg

[p; k] γ
σ,σq̄

A,λA
[p; p̄] ϵ∗λA (p+ p̄) · J (p+ p̄) ,

(2.13)
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where we took the limit of a soft gluon and we introduced the formation times for the gluon

and the antenna,

tg =
2zgzqEγ

(k − zgp)2
, tA =

2zq(1− zq)Eγ

[(1− zq)p− zqp̄]2
. (2.14)

As argued previously, it is clear that for a very soft gluon (i.e., zg, |k| → 0) the gluon

formation time is very large.

Given that in the diagram of Fig. 1a the point x+g is an arbitrary point in vacuum, we

would expect to be able to trivially integrate it, and this is indeed the case in Eq. (2.13)

as it only appears in a phase. The contribution of this integral at x+∞ vanishes, while the

contribution at the other limit of integration gives a phase eiL/tg , which we can set to 1

because tg ≫ L for a very soft gluon. We then find

iM in
q =− i g e tg

4ElEγ

∫ L

0
dx+Ae

i
x+
A

tA tbii1 Wi1iA

(
L, x+A; r

A
q (τ)

)
W†

iAj

(
L, x+A; r

A
q̄ (τ)

)

γ
σq ,σ
g,λg

[p; k] γ
σ,σq̄

A,λA
[p; p̄] ϵ∗λA (p+ p̄) · J (p+ p̄) .

(2.15)

The out case, corresponding to Fig. 1b, is trivial to obtain following exactly the same

steps. We get

iMout
q =− g e

4ElEγ

∫ x+
∞

L
dx+g e

i
x+g
tg

∫ x+
g

L
dx+Ae

i
x+
A

tA

tbijγ
σq ,σ
g,λg

[p; k] γ
σ,σq̄

A,λA
[p; p̄] ϵ∗λA (p+ p̄) · J (p+ p̄) .

(2.16)

Noticing that both the x+g and x+A dependences can be integrated trivially we find

iMout
q =

g e

4ElEγ
tA tge

i L
tA tbij γ

σq ,σ
g,λg

[p; k] γ
σ,σq̄

A,λA
[p; p̄] ϵ∗λA (p+ p̄) · J (p+ p̄) , (2.17)

where we have again used that tg ≫ L.

The amplitudes corresponding to emissions off the anti-quark leg can be obtained in

exactly the same way. We get:

iM in
q̄ =

i g e t̄g
4El̄Eγ

∫ L

0
dx+Ae

i
x+
A

tA WiiA

(
L, x+A; r

A
q (τ)

)
W†

iAj1

(
L, x+A; r

A
q̄ (τ)

)
tbj1j

γ̄
σ,σq̄

g,λg
[p̄; k] γ

σq ,σ
A,λA

[p; p̄] ϵ∗λA (p+ p̄) · J (p+ p̄) ,

(2.18)

and

iMout
q̄ =− g e

4El̄Eγ
tA t̄ge

i L
tA tbij γ̄

σ,σq̄

g,λg
[p̄; k] γ

σq ,σ
A,λA

[p; p̄]ϵ∗λA (p+ p̄) · J (p+ p̄) . (2.19)

These expressions depend on the gluon formation time when it is radiated off the q̄ line,

t̄g =
2z̄g(1− zq)Eγ

(k − z̄gp̄)2
, (2.20)

and on the corresponding vertex

γ̄
σ,σq̄

g,λg
[p̄; k] = v̄σ (p̄+ k) /ϵ∗λg (k) vσq̄ (p̄) . (2.21)
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x+
A

J

Lx̄+
A

J †

(a) in-in

x+
A

J

L

J †

(b) in-out

J

L

J †

(c) out-out

Figure 3: Different contributions to Eq. (3.2). The amplitude is depicted on top of the

corresponding conjugate amplitude. For the in-out contributions we omit the diagram

where the roles of the amplitude and conjugate amplitude are reversed.

3 γ∗ → qq̄g matrix-element in a dense medium

Equipped with the Mq and Mq̄ amplitudes derived in the previous section, we can now

calculate the squared matrix element M2
qq̄g for γ∗ → qq̄g splittings,

M2
qq̄g = ⟨|Mq|2⟩+ ⟨|Mq̄|2⟩+ ⟨2 Re MqM

∗
q̄ ⟩ , (3.1)

where the product of amplitudes has also been averaged over medium configurations, and

the standard average over initial and sum over final quantum numbers is implicit. We refer

to the first two contributions in Eq. (3.1) as direct terms, since they correspond to the

gluon being emitted by either the quark or the anti-quark both in the amplitude and the

conjugate amplitude. The last contribution is referred to as the interference term.

Each of the contributions in Eq. (3.1) can be written as the sum over three regions

depending on the light-cone time of the antenna formation, see Fig. 3: the in-in region,

where the antenna is created inside the medium in amplitude and conjugate amplitude;

the in-out region, where one of the antennas is created inside and the other one outside

the medium; and the out-out region, where both are created once the photon has escaped

the medium. For instance, given the decomposition in Eq. (2.6), we will compute |Mq|2 as

the sum of

|Mq|2in-in = M in
q M in,†

q , |Mq|2in-out = M in
q Mout,†

q +Mout
q M in,†

q ,

|Mq|2out-out = Mout
q Mout,†

q .
(3.2)

In the various terms above we need to sum and average over the corresponding quantum

numbers. This procedure affects both the product of the polarization vectors and the

vertices given in Eqs. (2.8) and (2.21). The former simply becomes

ϵλA(p+ p̄) · J(p+ p̄)
(
ϵλ̄A(p+ p̄) · J(p+ p̄)

)†
→ δλAλ̄A |J(p+ p̄)|2 . (3.3)
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The latter, including the average over the photon polarization corresponding to the factor

1/2 below, give

1

2

∑
γ
σq ,σ
A,λA

[p; p̄] γ̄
σ,σq̄

g,λg
[p̄; k]

[
γ
σq ,σ̄
A,λA

[p; p̄] γ̄
σ̄,σq̄

g,λg
[p̄; k]

]∗
=

32E2
γzq

tAtgzg
Pγ→qq̄(zq) ,

1

2

∑
γ
σq ,σ
g,λg

[p; k] γ
σ,σq̄

A,λA
[p; p̄]

[
γ
σq ,σ̄
A,λA

[p; p̄] γ̄
σ̄,σq̄

g,λg
[p̄; k]

]∗
= κ · κ̄ 16Eγ

z̄gzgtA
Pγ→qq̄(zq) ,

(3.4)

where Pγ→qq̄(zq) = nf [z
2
q + (1− zq)

2] is the vacuum splitting function, and we have intro-

duced

κ = k − zgp, κ̄ = k − z̄gp̄ (3.5)

i.e., the relative transverse momentum of the gluon with respect to the quark and the

anti-quark respectively.

3.1 Direct terms

In-in region: After summing and averaging over quantum numbers, the squared ampli-

tude is given by

∑
|Mq|2in-in = 2ReCF

(
g e

Eγ

)2 2tg
zqtA

1

zg
Pγ→qq̄(zq)|J(p+ p̄)|2

×
∫ L

0
dx̄+A

∫ x̄+
A

0
dx+A e

−i
∆x+

A
tA Wkl

(
L, x+A; r

A
q (τ)

)
W†

li

(
L, x+A; r

A
q̄ (τ)

)

×Wil̄

(
L, x̄+A; r̄

A
q̄ (τ)

)
W†

l̄k

(
L, x̄+A; r̄

A
q (τ)

)
,

(3.6)

where the trajectory of the Wilson lines in the amplitude is parametrized as in Eq. (2.12)

and in the conjugate amplitude by

r̄Aq (τ) =
p

Eq
(τ − x̄+A) , r̄Aq̄ (τ) =

p̄

Eq̄
(τ − x̄+A) . (3.7)

We have chosen ∆x+A = x̄+A−x+A > 0, accounting for the alternative ordering by taking twice

the real part of the expression. The Casimir of the fundamental representation appears

through tb
k̄j
tbjk = CF δk̄k.

The next step is to average |Mq|2 over medium configurations. Given that the medium

average is local in the + component (see Eq. (2.4)), we use the composition law of Wilson

lines

Wab

(
x+1 , x

+
2 ; r(τ)

)
= Wac

(
x+1 , x

+
3 ; r(τ)

)
Wcb

(
x+3 , x

+
2 ; r(τ)

)
(3.8)

to rewrite the squared amplitude as

∑
⟨|Mq|2in-in⟩ = 2ReCF

(
g e

Eγ

)2 2tg
zqtA

1

zg
Pγ→qq̄(zq)|J(p+ p̄)|2

×
∫ L

0
dx̄+A

∫ x̄+
A

0
dx+A e

−i
∆x+

A
tA

〈
Wml

(
x̄+A, x

+
A; r

A
q (τ)

)
W†

ln

(
x̄+A, x

+
A; r

A
q̄ (τ)

) 〉
(3.9)

×
〈
Wkm

(
L, x̄+A; r

A
q (τ)

)
W†

ni

(
L, x̄+A; r

A
q̄ (τ)

)
Wil̄

(
L, x̄+A; r̄

A
q̄ (τ)

)
W†

l̄k

(
L, x̄+A; r̄

A
q (τ)

) 〉
.
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Then, we also use the property of colour triviality (see Eq. (2.5)) to obtain

〈
Wml

(
x̄+A, x

+
A; r

A
q (τ)

)
W†

ln

(
x̄+A, x

+
A; r

A
q̄ (τ)

) 〉

=
δmn

Nc

〈
TrW

(
x̄+A, x

+
A; r

A
q (τ)

)
W† (x̄+A, x+A; rAq̄ (τ)

) 〉
,

(3.10)

and similarly for the medium average of four Wilson lines. Putting everything together we

get our final expression for the in-in contribution to the direct term

∑
⟨|Mq|2in-in⟩ = 4CFNc

(
g e

Eγ

)2 tg
zqtA

1

zg
Pγ→qq̄(zq)|J(p+ p̄)|2

×
∫ L

0
dx̄+A

∫ x̄+
A

0
dx+A cos

(
∆x+A
tA

)
S(2)

(
x̄+A, x

+
A; r

A
q (τ), r

A
q̄ (τ)

)

× Q(4)
(
L, x̄+A; r

A
q (τ), r

A
q̄ (τ), r̄

A
q (τ), r̄

A
q̄ (τ)

)
.

(3.11)

We have introduced the two-point function S(2), usually referred to as ‘dipole’ in the

literature,

S(2)
(
x̄+A, x

+
A; r

A
q (τ), r

A
q̄ (τ)

)
=

1

Nc

〈
TrW

(
x̄+A, x

+
A; r

A
q (τ)

)
W† (x̄+A, x+A; rAq̄ (τ)

) 〉
, (3.12)

and the four-point function Q(4), the so-called ‘quadrupole’,

Q(4)
(
L, x̄+A; r

A
q (τ), r

A
q̄ (τ), r̄

A
q (τ), r̄

A
q̄ (τ)

)
(3.13)

=
1

Nc

〈
TrW

(
L, x̄+A; r

A
q (τ)

)
W† (L, x̄+A; rAq̄ (τ)

)
W

(
L, x̄+A; r̄

A
q̄ (τ)

)
W† (L, x̄+A; r̄Aq (τ)

) 〉
.

Both the dipole and the quadrupole are purely real functions.

In the first line of Eq. (3.11) we recognise the vacuum splitting function for the gluon

emission in the soft limit Pq→qg = 1/zg. This observation renders a clear separation between

the gluon emission process and the medium dynamics, as expected given the limits we have

taken throughout our calculation.

In-out region: We next turn to the case in which the antenna is created outside the

medium either in the amplitude or in the conjugate amplitude. We find that the squared

amplitude is given by

∑
|Mq|2in-out = 2 iCF

(
g e

Eγ

)2 tg
zqzg

Pγ→qq̄(zq)|J(p+ p̄)|2

×
{∫ L

0
dx+A e

i
(L−x+

A
)

tA Wil

(
L, x+A; r

A
q̄ (τ)

)
W†

li

(
L, x+A; r

A
q (τ)

)

−
∫ L

0
dx+A e

−i
(L−x+

A
)

tA Wil

(
L, x+A; r

A
q (τ)

)
W†

li

(
L, x+A; r

A
q̄ (τ)

)
}
.

(3.14)
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Note that after performing the medium average, the two terms in the curly brackets are

identical up to the sign in the phase. Therefore, we obtain

∑
⟨|Mq|2in-out⟩ = −4CFNc

(
g e

Eγ

)2 tg
zgzq

Pγ→qq̄(zq)|J(p+ p̄)|2

×
∫ L

0
dx+A sin

(
L− x+A

tA

)
S(2)

(
L, x+A; r

A
q (τ), r

A
q̄ (τ)

)
,

(3.15)

where we have introduced the dipole as defined in Eq. (3.12).

Out-out region: Lastly, we study the case in which the antenna is formed outside the

medium. All Wilson lines become Kronecker deltas in colour space, and all integrals can

be trivially computed to get

∑
⟨|Mq|2out-out⟩ = 2CFNc

(
g e

Eγ

)2 tgtA
zqzg

Pγ→qq̄(zq)|J(p+ p̄)|2 , (3.16)

which coincides with the direct quark contribution to the squared matrix element for gluon

radiation from a colour singlet antenna in vacuum.

The full result for the direct quark contributions is obtained by summing Eqs. (3.11),

(3.15) and (3.16). The direct anti-quark contributions can be obtained from the quark

results by replacing zg → z̄g, zq → z̄q = (1− zq) and tg → t̄g.

3.2 Interference term

Here we compute the contribution to the squared matrix element in which the radiation is

emitted from one leg of the antenna in the amplitude, and absorbed by the other one in

the conjugated amplitude. These diagrams are responsible for interference effects between

the gluon emission and the dynamics of the antenna formation, as we shall discuss in more

detail below.

In-in region: We start by focusing on the region where the antenna is created inside the

medium. The squared matrix element is given by

2Re
∑(

MqM
∗
q̄

)
in-in

= −2Re
(ge)2

zq(1− zq)E3
γ

tg t̄g
z̄gzgtA

|J(p+ p̄)|2 κ · κ̄Pγ→qq̄(zq)

×
∫ L

0
dx̄+A

∫ x̄+
A

0
dx+A

[
e
−i

∆x+
A

tA tbjk Wkl

(
L, x+A; r

A
q (τ)

)
W†

li

(
L, x+A; r

A
q̄ (τ)

)

× tbik̄ Wk̄l̄

(
L, x̄+A; r̄

A
q̄ (τ)

)
W†

l̄j

(
L, x̄+A; r̄

A
q (τ)

)
+
(
x+A ↔ x̄+A

) ]
,

(3.17)

where we accounted for the two possible orderings of the light-cone times of the antenna

splitting. Let us comment on the colour structure. By using the Fierz identity we can

rewrite the product of SU(Nc) generators as

tbjkt
b
ik̄ =

1

2

(
δjk̄ δki −

1

Nc
δjk δik̄

)
. (3.18)
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The first term of the previous equation, when combined with the colour structure of the

Wilson lines, leads to

2Re
∑(

MqM
∗
q̄

)
in-in

= −Re
(ge)2

zq(1− zq)E3
γ

tg t̄g
z̄gzgtA

|J(p+ p̄)|2 κ · κ̄Pγ→qq̄(zq)

×
∫ L

0
dx̄+A

∫ x̄+
A

0
dx+A

[
e
−i

∆x+
A

tA Wkl

(
L, x+A; r

a
q (τ)

)
W†

lk

(
L, x+A; r

A
q̄ (τ)

)

× Wjl̄

(
L, x̄+A; r̄

A
q̄ (τ)

)
W†

l̄j

(
L, x̄+A; r̄

A
q (τ)

)
+
(
x+A ↔ x̄+A

) ]
.

(3.19)

We neglect the contribution arising from the second term in the Fierz identity since we

work in the large-Nc limit.

Averaging Eq. (3.19) over all possible configurations of the background field and using

their locality and colour triviality leads to

2Re
∑

⟨MqM
∗
q̄ ⟩in-in = −4ReCFNc

(ge)2

zq(1− zq)E3
γ

tg t̄g
z̄gzgtA

|J(p+ p̄)|2κ · κ̄Pγ→qq̄(zq)

×
∫ L

0
dx̄+A

∫ x̄+
A

0
dx+A

[
e
−i

∆x+
A

tA
1

Nc

〈
Wml

(
x̄+A, x

+
A; r

A
q (τ)

)
W†

lm

(
x̄+A, x

+
A; r

A
q̄ (τ)

) 〉
(3.20)

× 1

N2
c

〈
Win

(
L, x̄+A; r

A
q (τ)

)
W†

ni

(
L, x̄+A; r

A
q̄ (τ)

)
Wjl̄

(
L, x̄+A; r̄

A
q̄ (τ)

)
W†

l̄j

(
L, x̄+A; r̄

A
q (τ)

) 〉]
,

where the overall factor of 4 comes from writing N2
c = 2CFNc in the large-Nc limit and

taking into account the two orderings of the integration variables written explicitly in

Eq. (3.19). We identify two structures of Wilson-line correlators: a dipole between x+A and

x̄+A, S(2)
(
x̄+A, x

+
A; r

A
q (τ), r

A
q̄ (τ)

)
(see Eq. (3.12)), and the product of four Wilson lines that

are traced into two pairs, the so-called ‘double-dipole’. In the large-Nc limit, it can be

shown that this object reduces to the product of two dipoles (see e.g. Ref. [50]). Therefore,

we can further simplify Eq. (3.20) and obtain

2Re
∑

⟨MqM
∗
q̄ ⟩in-in = −4CFNc

(ge)2

zq(1− zq)E3
γ

tg t̄g
z̄gzgtA

|J(p+ p̄)|2κ · κ̄Pγ→qq̄(zq)

×
∫ L

0
dx̄+A

∫ x̄+
A

0
dx+A cos

(
∆x+A
tA

)
S(2)

(
x̄+A, x

+
A; r

A
q (τ), r

A
q̄ (τ)

)
(3.21)

× S(2)
(
L, x̄+A; r

A
q (τ), r

A
q̄ (τ)

)
S(2)

(
L, x̄+A; r̄

A
q̄ (τ), r̄

A
q (τ)

)
.

In-out region: The colour structure heavily simplifies in this situation since, analogously

to the direct term calculation, we have to deal with only two Wilson lines. The result is

2Re
∑(

MqM
∗
q̄

)
in-out

= 2 iReCF
(ge)2

zq(1− zq)E3
γ

tg t̄g
z̄gzg

|J(p+ p̄)|2 κ · κ̄Pγ→qq̄(zq)

×
{∫ L

0
dx+A e

−i
(L−x+

A
)

tA Wil

(
L, x+A; r

A
q (τ)

)
W†

li

(
L, x+A; r

A
q̄ (τ)

)

−
∫ L

0
dx+A e

i
(L−x+

A
)

tA Wli

(
L, x+A; r

A
q̄ (τ)

)
W†

il

(
L, x+A; r

A
q (τ)

)
}
.

(3.22)
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After performing the medium average, this expression reduces to

2Re
∑

⟨MqM
∗
q̄ ⟩in-out = 4CFNc

(ge)2

zq(1− zq)E3
γ

tg t̄g
z̄gzg

|J(p+ p̄)|2κ · κ̄Pγ→qq̄(zq)

×
∫ L

0
dx+A sin

(
L− x+A

tA

)
S(2)

(
L, x+A; r

A
q (τ), r

A
q̄ (τ)

)
,

(3.23)

where we identify the same functional form for the medium contribution as the one present

in the direct term, see Eq. (3.15).

Out-out region: Setting the antenna to be outside the medium in both contributions

leads to

2Re
∑

⟨MqM
∗
q̄ ⟩out-out = −2CFNc

(ge)2

zq(1− zq)E3
γ

tg t̄gtA
z̄gzg

|J(p+ p̄)|2 κ · κ̄Pγ→qq̄(zq) , (3.24)

which coincides with the vacuum result for the interference term.

3.3 Medium Modifications to Squared Matrix Elements

The full result for the direct terms, including the emission off the quark line and that off

the anti-quark, can be compactly written as

⟨|Mq|2⟩+ ⟨|Mq̄|2⟩ = 4CF g
2M2

qq̄

(
1

κ2
+

1

κ̄2

)
(1 + Fmed) , (3.25)

where we have introduced M2
qq̄, which corresponds to the production of a qq̄ antenna from

a virtual photon in vacuum, and is given by

M2
qq̄ =

e2NctA
Eγ

Pγ→qq̄(zq)|J(p+ p̄)|2 . (3.26)

We have identified Fmed, the known factor controlling the medium-induced modification to

the qq̄ antenna production [32]

Fmed = 2

∫ L

0

dx̄+A
tA

∫ x̄+
A

0

dx+A
tA

cos

(
∆x+A
tA

)
S(2)

(
x̄+A, x

+
A; r

A
q (τ), r

A
q̄ (τ)

)

× Q(4)
(
L, x̄+A; r

A
q (τ), r

A
q̄ (τ), r̄

A
q (τ), r̄

A
q̄ (τ)

)

− 2

∫ L

0

dx+A
tA

sin

(
L− x+A

tA

)
S(2)

(
L, x+A; r

A
q (τ), r

A
q̄ (τ)

)
.

(3.27)

We will discuss the limiting behaviour of this expression in the following section.

By summing Eqs. (3.21), (3.23) and (3.24) we obtain the interference term, which reads

⟨2ReMqM
∗
q̄ ⟩ = −8CF g

2M2
qq̄

κ · κ̄
κ2κ̄2

[
1 + 2

∫ L

0

dx̄+A
tA

∫ x̄+
A

0

dx+A
tA

cos

(
∆x+A
tA

)

× S(2)
(
L, x̄+A; r

A
q (τ), r

A
q̄ (τ)

)
S(2)

(
L, x̄+A; r̄

A
q̄ (τ), r̄

A
q (τ)

)
S(2)

(
x̄+A, x

+
A; r

A
q (τ), r

A
q̄ (τ)

)
(3.28)

− 2

∫ L

0

dx+A
tA

sin

(
L− x+A

tA

)
S(2)

(
L, x+A; r

A
q (τ), r

A
q̄ (τ)

) ]
.
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We then recast this expression as

⟨2ReMqM
∗
q̄ ⟩ = −8CF g

2M2
qq̄

κ · κ̄
κ2κ̄2

(1 + Fmed)
(
1− ∆̃med

)
(3.29)

where we have defined ∆̃med as

∆̃med =
2

1 + Fmed

∫ L

0

dx̄+A
tA

∫ x̄+
A

0

dx+A
tA

cos

(
∆x+A
tA

)
S(2)

(
x̄+A, x

+
A; r

A
q (τ), r

A
q̄ (τ)

)

×
[
Q(4)

(
L, x̄+A; r

A
q (τ), r

A
q̄ (τ), r̄

A
q (τ), r̄

A
q̄ (τ)

)

− S(2)
(
L, x̄+A; r

A
q (τ), r

A
q̄ (τ)

)
S(2)

(
L, x̄+A; r̄

A
q̄ (τ), r̄

A
q (τ)

) ]
.

(3.30)

In the rest of this paper we will refer to ∆̃med as the generalized decoherence factor. Indeed,

as we will see in the next section, in the limit of ∆x+A = x̄+A − x+A → 0 it reduces to the

∆med computed in Refs. [23–31].

We can interpret this formula as follows. First, the propagation of the virtual antenna

during ∆x+A is described by a dipole correlator of Wilson lines. From x̄+A to L, the antenna

is now real and there are two possible ways of connecting the colour of the four Wilson

lines [51]. One, described by the quadrupole, in which the q in the amplitude is colour

connected to the q̄ in the amplitude and similarly for the q̄. The second colour configuration,

described by the double-dipole, consists in considering the four-particle system as two

separate qq̄ dipoles, one in the amplitude and the other in the conjugated amplitude.

Putting direct contributions and interference terms together, we obtain our final result

for the squared matrix element for the emission of a soft gluon off a (colour singlet) qq̄

antenna,

M2
qq̄g = 4CF g

2M2
qq̄(1 + Fmed)

[(
1

κ2
+

1

κ̄2
− 2

κ · κ̄
κ2κ̄2

)
+ 2

κ · κ̄
κ2κ̄2

∆̃med

]
. (3.31)

This is the main result of this paper. It contains two pieces: (i) the full vacuum spectrum

multiplied by the nuclear modification factor (1 + Fmed), and (ii) a pure interference con-

tribution multiplied by the generalized decoherence factor, which depends on the medium

properties and the kinematics of the antenna.

3.4 Limiting behaviour

We now discuss how to recover two important limits of Eq. (3.31), namely the vacuum

baseline and the limit where we set ∆x+A to zero.

In the vacuum limit, all dipoles and quadrupoles in Eqs. (3.27) and (3.30) become

unity, and it follows that Fmed and ∆̃med vanish. Eq. (3.31) then reproduces the well known

squared matrix element for soft gluon radiation off a colour singlet dipole in vacuum, see

e.g. Refs. [21, 22].

Let us now turn to the limit where ∆x+A = 0. This is the setup considered in Refs. [23–

31], where the antenna forms at x+A = 0 (and hence x̄+A = 0) and the decoherence factor

was found to be

∆med = 1− S(2),adj
(
L, 0; rAq (τ), r

A
q̄ (τ)

)
. (3.32)
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Recovering this limiting behaviour from Eq. (3.31) requires some care, as some of the steps

in our calculation are only valid if the antenna forms at different times in the amplitude

and complex-conjugate amplitude. In particular, we note that out of the in-in, in-out and

out-out regions only the in-in region survives. Furthermore, when computing the in-in

contributions we fixed x̄+A > x+A and accounted for the other ordering by multiplying the

expressions by a factor of 2 (see e.g. Eqs. (3.6) and (3.19)). This factor must be removed

if the time at which the antenna is formed is the same in the amplitude and complex-

conjugate amplitude. Finally, to fix the time of formation we insert tAδ(x
+
A) and tAδ(x̄

+
A)

in our expressions for the in-in contributions. Following this procedure, we find that the

direct contributions become

⟨|Mq|2⟩+ ⟨|Mq̄|2⟩ → 4CF g
2M2

qq̄

(
1

κ2
+

1

κ̄2

)
, (3.33)

where we used that

S(2)
(
0, 0; rAq (τ), r

A
q̄ (τ)

)
= 1 , Q(4)

(
L, 0; rAq (τ), r

A
q̄ (τ), r

A
q (τ), r

A
q̄ (τ)

)
= 1 . (3.34)

As expected, we recover the fact that in this limit there are no medium modifications to

the direct terms. Effectively, this amounts to taking 1 + Fmed → 1. To compute the limit

of the interference contribution, we set 1+Fmed → 1 and then apply the limiting procedure

described above to the integrals in ∆̃med. Using Eq. (3.34) and noting that, in the large-Nc

limit, [
S(2)

(
L, 0; rAq (τ), r

A
q̄ (τ)

)]2
= S(2),adj

(
L, 0; rAq (τ), r

A
q̄ (τ)

)
, (3.35)

we find that

∆̃med → ∆med , (3.36)

with ∆med as defined in Eq. (3.32). We finally get

⟨2ReMqM
∗
q̄ ⟩ → −8CF g

2M2
qq̄

κ · κ̄
κ2κ̄2

(1−∆med) , (3.37)

in full agreement with the results of Refs. [23–31].

4 Medium model and numerical results

4.1 Medium model

To numerically evaluate the expressions presented in the previous section, we need to

specify a medium model. Following standard practice in the jet-quenching literature, we

opt for taking the harmonic oscillator approximation for the in-medium potential. We

further consider a static medium, i.e., a medium with constant transport properties along

different trajectories, modeled by the parameter q̂. Note that the transport coefficient

depends on the colour representation, and we choose q̂ to be that corresponding to the

fundamental degrees of freedom. The adjoint case is simply given by CAq̂/CF , which in

the large-Nc limit reduces to 2q̂. Furthermore, it is convenient to work in the frame where

the virtual photon has zero transverse momentum (see e.g. the discussion in Ref. [32]).
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Under the harmonic approximation, the dipole correlator of two Wilson lines be-

comes [51–53]

S(2) (t, t1; r1, r2) = e
− 1

4
q̂
∫ t
t1

dτ [r1(τ)−r2(τ)]2 , (4.1)

where r1,2 correspond to Wilson-line trajectories (either in the amplitude or the conjugate

amplitude) as defined in Eqs. (2.12) and (3.7). In the large-Nc limit, the quadrupole can

be written in terms of these dipoles as [51–53]

Q(4)
(
L, x̄+A; r

A
q (τ), r

A
q̄ (τ), r̄

A
q (τ), r̄

A
q̄ (τ)

)
= S(2)

(
L, x̄+A; r

A
q , r̄

A
q

)
S(2)

(
L, x̄+A; r

A
q̄ , r̄

A
q̄

)
(4.2)

+

∫ L

x̄+
A

dsS(2)
(
L, s; rAq , r̄

A
q

)
S(2)

(
L, s; rAq̄ , r̄

A
q̄

)
T (s)S(2)

(
s, x̄+A; r

A
q , r

A
q̄

)
S(2)

(
s, x̄+A; r̄

A
q , r̄

A
q̄

)
,

where

T (s) = − q̂

2

[(
rAq − rAq̄

)2
+

(
r̄Aq − r̄Aq̄

)2 −
(
rAq − r̄Aq̄

)2 −
(
r̄Aq − rAq̄

)2]
, (4.3)

is the well-known transition amplitude.

These expressions can be made more explicit by inserting the trajectories for the Wil-

son lines. As an example, for the dipole S(2)
(
L, x+A; r

A
q , r

A
q̄

)
, the difference of transverse

coordinates that appears is given by

(rAq − rAq̄ )
2 = (τ − x+A)

2θ2qq̄ , (4.4)

and therefore the dipole becomes

S(2)
(
L, x+A; r

A
q , r

A
q̄

)
= e−

1
12

q̂θ2qq̄(L−x+
A)3 . (4.5)

Another correlator of Wilson lines that enters Eq. (3.30) is the double-dipole, which under

the aforementioned limits and approximations reads [50]

S(2)
(
L, x̄+A; r

A
q , r

A
q̄

)
S(2)

(
L, x̄+A; r̄

A
q , r̄

A
q̄

)
= e−

1
12

q̂θ2qq̄ [(L−x̄+
A)3−(x̄+

A−x+
A)3+(L−x+

A)3] . (4.6)

Finally, starting from Eq. (4.2), the quadrupole entering Eqs. (3.27) and (3.30) is [51–53]

Q(4)
(
L, x̄+A; r

A
q , r

A
q̄ , r̄

A
q , r̄

A
q̄

)
= e−

1
4
q̂θ2qq̄ [z

2
q+(1−zq)2](x̄

+
A−x+

A)2(L−x̄+
A) (4.7)

+ T (x̄+A, x
+
A)

∫ L

x̄+
A

ds e−
1
4
q̂θ2qq̄ [z

2
q+(1−zq)2](L−s)(x̄+

A−x+
A)2 e−

1
12

q̂θ2qq̄ [(s−x̄+
A)3+(s−x+

A)3−(L−s)3] ,

with the transition amplitude becoming

T (x̄+A, x
+
A) = −q̂zq(1− zq)θ

2
qq̄(x̄

+
A − x+A)

2. (4.8)

In the previous equations we have introduced the opening angle of the antenna, θqq̄ = |θqq̄|,
that is defined as the modulus of

θqq̄ ≡
p

zqEγ
− p̄

(1− zq)Eγ
. (4.9)

We note that everything in the latter expression is defined in light-cone coordinates. The

light-cone energies and angles are related to the usual energy p0 and Cartesian angle θcartqq̄
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by a rescaling (see footnote 3), E = p+ ∼
√
2p0 and θqq̄ = θcartqq̄ /

√
2. Following this

convention, the antenna formation time tA defined in Eq. (2.14) becomes

tA =
2

zq(1− zq)θ2qq̄Eγ
. (4.10)

Within the specific medium model we have chosen, the various correlators of Wilson

lines discussed above are governed by characteristic physical scales. As an example, we

note that ∆med can be written as

∆med = 1− e−
1
6
q̂θ2qq̄L

3
= 1− e−θ2qq̄/θ

2
c , (4.11)

where we have introduced the well-known critical angle [54]

θc =

√
6

q̂L3
. (4.12)

Other relevant scales can be identified in both Fmed and ∆̃med. These have already been

investigated in detail in Refs. [32, 33] within the context of the calculation of Fmed so we

do not discuss them again here.

4.2 Numerical results and discussion

In this section we present a numerical study of our main result, ∆̃med(Eγ , zq, θqq̄), as defined

in Eq. (3.30), within the medium model discussed above. Together with this manuscript,

we include an ancillary file, tildeDeltaMedNum.m, that contains a simple numerical imple-

mentation of ∆̃med (and Fmed, see Eq. (3.27)) in Mathematica that should allow the reader

to reproduce our results in the bulk of the parameter space we explore. The numerical

results discussed below were obtained with a more robust numerical implementation.

We first evaluate the generalized decoherence factor ∆̃med(Eγ , zq, θqq̄) and compare it

to the standard ∆med(θqq̄) for a medium with fixed q̂ = 1.5 GeV2/fm, varying lengths

L = (2, 4, 6) fm and with photon energies Eγ = (200, 400, 800) GeV.4 These medium

parameters were chosen to be consistent with other jet-quenching phenomenological studies

using the static brick approximation, see e.g. Refs. [55–58]. Our results are presented in

Fig. 4.

Before delving into the behavior of ∆̃med, let us briefly comment on the standard ∆med

result. This function only depends on the medium properties, and, as such, it remains in-

variant when increasing Eγ (moving from left to right in Fig. 4). Its parametric dependence

on the medium is also transparent: given that q̂ is fixed, the larger the L, the smaller the

value of θc (see Eq. (4.12)). In other words, for larger L we get full decoherence of the

gluon radiation at smaller antenna opening angles.

We start the description of ∆̃med by focusing on the collinear regime (θqq̄ ≪ 1). We

observe that ∆̃med is systematically bigger than ∆med for all values of zq. This observation

4Note that we take these values for the light-cone coordinates used throughout this paper, see the

comment below Eq. (4.9).
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Figure 4: Numerical evaluation of the generalized decoherence factor ∆̃med in Eq. (3.30)

as a function of the opening angle of the antenna, θqq̄, and its energy sharing fraction, zq,

for three different photon energies and medium lengths. The dashed black line corresponds

to ∆med, see Eq. (3.32). The value of q̂ is fixed to 1.5 GeV2/fm.

can be understood analytically by expanding Eqs. (3.31) and (3.32) in the small-angle limit.

We find that they behave as

∆̃med

∣∣∣
θqq̄≪1

=
1

480
q̂L5E2

γz
2
q (1− zq)

2(3− 2zq + 2z2q )θ
6
qq̄ +O(θ8qq̄)

∆med

∣∣∣
θqq̄≪1

=
1

6
q̂L3θ2qq̄ +O(θ4qq̄)

(4.13)

We note that the radius of convergence of these expansions is very small: while for θqq̄ <

0.01 they give a good approximation of the exact result, for θqq̄ > 0.01 the series stops

converging very quickly for realistic values of Eγ and q̂. Nevertheless, the small-angle

expansions provide an explanation for the behaviour we observe in all the plots of Fig. 4,

i.e., ∆̃med < ∆med in the θqq̄ → 0 limit. Physically, this implies that gluons radiated off

very hard-collinear prongs of a qq̄-antenna are vacuum-like (since Fmed also vanishes in this

limit, as shown in Fig. 7).
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In the opposite regime, θqq̄ → 1, both decoherence factors ∆̃med and ∆med reach unity.

Consequently, the medium-induced correction to the antenna emission pattern exactly can-

cels the vacuum interference term, and thus the radiation pattern of the antenna becomes

that of two independent colour charges. For the parameter space we explore, this regime

is reached for small values of θqq̄, well before θqq̄ = 1, where the small angle approximation

we have taken in our calculation is still valid. We then conclude that the regime of total

colour decoherence (∆̃med = 1) is reached even when incorporating medium modifications

during the formation of the antenna. However, the value of θqq̄ for which ∆̃med → 1 is now

a function not only of the medium properties but also of zq and Eγ .

Understanding the large-angle (θqq̄ → 1) behaviour of both Fmed and ∆̃med analytically

is not trivial given the integrals appearing in their definition. Instead, we have numerically

explored this limit, observing that Fmed → 0 for sufficiently large values of zq (see Fig. 7

and the discussion in Appendix A). We have also probed the large-angle limit of each of the

two contributions appearing in the numerator of ∆̃med numerically. We found that terms

proportional to the quadrupole go to 1, while those proportional to the double dipole go

to 1/2, reproducing the expected behaviour, ∆̃med → 1.

Perhaps one of the most interesting and novel features of Fig. 4 is the transition region

at intermediate angles, where the colour decoherence factor is neither 0 nor 1. For the

values of the parameters explored in this work, we identify two regimes that we proceed to

discuss separately. First, for dense enough media (q̂L = 6, 9 GeV2, with q̂ = 1.5 GeV2/fm)

and photon energies of Eγ = 200, 400 GeV we find that ∆̃med monotonically grows with

zq. In other words, for fixed θqq̄, radiation with larger values of zq will have a larger

proportion of anti-angular ordered emissions.5 In addition, even at zq = 0.5, there is a gap

between the ∆med and ∆̃med curves, whose size varies with both L and Eγ . This gap, more

pronounced for L = 6 fm and Eγ = 200, 400 GeV, leads to a clear delay of the onset of total

decoherence. Finally, we observe that in this regime ∆med and ∆̃med are not just shifted

but also have different slopes. When fixing q̂ and L so as to fix ∆med, we find that ∆̃med

gets closer to ∆med when increasing Eγ . We interpret this observation as a consequence of

the reduction of the antenna formation time with increasing Eγ , since then the impact of

considering ∆x+A ̸= 0 is suppressed, i.e., the antenna formation is less sensitive to medium

effects and ∆̃med → ∆med.

When reducing the medium length to L = 2 fm (and also for L = 4 fm, Eγ = 800

GeV), we observe new interesting features. First, a non-monotonic dependence of ∆̃med

on zq. As clearly shown in the inset plots, curves for moderate values of zq can surpass

that corresponding to the democratic branching case at relatively small angles, θqq̄ ∼ 0.1.

The insets also showcase an oscillatory behaviour of ∆̃med that becomes more pronounced

when increasing the photon energy. We would like to highlight that these oscillations are

already present in Fmed when evaluated in this kinematic regime (see Fig. 7). Indeed, they

result from the interplay between the frequency of the trigonometric functions (which is

independent of the medium parameters q̂ and L, but depends on Eγ and θqq̄ through tA),

5An important remark is that very asymmetric splittings, when zq ∼ 0 (or zq ∼ 1), are beyond the

regime of validity of our calculation since, in these cases, one of the two prongs is very soft and thus the

tilted Wilson line approximation for the propagators is not justified.
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Figure 5: Ratio between the generalized critical angle and the standard one (see

Eq. (4.12)) as a function of the energy sharing fraction for different medium lengths and

photon energies.

and the exponential decay of the Wilson-line correlators (that depend solely on the medium

parameters).6 Quantitatively, the most important observation is that the gap between ∆med

and ∆̃med significantly shrinks, especially for the highest value of Eγ . In other words, ∆med

becomes a good approximation for ∆̃med despite its non-trivial parametric dependences.

A way of further characterizing the colour decoherence factor is by identifying a gen-

eralisation of the critical angle defined in Eq. (4.12). In analogy with θc, we define θ̃c as

the angle for which ∆̃med(Eγ , zq, θqq̄ = θ̃c) = 1 − e−1. Traditionally, this angle has been

interpreted as a property of the medium that controls its resolution power: splittings with

θqq̄ < θc were said not to be resolved by the medium. After accounting for finite formation

time effects, this picture becomes more complex since this angle is not only a property of

the medium but also depends on Eγ and zq, and thus changes on a splitting-by-splitting

basis.

The extracted values of θ̃c/θc are presented in Fig. 5. This ratio allows us to quantify

the aforementioned gap between ∆med and ∆̃med. In the left panel, the energy of the photon

is fixed and the medium properties vary. In this way, both θc and θ̃c change. The ratio

between these two quantities shows an enhancement due to finite formation time effects

for small values of zq, and then a flattening as zq → 0.5. However, since our results are not

valid for zq → 0, we should treat the small zq behaviour with care. The difference between

θc and θ̃c can be substantial. For instance, focusing on zq ≥ 0.2, and on long media (L = 6

fm), we find that the new critical angle is larger by a factor of order 2. The case L = 2 fm

6 We have performed numerical checks to verify that the oscillations are not due to numerical instabilities.

More precisely, we have used various numerical integration strategies (as implemented in Mathematica) and

checked that they give the same results, and we have studied the error associated with the numerical

integration to be sure that it is well below the amplitude of the observed oscillations. Furthermore, we

note that the oscillations appear in regions of small θqq̄ where the numerical integrations converge well.

For some choices of medium parameters, as θqq̄ → 1 the convergence becomes problematic and we have

excluded those points since then we always have that ∆̃med → 1.
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Figure 6: Ratio between the rise angle extracted for ∆̃med and ∆med as a function of the

energy sharing fraction for different medium lengths and photon energies.

is again qualitatively different from the other two since θ̃c/θc becomes slightly smaller than

one. It is important to note that, for this medium setup, the ∆̃med curves oscillate with

a non-negligible amplitude, and thus the meaning of θ̃c becomes less transparent. Indeed,

given the oscillatory nature of the curves, we can encounter situations where ∆̃med = 1−e−1

for two different angles. The right panel of Fig. 5 shows the dependence of θ̃c/θc on the

energy of the photon for fixed values of q̂ and L. In this case, the denominator of this ratio

is fixed and only the numerator varies. We observe that the ratio becomes smaller with

increasing Eγ . This is again compatible with the gap between ∆̃med and ∆med becoming

narrower for shorter formation times of the antenna.

The characterization of the differences between ∆̃med and ∆med in terms of a single

critical angle is somehow incomplete. Indeed, as we have mentioned earlier, ∆̃med and

∆med are not related by a simple shift (see Fig. 4). Furthermore, given the more involved

dependence of ∆̃med on θqq̄, a smaller value of θ̃c does not imply that ∆̃med reaches the

regime of total colour decoherence faster. For these reasons, we introduce another variable

that we call ‘the rise angle’, θR. This variable measures the angular interval in which

the colour decoherence factor rises from a given value ∆min
med to ∆max

med (and similarly for

∆̃med), informing us about the slope of the distribution: the smaller θR is, the faster the

distribution rises. We perform our extraction of θR in the ∆min
med = 0.2 and ∆max

med = 0.95

window so as to capture the transition region. As we did for θc, we present the ratio

between the value for the rise angle using ∆̃med, denoted θ̃R, and the one obtained from

∆med, denoted θR.

The results are displayed in Fig. 6 in the same format as for Fig. 5: in the left panel

we fix the photon energy and change the medium parameters, and in the right panel we

do the opposite. Let us again focus on the region of semi-hard splittings. The first thing

to notice on the left panel is that the curve for L = 2 fm is compatible with one. This

supports the idea that ∆med is a good approximation of ∆̃med for this regime. For L = 4

fm, we find that ∆̃med rises almost twice as fast as ∆med (θ̃R/θR ∼ 0.5), and ∆̃med is closer
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to a Heaviside function in this particular scenario. The picture is reversed when further

increasing the value of L, i.e., θ̃R/θR is bigger or equal to 1 for L = 6 fm. We see that

the rise angle provides complementary information compared to that extracted from the

critical angle. While from the critical angle perspective it seems that, for L = 4 fm, ∆̃med

behaves similarly to ∆med, we observe that the rise angle manifests the much sharper rise

of ∆̃med. Conversely, the rise angle does not allow to capture the gap between ∆̃med and

∆med that is clearly present for L = 6 fm, but this is neatly exposed by the critical angle.

The right panel of Fig. 6 keeps θR fixed. Interestingly, we observe that θ̃R/θR < 1 for

sufficiently large zq values, that is ∆̃med rises faster than ∆med. This information could not

have been extracted from the θc analysis, since from that we could only tell that the critical

angle was larger. Putting together both observations, we conclude that even if θ̃c > θc, the

generalized decoherence factor grows faster towards the total decoherence regime.

5 Conclusions

One of the most striking modifications induced by the QGP on a QCD parton shower is

the breaking of angular-ordering. This was observed in a series of pioneering papers almost

15 years ago by studying the radiation pattern off a QCD antenna in the presence of a

medium [23–31]. The parameter that emerged from these studies was the so-called critical

angle θc, a property of the medium that dictates whether it is able to resolve a certain

splitting or not. In this way, splittings with θ < θc are not resolved and mostly respect

angular ordering for subsequent emissions. Conversely, splittings with θ > θc are resolved,

and the radiation pattern of the antenna becomes that of two independent colour charges.

The physical picture is that, for resolved splittings, interactions with the medium induce

rotations of the colour state of each prong of the antenna, and they effectively become

decorrelated sources in colour space. Constraining the values of θc, and more generally the

physics of colour decoherence, is one of the targets of the heavy-ion experimental program

at the LHC [59–62].

In this work, we have revisited the calculation of Refs. [23–31], but accounted for

medium effects during the formation of the antenna. While we have restricted our calcula-

tion to a colour singlet antenna radiating a soft gluon outside of the medium, we already

observed some new striking effects. In particular, we have shown that the notion of a

critical angle that exclusively depends on the medium properties no longer holds after con-

sidering that the antenna itself can interact with the medium while being formed. We have

introduced a generalized decoherence factor, ∆̃med, that depends on both the medium prop-

erties (q̂, L) and the kinematics of the antenna (Eγ , zq, θqq̄). Consequently, each splitting in

the parton shower experiences colour decoherence in a different fashion. More concretely,

when considering a dense medium (q̂ = 1.5 GeV2/fm, L = 6 fm) we find that ∆̃med remains

zero for a broader interval of θqq̄ values than ∆med. The direct implication is that these

very collinear splittings do not violate angular ordering, i.e., their radiation behaves like

vacuum emissions. In addition, we observe that there are at least two ways to reduce the

differences between ∆̃med and ∆med: increasing the energy of the photon or reducing L.

The interpretation of the former is very clear, as it is equivalent to reducing the antenna
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formation time and thus it is natural that medium modifications effects to the antenna

formation are less pronounced.

Given the fact that ∆̃med and ∆med are not simply related by a shift, even at fixed zq,

characterizing their differences in terms of differences of critical angles is insufficient. We

have introduced a new metric, the rise angle θR, that measures how fast the decoherence

factor grows between two set values (we take them to be 0.2 and 0.95). The rise angle

becomes smaller the faster the function grows, becoming zero for a Heaviside function.

Within the explored region of phase-space, we find a non-trivial parametric dependence

of θ̃R, the rise angle associated with ∆̃med. More precisely, we find that it can be larger

or smaller than the equivalent interval for ∆med depending on the medium and antenna

properties. This indicates that accounting for medium modifications during the antenna

formation can either delay or accelerate colour decoherence.

Besides the interference effects, we find that the total rate of emissions off the antenna

is enhanced by a factor Fmed, that was first introduced in Refs [32, 33]. This function

also has a non-trivial parametric dependence and can be as large as a factor of O(10)

for non-extreme values of the parameter space, e.g. Eγ = 200 GeV, L = 6 fm, zq = 0.2

and θqq̄ = 0.15. Thus, medium modifications not only alter the balance between angular

ordered and anti-angular ordered emissions but also induce more radiation overall.

This generalized picture of colour decoherence has multiple consequences. As an

important example, this class of interference effects is crucial when formulating an in-

medium parton shower. Several implementations of colour decoherence exist in the litera-

ture [34, 63, 64]. The one closest in spirit to the dynamics encapsulated in ∆med is that of

the JetMed parton shower where the first vacuum-like emission outside of the medium can

happen at any angle while angular ordering is preserved for all subsequent emissions [34].

In light of the new functional dependence of ∆̃med, the idea of always breaking angular

ordering for the first emission outside of the medium should be revisited. Phenomenolog-

ically, colour decoherence affects observables such as the fragmentation function [65] and,

more generally, the jet substructure [56, 57, 66–71]. All these calculations use θc as an

angular cutoff to determine whether the two prongs in a splitting lose energy by emitting

medium-induced emissions. Once again, the fact that θ̃c has a more intricate parametric

dependence will impact these results. Furthermore, one should also study the impact of

the increase in the rate of gluon emissions related to Fmed in in-medium parton showers.

In order to make the generalized picture of colour decoherence applicable to realistic

LHC scenarios there are a few aspects of the calculation that should be improved. First,

we need to extend the calculation to other splitting channels relevant for jet production.

Second, it would also be interesting to explore the case in which the emission takes place

inside the medium. Steps in this direction have been taken in Ref. [72]. In that work, the

authors studied coherence effects for q → qg1g2 splittings with the gluon g1 emitted inside

the medium and the gluon g2 outside. The more complex colour algebra of this splitting

channel hampered the possibility of identifying in a clean fashion the corresponding Fmed

and ∆̃med factors, as we were able to do in Eq. (3.31) for a colour singlet antenna. An

approximation that could help to simplify the calculation would be to consider that the two

splittings have short formation times. Aside from the generalization to other splittings, it
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would also be interesting to explore the consequences of relaxing the eikonal approximation

for the prongs of the antenna and the soft limit for the emitted gluon, so that we have a

better control of these effects in all regions of phase space.

Another extension of this work concerns heavy quarks. In this case, colour decoherence

competes with dead-cone effects that manifest as a suppression of radiation below the

dead-cone angle, θ0 ∼ mQ/EQ. Calculating the corresponding ∆̃med for a heavy-quark

antenna would then impact recent phenomenological proposals to measure the filling of

the dead-cone in heavy-ion collisions [73, 74]. This is so because the possibility of filling

the dead-cone with medium-induced emissions requires that those emissions have angles

satisfying θc < θ < θ0 region [75]. In the standard picture, this hierarchy can be achieved by

exploiting the fact that the critical angle θc only depends on the properties of the medium,

while the dead-cone angle depends on the energy and the mass of the emitter. Given that

θ̃c now also depends on the kinematics of the emitter, the fine-tuning of angular scales

becomes more delicate.

Yet another direction would be to relate our work to the different perspective on the

‘antenna laboratory’ that has been recently presented in Ref. [76]. This work studies the

impact of colour coherence effects on the recoiling parton from the QGP, thus shifting the

focus from the high-energy probe. We plan to carry out a dedicated study on how to

incorporate these coherence effects in our setup.

Finally, we note that there have been several efforts in the past to understand the

angular structure of the in-medium QCD cascade beyond the antenna setups discussed

above. For example, the 1 → 3 in-medium splitting functions in the collinear limit were

computed in Ref. [77] at first order in opacity. In this limit, vacuum/medium radiation is

neither angular nor anti-angular ordered. This calculation was also revisited in Ref. [78]

imposing additional constraints on the energy ordering of the outgoing particles. The very

challenging task of computing the matrix element for two medium-induced emissions with

generic kinematics is an on-going effort [79–81]. It would be interesting to understand in

which limit the expressions presented in those works reduce to ∆̃med.

In summary, the results we have presented show that the breaking of angular ordering

due to medium interactions has a more intricate behavior than previously known. While

in this paper this was demonstrated in a simple setting, we look forward to extending our

investigations to other phenomenologically relevant processes.
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of the antenna, θqq̄, and the energy sharing fraction, zq, for different photon energies and

medium lengths. Note the different limits on the y-axis for each row.
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A Complementary material

In this appendix we collect some numerical results that complement those presented in the

main text.

Figure 7 shows the behaviour of Fmed in the parameter space described in the main

text. This function controls both the total rate of emissions (see Eq. (3.31)) and the

denominator of ∆̃med (see Eq.(3.30)). In contrast to ∆̃med, we note that Fmed is not

bounded by one and it grows when decreasing Eγ or, equivalently, when increasing the

antenna formation time. This implies a stronger medium modification of the spectrum

for long antenna formation times, as expected. Something that has not been discussed

previously in the literature are the oscillations that we observe for L = 2 fm and for L = 4

fm when setting Eγ = 800 GeV. One could argue that the former is outside the regime
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Figure 8: Lund plane representation of the generalized decoherence factor ∆̃med for dif-

ferent medium lengths and photon energies. The gray band delineates the regime where

we found numerically instabilities. The vertical dashed line indicates the position of θc,

i.e., the value at which ∆med = 1− e−1.

of validity of our approximations, since the medium is too dilute. The latter, however, is

consistent with them. As discussed in the main text, the origin of these oscillations is an

interplay between the frequency of the trigonometric functions when increasing Eγ , and the

slower exponential decay of the Wilson-line correlators when decreasing q̂L. Furthermore,

we have verified that these oscillations are not an artifact of the numerical integration (see

footnote 6). Regarding the asymptotic behavior of Fmed, we find that collinear splittings

remain vacuum-like (Fmed = 0) for all values of zq. In the large-angle regime, emissions

with zq ∼ 0.5 are also vacuum-like. The small-zq curves do not vanish at wide-angles but,

as we have already mentioned before, this part of the phase-space is beyond the regime of

validity of our approximations and so these observations should be taken with care.

Finally, we show in Fig. 8 a Lund plane representation of ∆̃med for the parameter

space explored in this work. This provides a more visual way of identifying the regions

of phase-space for which certain phenomena take place. For example, the regime of total

colour decoherence is clearly visible when θqq̄ → 1 for any value of zq. When the antenna is
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sufficiently collinear, ∆̃med vanishes and no anti-angular ordered emissions take place. For

moderate angles, we observe a strong dependence of ∆̃med on both medium parameters and

the photon energy, as discussed in the main text. In particular, focusing on the Eγ = 400

column we note how the region where ∆̃med → 1 moves towards smaller angles when

increasing q̂L, thus indicating a stronger modification of the antenna emission pattern

when considering denser media.
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